Statistics
| Branch: | Revision:

root / hw / musicpal.c @ aa923101

History | View | Annotate | Download (38.5 kB)

1
/*
2
 * Marvell MV88W8618 / Freecom MusicPal emulation.
3
 *
4
 * Copyright (c) 2008 Jan Kiszka
5
 *
6
 * This code is licenced under the GNU GPL v2.
7
 */
8

    
9
#include "hw.h"
10
#include "arm-misc.h"
11
#include "devices.h"
12
#include "net.h"
13
#include "sysemu.h"
14
#include "boards.h"
15
#include "pc.h"
16
#include "qemu-timer.h"
17
#include "block.h"
18
#include "flash.h"
19
#include "console.h"
20
#include "audio/audio.h"
21
#include "i2c.h"
22

    
23
#define MP_ETH_BASE             0x80008000
24
#define MP_ETH_SIZE             0x00001000
25

    
26
#define MP_UART1_BASE           0x8000C840
27
#define MP_UART2_BASE           0x8000C940
28

    
29
#define MP_FLASHCFG_BASE        0x90006000
30
#define MP_FLASHCFG_SIZE        0x00001000
31

    
32
#define MP_AUDIO_BASE           0x90007000
33
#define MP_AUDIO_SIZE           0x00001000
34

    
35
#define MP_PIC_BASE             0x90008000
36
#define MP_PIC_SIZE             0x00001000
37

    
38
#define MP_PIT_BASE             0x90009000
39
#define MP_PIT_SIZE             0x00001000
40

    
41
#define MP_LCD_BASE             0x9000c000
42
#define MP_LCD_SIZE             0x00001000
43

    
44
#define MP_SRAM_BASE            0xC0000000
45
#define MP_SRAM_SIZE            0x00020000
46

    
47
#define MP_RAM_DEFAULT_SIZE     32*1024*1024
48
#define MP_FLASH_SIZE_MAX       32*1024*1024
49

    
50
#define MP_TIMER1_IRQ           4
51
/* ... */
52
#define MP_TIMER4_IRQ           7
53
#define MP_EHCI_IRQ             8
54
#define MP_ETH_IRQ              9
55
#define MP_UART1_IRQ            11
56
#define MP_UART2_IRQ            11
57
#define MP_GPIO_IRQ             12
58
#define MP_RTC_IRQ              28
59
#define MP_AUDIO_IRQ            30
60

    
61
static uint32_t gpio_in_state = 0xffffffff;
62
static uint32_t gpio_out_state;
63
static ram_addr_t sram_off;
64

    
65
/* Address conversion helpers */
66
static void *target2host_addr(uint32_t addr)
67
{
68
    if (addr < MP_SRAM_BASE) {
69
        if (addr >= MP_RAM_DEFAULT_SIZE)
70
            return NULL;
71
        return (void *)(phys_ram_base + addr);
72
    } else {
73
        if (addr >= MP_SRAM_BASE + MP_SRAM_SIZE)
74
            return NULL;
75
        return (void *)(phys_ram_base + sram_off + addr - MP_SRAM_BASE);
76
    }
77
}
78

    
79
static uint32_t host2target_addr(void *addr)
80
{
81
    if (addr < ((void *)phys_ram_base) + sram_off)
82
        return (unsigned long)addr - (unsigned long)phys_ram_base;
83
    else
84
        return (unsigned long)addr - (unsigned long)phys_ram_base -
85
            sram_off + MP_SRAM_BASE;
86
}
87

    
88

    
89
typedef enum i2c_state {
90
    STOPPED = 0,
91
    INITIALIZING,
92
    SENDING_BIT7,
93
    SENDING_BIT6,
94
    SENDING_BIT5,
95
    SENDING_BIT4,
96
    SENDING_BIT3,
97
    SENDING_BIT2,
98
    SENDING_BIT1,
99
    SENDING_BIT0,
100
    WAITING_FOR_ACK,
101
    RECEIVING_BIT7,
102
    RECEIVING_BIT6,
103
    RECEIVING_BIT5,
104
    RECEIVING_BIT4,
105
    RECEIVING_BIT3,
106
    RECEIVING_BIT2,
107
    RECEIVING_BIT1,
108
    RECEIVING_BIT0,
109
    SENDING_ACK
110
} i2c_state;
111

    
112
typedef struct i2c_interface {
113
    i2c_bus *bus;
114
    i2c_state state;
115
    int last_data;
116
    int last_clock;
117
    uint8_t buffer;
118
    int current_addr;
119
} i2c_interface;
120

    
121
static void i2c_enter_stop(i2c_interface *i2c)
122
{
123
    if (i2c->current_addr >= 0)
124
        i2c_end_transfer(i2c->bus);
125
    i2c->current_addr = -1;
126
    i2c->state = STOPPED;
127
}
128

    
129
static void i2c_state_update(i2c_interface *i2c, int data, int clock)
130
{
131
    if (!i2c)
132
        return;
133

    
134
    switch (i2c->state) {
135
    case STOPPED:
136
        if (data == 0 && i2c->last_data == 1 && clock == 1)
137
            i2c->state = INITIALIZING;
138
        break;
139

    
140
    case INITIALIZING:
141
        if (clock == 0 && i2c->last_clock == 1 && data == 0)
142
            i2c->state = SENDING_BIT7;
143
        else
144
            i2c_enter_stop(i2c);
145
        break;
146

    
147
    case SENDING_BIT7 ... SENDING_BIT0:
148
        if (clock == 0 && i2c->last_clock == 1) {
149
            i2c->buffer = (i2c->buffer << 1) | data;
150
            i2c->state++; /* will end up in WAITING_FOR_ACK */
151
        } else if (data == 1 && i2c->last_data == 0 && clock == 1)
152
            i2c_enter_stop(i2c);
153
        break;
154

