Statistics
| Branch: | Revision:

root / hw / slavio_timer.c @ a8d3431a

History | View | Annotate | Download (7.9 kB)

1
/*
2
 * QEMU Sparc SLAVIO timer controller emulation
3
 *
4
 * Copyright (c) 2003-2004 Fabrice Bellard
5
 * 
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "vl.h"
25

    
26
//#define DEBUG_TIMER
27

    
28
/*
29
 * Registers of hardware timer in sun4m.
30
 *
31
 * This is the timer/counter part of chip STP2001 (Slave I/O), also
32
 * produced as NCR89C105. See
33
 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
34
 * 
35
 * The 31-bit counter is incremented every 500ns by bit 9. Bits 8..0
36
 * are zero. Bit 31 is 1 when count has been reached.
37
 *
38
 */
39

    
40
typedef struct SLAVIO_TIMERState {
41
    uint32_t limit, count, counthigh;
42
    int64_t count_load_time;
43
    int64_t expire_time;
44
    int64_t stop_time, tick_offset;
45
    QEMUTimer *irq_timer;
46
    int irq;
47
    int reached, stopped;
48
    int mode; // 0 = processor, 1 = user, 2 = system
49
} SLAVIO_TIMERState;
50

    
51
#define TIMER_MAXADDR 0x1f
52
#define CNT_FREQ 2000000
53
#define MAX_CPUS 16
54

    
55
// Update count, set irq, update expire_time
56
static void slavio_timer_get_out(SLAVIO_TIMERState *s)
57
{
58
    int out;
59
    int64_t diff, ticks, count;
60
    uint32_t limit;
61

    
62
    // There are three clock tick units: CPU ticks, register units
63
    // (nanoseconds), and counter ticks (500 ns).
64
    if (s->mode == 1 && s->stopped)
65
        ticks = s->stop_time;
66
    else
67
        ticks = qemu_get_clock(vm_clock) - s->tick_offset;
68

    
69
    out = (ticks >= s->expire_time);
70
    if (out)
71
        s->reached = 0x80000000;
72
    if (!s->limit)
73
        limit = 0x7fffffff;
74
    else
75
        limit = s->limit;
76

    
77
    // Convert register units to counter ticks
78
    limit = limit >> 9;
79

    
80
    // Convert cpu ticks to counter ticks
81
    diff = muldiv64(ticks - s->count_load_time, CNT_FREQ, ticks_per_sec);
82

    
83
    // Calculate what the counter should be, convert to register
84
    // units
85
    count = diff % limit;
86
    s->count = count << 9;
87
    s->counthigh = count >> 22;
88

    
89
    // Expire time: CPU ticks left to next interrupt
90
    // Convert remaining counter ticks to CPU ticks
91
    s->expire_time = ticks + muldiv64(limit - count, ticks_per_sec, CNT_FREQ);
92

    
93
#ifdef DEBUG_TIMER
94
    term_printf("timer: irq %d limit %d reached %d d %lld count %d s->c %x diff %lld stopped %d mode %d\n", s->irq, limit, s->reached?1:0, (ticks-s->count_load_time), count, s->count, s->expire_time - ticks, s->stopped, s->mode);
95
#endif
96
    if (s->mode != 1)
97
        pic_set_irq(s->irq, out);
98
}
99

    
100
// timer callback
101
static void slavio_timer_irq(void *opaque)
102
{
103
    SLAVIO_TIMERState *s = opaque;
104

    
105
    if (!s->irq_timer)
106
        return;
107
    slavio_timer_get_out(s);
108
    if (s->mode != 1)
109
        qemu_mod_timer(s->irq_timer, s->expire_time);
110
}
111

    
112
static uint32_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr)
113
{
114
    SLAVIO_TIMERState *s = opaque;
115
    uint32_t saddr;
116

    
117
    saddr = (addr & TIMER_MAXADDR) >> 2;
118
    switch (saddr) {
119
    case 0:
120
        // read limit (system counter mode) or read most signifying
121
        // part of counter (user mode)
122
        if (s->mode != 1) {
123
            // clear irq
124
            pic_set_irq(s->irq, 0);
125
            s->count_load_time = qemu_get_clock(vm_clock);
126
            s->reached = 0;
127
            return s->limit;
128
        }
129
        else {
130
            slavio_timer_get_out(s);
131
            return s->counthigh & 0x7fffffff;
132
        }
133
    case 1:
134
        // read counter and reached bit (system mode) or read lsbits
135
        // of counter (user mode)
136
        slavio_timer_get_out(s);
137
        if (s->mode != 1)
138
            return (s->count & 0x7fffffff) | s->reached;
139
        else
140
            return s->count;
141
    case 3:
142
        // read start/stop status
143
        return s->stopped;
144
    case 4:
145
        // read user/system mode
146
        return s->mode & 1;
147
    default:
148
        return 0;
149
    }
150
}
151

    
152
static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
153
{
154
    SLAVIO_TIMERState *s = opaque;
155
    uint32_t saddr;
156