    
155
    case WAITING_FOR_ACK:
156
        if (clock == 0 && i2c->last_clock == 1) {
157
            if (i2c->current_addr < 0) {
158
                i2c->current_addr = i2c->buffer;
159
                i2c_start_transfer(i2c->bus, i2c->current_addr & 0xfe,
160
                                   i2c->buffer & 1);
161
            } else
162
                i2c_send(i2c->bus, i2c->buffer);
163
            if (i2c->current_addr & 1) {
164
                i2c->state = RECEIVING_BIT7;
165
                i2c->buffer = i2c_recv(i2c->bus);
166
            } else
167
                i2c->state = SENDING_BIT7;
168
        } else if (data == 1 && i2c->last_data == 0 && clock == 1)
169
            i2c_enter_stop(i2c);
170
        break;
171

    
172
    case RECEIVING_BIT7 ... RECEIVING_BIT0:
173
        if (clock == 0 && i2c->last_clock == 1) {
174
            i2c->state++; /* will end up in SENDING_ACK */
175
            i2c->buffer <<= 1;
176
        } else if (data == 1 && i2c->last_data == 0 && clock == 1)
177
            i2c_enter_stop(i2c);
178
        break;
179

    
180
    case SENDING_ACK:
181
        if (clock == 0 && i2c->last_clock == 1) {
182
            i2c->state = RECEIVING_BIT7;
183
            if (data == 0)
184
                i2c->buffer = i2c_recv(i2c->bus);
185
            else
186
                i2c_nack(i2c->bus);
187
        } else if (data == 1 && i2c->last_data == 0 && clock == 1)
188
            i2c_enter_stop(i2c);
189
        break;
190
    }
191

    
192
    i2c->last_data = data;
193
    i2c->last_clock = clock;
194
}
195

    
196
static int i2c_get_data(i2c_interface *i2c)
197
{
198
    if (!i2c)
199
        return 0;
200

    
201
    switch (i2c->state) {
202
    case RECEIVING_BIT7 ... RECEIVING_BIT0:
203
        return (i2c->buffer >> 7);
204

    
205
    case WAITING_FOR_ACK:
206
    default:
207
        return 0;
208
    }
209
}
210

    
211
static i2c_interface *mixer_i2c;
212

    
213
#ifdef HAS_AUDIO
214

    
215
/* Audio register offsets */
216
#define MP_AUDIO_PLAYBACK_MODE  0x00
217
#define MP_AUDIO_CLOCK_DIV      0x18
218
#define MP_AUDIO_IRQ_STATUS     0x20
219
#define MP_AUDIO_IRQ_ENABLE     0x24
220
#define MP_AUDIO_TX_START_LO    0x28
221
#define MP_AUDIO_TX_THRESHOLD   0x2C
222
#define MP_AUDIO_TX_STATUS      0x38
223
#define MP_AUDIO_TX_START_HI    0x40
224

    
225
/* Status register and IRQ enable bits */
226
#define MP_AUDIO_TX_HALF        (1 << 6)
227
#define MP_AUDIO_TX_FULL        (1 << 7)
228

    
229
/* Playback mode bits */
230
#define MP_AUDIO_16BIT_SAMPLE   (1 << 0)
231
#define MP_AUDIO_PLAYBACK_EN    (1 << 7)
232
#define MP_AUDIO_CLOCK_24MHZ    (1 << 9)
233

    
234
/* Wolfson 8750 I2C address */
235
#define MP_WM_ADDR              0x34
236

    
237
const char audio_name[] = "mv88w8618";
238

    
239
typedef struct musicpal_audio_state {
240
    uint32_t base;
241
    qemu_irq irq;
242
    uint32_t playback_mode;
243
    uint32_t status;
244
    uint32_t irq_enable;
245
    unsigned long phys_buf;
246
    void *target_buffer;
247
    unsigned int threshold;
248
    unsigned int play_pos;
249
    unsigned int last_free;
250
    uint32_t clock_div;
251
    i2c_slave *wm;
252
} musicpal_audio_state;
253

    
254
static void audio_callback(void *opaque, int free_out, int free_in)
255
{
256
    musicpal_audio_state *s = opaque;
257
    int16_t *codec_buffer;
258
    int pos, block_size;
259

    
260
    if (!(s->playback_mode & MP_AUDIO_PLAYBACK_EN))
261
        return;
262

    
263
    if (s->playback_mode & MP_AUDIO_16BIT_SAMPLE)
264
        free_out <<= 2;
265
    else
266
        free_out <<= 1;
267

    
268
    block_size = s->threshold/2;
269
    if (free_out - s->last_free < block_size)
270
        return;
271

    
272
    if (s->playback_mode & MP_AUDIO_16BIT_SAMPLE)
273
        memcpy(wm8750_dac_buffer(s->wm, block_size >> 2),
274
               (uint32_t *)(s->target_buffer + s->play_pos),
275
               block_size);
276
    else {
277
        codec_buffer = wm8750_dac_buffer(s->wm, block_size >> 1);
278
        for (pos = 0; pos < block_size; pos += 2) {
279
            *codec_buffer++ = cpu_to_le16(256 *
280
                    *(int8_t *)(s->target_buffer + s->play_pos + pos));
281
            *codec_buffer++ = cpu_to_le16(256 *
282
                    *(int8_t *)(s->target_buffer + s->play_pos + pos + 1));
283
        }
284
    }
285
    wm8750_dac_commit(s->wm);
286

    
287
    s->last_free = free_out - block_size;
288

    
289
    if (s->play_pos == 0) {
290
        s->status |= MP_AUDIO_TX_HALF;
291
        s->play_pos = block_size;
292
    } else {
293
        s->status |= MP_AUDIO_TX_FULL;
294
        s->play_pos = 0;
295
    }
296

    
297
    if (s->status & s->irq_enable)
298
        qemu_irq_raise(s->irq);
299
}
300

    
301
static uint32_t musicpal_audio_read(void *opaque, target_phys_addr_t offset)
302
{
303
    musicpal_audio_state *s = opaque;
304

    
305
    offset -= s->base;
306
    switch (offset) {
307
    case MP_AUDIO_PLAYBACK_MODE:
308
        return s->playback_mode;
309

    
310
    case MP_AUDIO_CLOCK_DIV:
311
        return s->clock_div;
312

    
313
    case MP_AUDIO_IRQ_STATUS:
314
        return s->status;
315

    
316
    case MP_AUDIO_IRQ_ENABLE:
317
        return s->irq_enable;
318

    
319
    case MP_AUDIO_TX_STATUS:
320
        return s->play_pos >> 2;
321

    
322
    default:
323
        return 0;
324
    }
325
}
326

    
327
static void musicpal_audio_write(void *opaque, target_phys_addr_t offset,
328
                                 uint32_t value)
329
{
330
    musicpal_audio_state *s = opaque;
331

    
332
    offset -= s->base;
333
    switch (offset) {
334
    case MP_AUDIO_PLAYBACK_MODE:
335
        if (value & MP_AUDIO_PLAYBACK_EN &&
336
            !(s->playback_mode & MP_AUDIO_PLAYBACK_EN)) {
337
            s->status = 0;
338
            s->last_free = 0;
339
            s->play_pos = 0;
340
        }
341
        s->playback_mode = value;
342
        break;
343

    
344
    case MP_AUDIO_CLOCK_DIV:
345
        s->clock_div = value;
346
        s->last_free = 0;
347
        s->play_pos = 0;
348
        break;
349

    
350
    case MP_AUDIO_IRQ_STATUS:
351
        s->status &= ~value;
352
        break;
353

    
354
    case MP_AUDIO_IRQ_ENABLE:
355
        s->irq_enable = value;
356
        if (s->status & s->irq_enable)
357
            qemu_irq_raise(s->irq);
358
        break;
359

    
360
    case MP_AUDIO_TX_START_LO:
361
        s->phys_buf = (s->phys_buf & 0xFFFF0000) | (value & 0xFFFF);
362
        s->target_buffer = target2host_addr(s->phys_buf);
363
        s->play_pos = 0;
364
        s->last_free = 0;
365
        break;
366

    
367
    case MP_AUDIO_TX_THRESHOLD:
368
        s->threshold = (value + 1) * 4;
369
        break;
370

    
371
    case MP_AUDIO_TX_START_HI:
372
        s->phys_buf = (s->phys_buf & 0xFFFF) | (value << 16);
373
        s->target_buffer = target2host_addr(s->phys_buf);
374
        s->play_pos = 0;
375
        s->last_free = 0;
376
        break;
377
    }
378
}
379

    
380
static void musicpal_audio_reset(void *opaque)
381
{
382
    musicpal_audio_state *s = opaque;
383

    
384
    s->playback_mode = 0;
385
    s->status = 0;
386
    s->irq_enable = 0;
387
}
388

    
389
static CPUReadMemoryFunc *musicpal_audio_readfn[] = {
390
    musicpal_audio_read,
391
    musicpal_audio_read,
392
    musicpal_audio_read
393
};
394

    
395
static CPUWriteMemoryFunc *musicpal_audio_writefn[] = {
396
    musicpal_audio_write,
397
    musicpal_audio_write,
398
    musicpal_audio_write
399
};
400

    
401
static i2c_interface *musicpal_audio_init(uint32_t base, qemu_irq irq)
402
{
403
    AudioState *audio;
404
    musicpal_audio_state *s;
405
    i2c_interface *i2c;
406
    int iomemtype;
407

    
408
    audio = AUD_init();
409
    if (!audio) {
410
        AUD_log(audio_name, "No audio state\n");
411
        return NULL;
412
    }
413

    
414
    s = qemu_mallocz(sizeof(musicpal_audio_state));
415
    if (!s)
416
        return NULL;
417
    s->base = base;
418
    s->irq = irq;
419

    
420
    i2c = qemu_mallocz(sizeof(i2c_interface));
421
    if (!i2c)
422
        return NULL;
423
    i2c->bus = i2c_init_bus();
424
    i2c->current_addr = -1;
425

    
426
    s->wm = wm8750_init(i2c->bus, audio);
427
    if (!s->wm)
428
        return NULL;
429
    i2c_set_slave_address(s->wm, MP_WM_ADDR);
430
    wm8750_data_req_set(s->wm, audio_callback, s);
431

    
432
    iomemtype = cpu_register_io_memory(0, musicpal_audio_readfn,
433
                       musicpal_audio_writefn, s);
434
    cpu_register_physical_memory(base, MP_AUDIO_SIZE, iomemtype);
435

    
436
    qemu_register_reset(musicpal_audio_reset, s);
437

    
438
    return i2c;
439
}
440
#else  /* !HAS_AUDIO */
441
static i2c_interface *musicpal_audio_init(uint32_t base, qemu_irq irq)
442
{
443
    return NULL;
444
}
445
#endif /* !HAS_AUDIO */
446

    
447
/* Ethernet register offsets */
448
#define MP_ETH_SMIR             0x010
449
#define MP_ETH_PCXR             0x408
450
#define MP_ETH_SDCMR            0x448
451
#define MP_ETH_ICR              0x450
452
#define MP_ETH_IMR              0x458
453
#define MP_ETH_FRDP0            0x480
454
#define MP_ETH_FRDP1            0x484
455
#define MP_ETH_FRDP2            0x488
456
#define MP_ETH_FRDP3            0x48C
457
#define MP_ETH_CRDP0            0x4A0
458
#define MP_ETH_CRDP1            0x4A4
459
#define MP_ETH_CRDP2            0x4A8
460
#define MP_ETH_CRDP3            0x4AC
461
#define MP_ETH_CTDP0            0x4E0
462
#define MP_ETH_CTDP1            0x4E4
463
#define MP_ETH_CTDP2            0x4E8
464
#define MP_ETH_CTDP3            0x4EC
465