    
157
    saddr = (addr & TIMER_MAXADDR) >> 2;
158
    switch (saddr) {
159
    case 0:
160
        // set limit, reset counter
161
        s->count_load_time = qemu_get_clock(vm_clock);
162
        // fall through
163
    case 2:
164
        // set limit without resetting counter
165
        if (!val)
166
            s->limit = 0x7fffffff;
167
        else
168
            s->limit = val & 0x7fffffff;
169
        slavio_timer_irq(s);
170
        break;
171
    case 3:
172
        // start/stop user counter
173
        if (s->mode == 1) {
174
            if (val & 1) {
175
                s->stop_time = qemu_get_clock(vm_clock);
176
                s->stopped = 1;
177
            }
178
            else {
179
                if (s->stopped)
180
                    s->tick_offset += qemu_get_clock(vm_clock) - s->stop_time;
181
                s->stopped = 0;
182
            }
183
        }
184
        break;
185
    case 4:
186
        // bit 0: user (1) or system (0) counter mode
187
        if (s->mode == 0 || s->mode == 1)
188
            s->mode = val & 1;
189
        break;
190
    default:
191
        break;
192
    }
193
}
194

    
195
static CPUReadMemoryFunc *slavio_timer_mem_read[3] = {
196
    slavio_timer_mem_readl,
197
    slavio_timer_mem_readl,
198
    slavio_timer_mem_readl,
199
};
200

    
201
static CPUWriteMemoryFunc *slavio_timer_mem_write[3] = {
202
    slavio_timer_mem_writel,
203
    slavio_timer_mem_writel,
204
    slavio_timer_mem_writel,
205
};
206

    
207
static void slavio_timer_save(QEMUFile *f, void *opaque)
208
{
209
    SLAVIO_TIMERState *s = opaque;
210

    
211
    qemu_put_be32s(f, &s->limit);
212
    qemu_put_be32s(f, &s->count);
213
    qemu_put_be32s(f, &s->counthigh);
214
    qemu_put_be64s(f, &s->count_load_time);
215
    qemu_put_be64s(f, &s->expire_time);
216
    qemu_put_be64s(f, &s->stop_time);
217
    qemu_put_be64s(f, &s->tick_offset);
218
    qemu_put_be32s(f, &s->irq);
219
    qemu_put_be32s(f, &s->reached);
220
    qemu_put_be32s(f, &s->stopped);
221
    qemu_put_be32s(f, &s->mode);
222
}
223

    
224
static int slavio_timer_load(QEMUFile *f, void *opaque, int version_id)
225
{
226
    SLAVIO_TIMERState *s = opaque;
227
    
228
    if (version_id != 1)
229
        return -EINVAL;
230

    
231
    qemu_get_be32s(f, &s->limit);
232
    qemu_get_be32s(f, &s->count);
233
    qemu_get_be32s(f, &s->counthigh);
234
    qemu_get_be64s(f, &s->count_load_time);
235
    qemu_get_be64s(f, &s->expire_time);
236
    qemu_get_be64s(f, &s->stop_time);
237
    qemu_get_be64s(f, &s->tick_offset);
238
    qemu_get_be32s(f, &s->irq);
239
    qemu_get_be32s(f, &s->reached);
240
    qemu_get_be32s(f, &s->stopped);
241
    qemu_get_be32s(f, &s->mode);
242
    return 0;
243
}
244

    
245
static void slavio_timer_reset(void *opaque)
246
{
247
    SLAVIO_TIMERState *s = opaque;
248

    
249
    s->limit = 0;
250
    s->count = 0;
251
    s->count_load_time = qemu_get_clock(vm_clock);;
252
    s->stop_time = s->count_load_time;
253
    s->tick_offset = 0;
254
    s->reached = 0;
255
    s->mode &= 2;
256
    s->stopped = 1;
257
    slavio_timer_get_out(s);
258
}
259

    
260
static void slavio_timer_init_internal(uint32_t addr, int irq, int mode)
261
{
262
    int slavio_timer_io_memory;
263
    SLAVIO_TIMERState *s;
264

    
265
    s = qemu_mallocz(sizeof(SLAVIO_TIMERState));
266
    if (!s)
267
        return;
268
    s->irq = irq;
269
    s->mode = mode;
270
    s->irq_timer = qemu_new_timer(vm_clock, slavio_timer_irq, s);
271

    
272
    slavio_timer_io_memory = cpu_register_io_memory(0, slavio_timer_mem_read,
273
                                                    slavio_timer_mem_write, s);
274
    cpu_register_physical_memory(addr, TIMER_MAXADDR, slavio_timer_io_memory);
275
    register_savevm("slavio_timer", addr, 1, slavio_timer_save, slavio_timer_load, s);
276
    qemu_register_reset(slavio_timer_reset, s);
277
    slavio_timer_reset(s);
278
}
279

    
280
void slavio_timer_init(uint32_t addr1, int irq1, uint32_t addr2, int irq2)
281
{
282
    int i;
283

    
284
    for (i = 0; i < MAX_CPUS; i++) {
285
        slavio_timer_init_internal(addr1 + i * TARGET_PAGE_SIZE, irq1, 0);
286
    }
287

    
288
    slavio_timer_init_internal(addr2, irq2, 2);
289
}