    
466
/* MII PHY access */
467
#define MP_ETH_SMIR_DATA        0x0000FFFF
468
#define MP_ETH_SMIR_ADDR        0x03FF0000
469
#define MP_ETH_SMIR_OPCODE      (1 << 26) /* Read value */
470
#define MP_ETH_SMIR_RDVALID     (1 << 27)
471

    
472
/* PHY registers */
473
#define MP_ETH_PHY1_BMSR        0x00210000
474
#define MP_ETH_PHY1_PHYSID1     0x00410000
475
#define MP_ETH_PHY1_PHYSID2     0x00610000
476

    
477
#define MP_PHY_BMSR_LINK        0x0004
478
#define MP_PHY_BMSR_AUTONEG     0x0008
479

    
480
#define MP_PHY_88E3015          0x01410E20
481

    
482
/* TX descriptor status */
483
#define MP_ETH_TX_OWN           (1 << 31)
484

    
485
/* RX descriptor status */
486
#define MP_ETH_RX_OWN           (1 << 31)
487

    
488
/* Interrupt cause/mask bits */
489
#define MP_ETH_IRQ_RX_BIT       0
490
#define MP_ETH_IRQ_RX           (1 << MP_ETH_IRQ_RX_BIT)
491
#define MP_ETH_IRQ_TXHI_BIT     2
492
#define MP_ETH_IRQ_TXLO_BIT     3
493

    
494
/* Port config bits */
495
#define MP_ETH_PCXR_2BSM_BIT    28 /* 2-byte incoming suffix */
496

    
497
/* SDMA command bits */
498
#define MP_ETH_CMD_TXHI         (1 << 23)
499
#define MP_ETH_CMD_TXLO         (1 << 22)
500

    
501
typedef struct mv88w8618_tx_desc {
502
    uint32_t cmdstat;
503
    uint16_t res;
504
    uint16_t bytes;
505
    uint32_t buffer;
506
    uint32_t next;
507
} mv88w8618_tx_desc;
508

    
509
typedef struct mv88w8618_rx_desc {
510
    uint32_t cmdstat;
511
    uint16_t bytes;
512
    uint16_t buffer_size;
513
    uint32_t buffer;
514
    uint32_t next;
515
} mv88w8618_rx_desc;
516

    
517
typedef struct mv88w8618_eth_state {
518
    uint32_t base;
519
    qemu_irq irq;
520
    uint32_t smir;
521
    uint32_t icr;
522
    uint32_t imr;
523
    int vlan_header;
524
    mv88w8618_tx_desc *tx_queue[2];
525
    mv88w8618_rx_desc *rx_queue[4];
526
    mv88w8618_rx_desc *frx_queue[4];
527
    mv88w8618_rx_desc *cur_rx[4];
528
    VLANClientState *vc;
529
} mv88w8618_eth_state;
530

    
531
static int eth_can_receive(void *opaque)
532
{
533
    return 1;
534
}
535

    
536
static void eth_receive(void *opaque, const uint8_t *buf, int size)
537
{
538
    mv88w8618_eth_state *s = opaque;
539
    mv88w8618_rx_desc *desc;
540
    int i;
541

    
542
    for (i = 0; i < 4; i++) {
543
        desc = s->cur_rx[i];
544
        if (!desc)
545
            continue;
546
        do {
547
            if (le32_to_cpu(desc->cmdstat) & MP_ETH_RX_OWN &&
548
                le16_to_cpu(desc->buffer_size) >= size) {
549
                memcpy(target2host_addr(le32_to_cpu(desc->buffer) +
550
                                        s->vlan_header),
551
                       buf, size);
552
                desc->bytes = cpu_to_le16(size + s->vlan_header);
553
                desc->cmdstat &= cpu_to_le32(~MP_ETH_RX_OWN);
554
                s->cur_rx[i] = target2host_addr(le32_to_cpu(desc->next));
555

    
556
                s->icr |= MP_ETH_IRQ_RX;
557
                if (s->icr & s->imr)
558
                    qemu_irq_raise(s->irq);
559
                return;
560
            }
561
            desc = target2host_addr(le32_to_cpu(desc->next));
562
        } while (desc != s->rx_queue[i]);
563
    }
564
}
565

    
566
static void eth_send(mv88w8618_eth_state *s, int queue_index)
567
{
568
    mv88w8618_tx_desc *desc = s->tx_queue[queue_index];
569

    
570
    do {
571
        if (le32_to_cpu(desc->cmdstat) & MP_ETH_TX_OWN) {
572
            qemu_send_packet(s->vc,
573
                             target2host_addr(le32_to_cpu(desc->buffer)),
574
                             le16_to_cpu(desc->bytes));
575
            desc->cmdstat &= cpu_to_le32(~MP_ETH_TX_OWN);
576
            s->icr |= 1 << (MP_ETH_IRQ_TXLO_BIT - queue_index);
577
        }
578
        desc = target2host_addr(le32_to_cpu(desc->next));
579
    } while (desc != s->tx_queue[queue_index]);
580
}
581

    
582
static uint32_t mv88w8618_eth_read(void *opaque, target_phys_addr_t offset)
583
{
584
    mv88w8618_eth_state *s = opaque;
585

    
586
    offset -= s->base;
587
    switch (offset) {
588
    case MP_ETH_SMIR:
589
        if (s->smir & MP_ETH_SMIR_OPCODE) {
590
            switch (s->smir & MP_ETH_SMIR_ADDR) {
591
            case MP_ETH_PHY1_BMSR:
592
                return MP_PHY_BMSR_LINK | MP_PHY_BMSR_AUTONEG |
593
                       MP_ETH_SMIR_RDVALID;
594
            case MP_ETH_PHY1_PHYSID1:
595
                return (MP_PHY_88E3015 >> 16) | MP_ETH_SMIR_RDVALID;
596
            case MP_ETH_PHY1_PHYSID2:
597
                return (MP_PHY_88E3015 & 0xFFFF) | MP_ETH_SMIR_RDVALID;
598
            default:
599
                return MP_ETH_SMIR_RDVALID;
600
            }
601
        }
602
        return 0;
603

    
604
    case MP_ETH_ICR:
605
        return s->icr;
606

    
607
    case MP_ETH_IMR:
608
        return s->imr;
609

    
610
    case MP_ETH_FRDP0 ... MP_ETH_FRDP3:
611
        return host2target_addr(s->frx_queue[(offset - MP_ETH_FRDP0)/4]);
612

    
613
    case MP_ETH_CRDP0 ... MP_ETH_CRDP3:
614
        return host2target_addr(s->rx_queue[(offset - MP_ETH_CRDP0)/4]);
615

    
616
    case MP_ETH_CTDP0 ... MP_ETH_CTDP3:
617
        return host2target_addr(s->tx_queue[(offset - MP_ETH_CTDP0)/4]);
618

    
619
    default:
620
        return 0;
621
    }
622
}
623

    
624
static void mv88w8618_eth_write(void *opaque, target_phys_addr_t offset,
625
                                uint32_t value)
626
{
627
    mv88w8618_eth_state *s = opaque;
628

    
629
    offset -= s->base;
630
    switch (offset) {
631
    case MP_ETH_SMIR:
632
        s->smir = value;
633
        break;
634

    
635
    case MP_ETH_PCXR:
636
        s->vlan_header = ((value >> MP_ETH_PCXR_2BSM_BIT) & 1) * 2;
637
        break;
638

    
639
    case MP_ETH_SDCMR:
640
        if (value & MP_ETH_CMD_TXHI)
641
            eth_send(s, 1);
642
        if (value & MP_ETH_CMD_TXLO)
643
            eth_send(s, 0);
644
        if (value & (MP_ETH_CMD_TXHI | MP_ETH_CMD_TXLO) && s->icr & s->imr)
645
            qemu_irq_raise(s->irq);
646
        break;
647

    
648
    case MP_ETH_ICR:
649
        s->icr &= value;
650
        break;
651

    
652
    case MP_ETH_IMR:
653
        s->imr = value;
654
        if (s->icr & s->imr)
655
            qemu_irq_raise(s->irq);
656
        break;
657

    
658
    case MP_ETH_FRDP0 ... MP_ETH_FRDP3:
659
        s->frx_queue[(offset - MP_ETH_FRDP0)/4] = target2host_addr(value);
660
        break;
661

    
662
    case MP_ETH_CRDP0 ... MP_ETH_CRDP3:
663
        s->rx_queue[(offset - MP_ETH_CRDP0)/4] =
664
            s->cur_rx[(offset - MP_ETH_CRDP0)/4] = target2host_addr(value);
665
        break;
666

    
667
    case MP_ETH_CTDP0 ... MP_ETH_CTDP3:
668
        s->tx_queue[(offset - MP_ETH_CTDP0)/4] = target2host_addr(value);
669
        break;
670
    }
671
}
672

    
673
static CPUReadMemoryFunc *mv88w8618_eth_readfn[] = {
674
    mv88w8618_eth_read,
675
    mv88w8618_eth_read,
676
    mv88w8618_eth_read
677
};
678

    
679
static CPUWriteMemoryFunc *mv88w8618_eth_writefn[] = {
680
    mv88w8618_eth_write,
681
    mv88w8618_eth_write,
682
    mv88w8618_eth_write
683
};
684

    
685
static void mv88w8618_eth_init(NICInfo *nd, uint32_t base, qemu_irq irq)
686
{
687
    mv88w8618_eth_state *s;
688
    int iomemtype;
689

    
690
    s = qemu_mallocz(sizeof(mv88w8618_eth_state));
691
    if (!s)
692
        return;
693
    s->base = base;
694
    s->irq = irq;
695
    s->vc = qemu_new_vlan_client(nd->vlan, eth_receive, eth_can_receive, s);
696
    iomemtype = cpu_register_io_memory(0, mv88w8618_eth_readfn,
697
                                       mv88w8618_eth_writefn, s);
698
    cpu_register_physical_memory(base, MP_ETH_SIZE, iomemtype);
699
}
700

    
701
/* LCD register offsets */
702
#define MP_LCD_IRQCTRL          0x180
703
#define MP_LCD_IRQSTAT          0x184
704
#define MP_LCD_SPICTRL          0x1ac
705
#define MP_LCD_INST             0x1bc
706
#define MP_LCD_DATA             0x1c0
707

    
708
/* Mode magics */
709
#define MP_LCD_SPI_DATA         0x00100011
710
#define MP_LCD_SPI_CMD          0x00104011
711
#define MP_LCD_SPI_INVALID      0x00000000
712

    
713
/* Commmands */
714
#define MP_LCD_INST_SETPAGE0    0xB0
715
/* ... */
716
#define MP_LCD_INST_SETPAGE7    0xB7
717

    
718
#define MP_LCD_TEXTCOLOR        0xe0e0ff /* RRGGBB */
719

    
720
typedef struct musicpal_lcd_state {
721
    uint32_t base;
722
    uint32_t mode;
723
    uint32_t irqctrl;
724
    int page;
725
    int page_off;
726
    DisplayState *ds;
727
    uint8_t video_ram[128*64/8];
728
} musicpal_lcd_state;
729

    
730
static uint32_t lcd_brightness;
731

    
732
static uint8_t scale_lcd_color(uint8_t col)
733
{
734
    int tmp = col;
735

    
736
    switch (lcd_brightness) {
737
    case 0x00000007: /* 0 */
738
        return 0;
739

    
740
    case 0x00020000: /* 1 */
741
        return (tmp * 1) / 7;
742

    
743
    case 0x00020001: /* 2 */
744
        return (tmp * 2) / 7;
745

    
746
    case 0x00040000: /* 3 */
747
        return (tmp * 3) / 7;
748

    
749
    case 0x00010006: /* 4 */
750
        return (tmp * 4) / 7;
751

    
752
    case 0x00020005: /* 5 */
753
        return (tmp * 5) / 7;
754

    
755
    case 0x00040003: /* 6 */
756
        return (tmp * 6) / 7;
757

    
758
    case 0x00030004: /* 7 */
759
    default:
760
        return col;
761
    }
762
}
763

    
764
#define SET_LCD_PIXEL(depth, type) \
765
static inline void glue(set_lcd_pixel, depth) \
766
        (musicpal_lcd_state *s, int x, int y, type col) \
767
{ \
768
    int dx, dy; \
769
    type *pixel = &((type *) s->ds->data)[(y * 128 * 3 + x) * 3]; \
770
\
771
    for (dy = 0; dy < 3; dy++, pixel += 127 * 3) \
772
        for (dx = 0; dx < 3; dx++, pixel++) \
773
            *pixel = col; \
774
}
775
SET_LCD_PIXEL(8, uint8_t)
776
SET_LCD_PIXEL(16, uint16_t)
777
SET_LCD_PIXEL(32, uint32_t)
778

    
779
#include "pixel_ops.h"
780

    
781
static void lcd_refresh(void *opaque)
782
{
783
    musicpal_lcd_state *s = opaque;
784
    int x, y, col;
785

    
786
    switch (s->ds->depth) {
787
    case 0:
788
        return;
789
#define LCD_REFRESH(depth, func) \
790
    case depth: \
791
        col = func(scale_lcd_color((MP_LCD_TEXTCOLOR >> 16) & 0xff), \
792
                   scale_lcd_color((MP_LCD_TEXTCOLOR >> 8) & 0xff), \
793
                   scale_lcd_color(MP_LCD_TEXTCOLOR & 0xff)); \
794
        for (x = 0; x < 128; x++) \
795
            for (y = 0; y < 64; y++) \
796
                if (s->video_ram[x + (y/8)*128] & (1 << (y % 8))) \
797
                    glue(set_lcd_pixel, depth)(s, x, y, col); \
798
                else \
799
                    glue(set_lcd_pixel, depth)(s, x, y, 0); \
800
        break;
801
    LCD_REFRESH(8, rgb_to_pixel8)
802
    LCD_REFRESH(16, rgb_to_pixel16)
803
    LCD_REFRESH(32, (s->ds->bgr ? rgb_to_pixel32bgr : rgb_to_pixel32))
804
    default:
805
        cpu_abort(cpu_single_env, "unsupported colour depth %i\n",
806
                  s->ds->depth);
807
    }
808

    
809
    dpy_update(s->ds, 0, 0, 128*3, 64*3);
810
}
811

    
812
static uint32_t musicpal_lcd_read(void *opaque, target_phys_addr_t offset)
813
{
814
    musicpal_lcd_state *s = opaque;
815

    
816
    offset -= s->base;
817
    switch (offset) {
818
    case MP_LCD_IRQCTRL:
819
        return s->irqctrl;
820

    
821
    default:
822
        return 0;
823
    }
824
}
825

    
826
static void musicpal_lcd_write(void *opaque, target_phys_addr_t offset,
827
                               uint32_t value)
828
{
829
    musicpal_lcd_state *s = opaque;
830

    
831
    offset -= s->base;
832
    switch (offset) {
833
    case MP_LCD_IRQCTRL:
834
        s->irqctrl = value;
835
        break;
836

    
837
    case MP_LCD_SPICTRL:
838
        if (value == MP_LCD_SPI_DATA || value == MP_LCD_SPI_CMD)
839
            s->mode = value;
840
        else
841
            s->mode = MP_LCD_SPI_INVALID;
842
        break;
843

    
844
    case MP_LCD_INST:
845
        if (value >= MP_LCD_INST_SETPAGE0 && value <= MP_LCD_INST_SETPAGE7) {
846
            s->page = value - MP_LCD_INST_SETPAGE0;
847
            s->page_off = 0;
848
        }
849
        break;
850

    
851
    case MP_LCD_DATA:
852
        if (s->mode == MP_LCD_SPI_CMD) {
853
            if (value >= MP_LCD_INST_SETPAGE0 &&
854
                value <= MP_LCD_INST_SETPAGE7) {
855
                s->page = value - MP_LCD_INST_SETPAGE0;
856
                s->page_off = 0;
857
            }
858
        } else if (s->mode == MP_LCD_SPI_DATA) {
859
            s->video_ram[s->page*128 + s->page_off] = value;
860
            s->page_off = (s->page_off + 1) & 127;
861
        }
862
        break;
863
    }
864
}
865

    
866
static CPUReadMemoryFunc *musicpal_lcd_readfn[] = {
867
    musicpal_lcd_read,
868
    musicpal_lcd_read,
869
    musicpal_lcd_read
870
};
871

    
872
static CPUWriteMemoryFunc *musicpal_lcd_writefn[] = {
873
    musicpal_lcd_write,
874
    musicpal_lcd_write,
875
    musicpal_lcd_write
876
};
877

    
878
static void musicpal_lcd_init(DisplayState *ds, uint32_t base)
879
{
880
    musicpal_lcd_state *s;
881
    int iomemtype;
882

    
883
    s = qemu_mallocz(sizeof(musicpal_lcd_state));
884
    if (!s)
885
        return;
886
    s->base = base;
887
    s->ds = ds;
888
    iomemtype = cpu_register_io_memory(0, musicpal_lcd_readfn,
889
                                       musicpal_lcd_writefn, s);
890
    cpu_register_physical_memory(base, MP_LCD_SIZE, iomemtype);
891

    
892
    graphic_console_init(ds, lcd_refresh, NULL, NULL, NULL, s);
893
    dpy_resize(ds, 128*3, 64*3);
894
}
895

    
896
/* PIC register offsets */
897
#define MP_PIC_STATUS           0x00
898
#define MP_PIC_ENABLE_SET       0x08
899
#define MP_PIC_ENABLE_CLR       0x0C
900

    
901
typedef struct mv88w8618_pic_state
902
{
903
    uint32_t base;
904
    uint32_t level;
905
    uint32_t enabled;
906
    qemu_irq parent_irq;
907
} mv88w8618_pic_state;
908

    
909
static void mv88w8618_pic_update(mv88w8618_pic_state *s)
910
{
911
    qemu_set_irq(s->parent_irq, (s->level & s->enabled));
912
}
913

    
914
static void mv88w8618_pic_set_irq(void *opaque, int irq, int level)
915
{
916
    mv88w8618_pic_state *s = opaque;
917

    
918
    if (level)
919
        s->level |= 1 << irq;
920
    else
921
        s->level &= ~(1 << irq);
922
    mv88w8618_pic_update(s);
923
}
924

    
925
static uint32_t mv88w8618_pic_read(void *opaque, target_phys_addr_t offset)
926
{
927
    mv88w8618_pic_state *s = opaque;
928

    
929
    offset -= s->base;
930
    switch (offset) {
931
    case MP_PIC_STATUS:
932
        return s->level & s->enabled;
933

    
934
    default:
935
        return 0;
936
    }
937
}
938

    
939
static void mv88w8618_pic_write(void *opaque, target_phys_addr_t offset,
940
                                uint32_t value)
941
{
942
    mv88w8618_pic_state *s = opaque;
943

    
944
    offset -= s->base;
945
    switch (offset) {
946
    case MP_PIC_ENABLE_SET:
947
        s->enabled |= value;
948
        break;
949

    
950
    case MP_PIC_ENABLE_CLR:
951
        s->enabled &= ~value;
952
        s->level &= ~value;
953
        break;
954
    }
955
    mv88w8618_pic_update(s);
956
}
957

    
958
static void mv88w8618_pic_reset(void *opaque)
959
{
960
    mv88w8618_pic_state *s = opaque;
961

    
962
    s->level = 0;
963
    s->enabled = 0;
964
}
965

    
966
static CPUReadMemoryFunc *mv88w8618_pic_readfn[] = {
967
    mv88w8618_pic_read,
968
    mv88w8618_pic_read,
969
    mv88w8618_pic_read
970
};
971

    
972
static CPUWriteMemoryFunc *mv88w8618_pic_writefn[] = {
973
    mv88w8618_pic_write,
974
    mv88w8618_pic_write,
975
    mv88w8618_pic_write
976
};
977

    
978
static qemu_irq *mv88w8618_pic_init(uint32_t base, qemu_irq parent_irq)
979
{
980
    mv88w8618_pic_state *s;
981
    int iomemtype;
982
    qemu_irq *qi;
983

    
984
    s = qemu_mallocz(sizeof(mv88w8618_pic_state));
985
    if (!s)
986
        return NULL;
987
    qi = qemu_allocate_irqs(mv88w8618_pic_set_irq, s, 32);
988
    s->base = base;
989
    s->parent_irq = parent_irq;
990
    iomemtype = cpu_register_io_memory(0, mv88w8618_pic_readfn,
991
                                       mv88w8618_pic_writefn, s);
992
    cpu_register_physical_memory(base, MP_PIC_SIZE, iomemtype);
993

    
994
    qemu_register_reset(mv88w8618_pic_reset, s);
995

    
996
    return qi;
997
}
998

    
999
/* PIT register offsets */
1000
#define MP_PIT_TIMER1_LENGTH    0x00
1001
/* ... */
1002
#define MP_PIT_TIMER4_LENGTH    0x0C
1003
#define MP_PIT_CONTROL          0x10
1004
#define MP_PIT_TIMER1_VALUE     0x14
1005
/* ... */
1006
#define MP_PIT_TIMER4_VALUE     0x20
1007
#define MP_BOARD_RESET          0x34
1008

    
1009
/* Magic board reset value (probably some watchdog behind it) */
1010
#define MP_BOARD_RESET_MAGIC    0x10000
1011

    
1012
typedef struct mv88w8618_timer_state {
1013
    ptimer_state *timer;
1014
    uint32_t limit;
1015
    int freq;
1016
    qemu_irq irq;
1017
} mv88w8618_timer_state;
1018

    
1019
typedef struct mv88w8618_pit_state {
1020
    void *timer[4];
1021
    uint32_t control;
1022
    uint32_t base;
1023
} mv88w8618_pit_state;
1024

    
1025
static void mv88w8618_timer_tick(void *opaque)
1026
{
1027
    mv88w8618_timer_state *s = opaque;
1028

    
1029
    qemu_irq_raise(s->irq);
1030
}
1031

    
1032
static void *mv88w8618_timer_init(uint32_t freq, qemu_irq irq)
1033
{
1034
    mv88w8618_timer_state *s;
1035
    QEMUBH *bh;
1036

    
1037
    s = qemu_mallocz(sizeof(mv88w8618_timer_state));
1038
    s->irq = irq;
1039
    s->freq = freq;
1040

    
1041
    bh = qemu_bh_new(mv88w8618_timer_tick, s);
1042
    s->timer = ptimer_init(bh);
1043

    
1044
    return s;
1045
}
1046

    
1047
static uint32_t mv88w8618_pit_read(void *opaque, target_phys_addr_t offset)
1048
{
1049
    mv88w8618_pit_state *s = opaque;
1050
    mv88w8618_timer_state *t;
1051

    
1052
    offset -= s->base;
1053
    switch (offset) {
1054
    case MP_PIT_TIMER1_VALUE ... MP_PIT_TIMER4_VALUE:
1055
        t = s->timer[(offset-MP_PIT_TIMER1_VALUE) >> 2];
1056
        return ptimer_get_count(t->timer);
1057

    
1058
    default:
1059
        return 0;
1060
    }
1061
}
1062

    
1063
static void mv88w8618_pit_write(void *opaque, target_phys_addr_t offset,
1064
                                uint32_t value)
1065
{
1066
    mv88w8618_pit_state *s = opaque;
1067
    mv88w8618_timer_state *t;
1068
    int i;
1069

    
1070
    offset -= s->base;
1071
    switch (offset) {
1072
    case MP_PIT_TIMER1_LENGTH ... MP_PIT_TIMER4_LENGTH:
1073
        t = s->timer[offset >> 2];
1074
        t->limit = value;
1075
        ptimer_set_limit(t->timer, t->limit, 1);
1076
        break;
1077

    
1078
    case MP_PIT_CONTROL:
1079
        for (i = 0; i < 4; i++) {
1080
            if (value & 0xf) {
1081
                t = s->timer[i];
1082
                ptimer_set_limit(t->timer, t->limit, 0);
1083
                ptimer_set_freq(t->timer, t->freq);
1084
                ptimer_run(t->timer, 0);
1085
            }
1086
            value >>= 4;
1087
        }
1088
        break;
1089

    
1090
    case MP_BOARD_RESET:
1091
        if (value == MP_BOARD_RESET_MAGIC)
1092
            qemu_system_reset_request();
1093
        break;
1094
    }
1095
}
1096

    
1097
static CPUReadMemoryFunc *mv88w8618_pit_readfn[] = {
1098
    mv88w8618_pit_read,
1099
    mv88w8618_pit_read,
1100
    mv88w8618_pit_read
1101
};
1102

    
1103
static CPUWriteMemoryFunc *mv88w8618_pit_writefn[] = {
1104
    mv88w8618_pit_write,
1105
    mv88w8618_pit_write,
1106
    mv88w8618_pit_write
1107
};
1108

    
1109
static void mv88w8618_pit_init(uint32_t base, qemu_irq *pic, int irq)
1110
{
1111
    int iomemtype;
1112
    mv88w8618_pit_state *s;
1113

    
1114
    s = qemu_mallocz(sizeof(mv88w8618_pit_state));
1115
    if (!s)
1116
        return;
1117

    
1118
    s->base = base;
1119
    /* Letting them all run at 1 MHz is likely just a pragmatic
1120
     * simplification. */
1121
    s->timer[0] = mv88w8618_timer_init(1000000, pic[irq]);
1122
    s->timer[1] = mv88w8618_timer_init(1000000, pic[irq + 1]);
1123
    s->timer[2] = mv88w8618_timer_init(1000000, pic[irq + 2]);
1124
    s->timer[3] = mv88w8618_timer_init(1000000, pic[irq + 3]);
1125

    
1126
    iomemtype = cpu_register_io_memory(0, mv88w8618_pit_readfn,
1127
                                       mv88w8618_pit_writefn, s);
1128
    cpu_register_physical_memory(base, MP_PIT_SIZE, iomemtype);
1129
}
1130

    
1131
/* Flash config register offsets */
1132
#define MP_FLASHCFG_CFGR0    0x04
1133

    
1134
typedef struct mv88w8618_flashcfg_state {
1135
    uint32_t base;
1136
    uint32_t cfgr0;
1137
} mv88w8618_flashcfg_state;
1138

    
1139
static uint32_t mv88w8618_flashcfg_read(void *opaque,
1140
                                        target_phys_addr_t offset)
1141
{
1142
    mv88w8618_flashcfg_state *s = opaque;
1143

    
1144
    offset -= s->base;
1145
    switch (offset) {
1146
    case MP_FLASHCFG_CFGR0:
1147
        return s->cfgr0;
1148

    
1149
    default:
1150
        return 0;
1151
    }
1152
}
1153

    
1154
static void mv88w8618_flashcfg_write(void *opaque, target_phys_addr_t offset,
1155
                                     uint32_t value)
1156
{
1157
    mv88w8618_flashcfg_state *s = opaque;
1158

    
1159
    offset -= s->base;
1160
    switch (offset) {
1161
    case MP_FLASHCFG_CFGR0:
1162
        s->cfgr0 = value;
1163
        break;
1164
    }
1165
}
1166

    
1167
static CPUReadMemoryFunc *mv88w8618_flashcfg_readfn[] = {
1168
    mv88w8618_flashcfg_read,
1169
    mv88w8618_flashcfg_read,
1170
    mv88w8618_flashcfg_read
1171
};
1172

    
1173
static CPUWriteMemoryFunc *mv88w8618_flashcfg_writefn[] = {
1174
    mv88w8618_flashcfg_write,
1175
    mv88w8618_flashcfg_write,
1176
    mv88w8618_flashcfg_write
1177
};
1178

    
1179
static void mv88w8618_flashcfg_init(uint32_t base)
1180
{
1181
    int iomemtype;
1182
    mv88w8618_flashcfg_state *s;
1183

    
1184
    s = qemu_mallocz(sizeof(mv88w8618_flashcfg_state));
1185
    if (!s)
1186
        return;
1187

    
1188
    s->base = base;
1189
    s->cfgr0 = 0xfffe4285; /* Default as set by U-Boot for 8 MB flash */
1190
    iomemtype = cpu_register_io_memory(0, mv88w8618_flashcfg_readfn,
1191
                       mv88w8618_flashcfg_writefn, s);
1192
    cpu_register_physical_memory(base, MP_FLASHCFG_SIZE, iomemtype);
1193
}
1194

    
1195
/* Various registers in the 0x80000000 domain */
1196
#define MP_BOARD_REVISION       0x2018
1197

    
1198
#define MP_WLAN_MAGIC1          0xc11c
1199
#define MP_WLAN_MAGIC2          0xc124
1200

    
1201
#define MP_GPIO_OE_LO           0xd008
1202
#define MP_GPIO_OUT_LO          0xd00c
1203
#define MP_GPIO_IN_LO           0xd010
1204
#define MP_GPIO_ISR_LO          0xd020
1205
#define MP_GPIO_OE_HI           0xd508
1206
#define MP_GPIO_OUT_HI          0xd50c
1207
#define MP_GPIO_IN_HI           0xd510
1208
#define MP_GPIO_ISR_HI          0xd520
1209

    
1210
/* GPIO bits & masks */
1211
#define MP_GPIO_WHEEL_VOL       (1 << 8)
1212
#define MP_GPIO_WHEEL_VOL_INV   (1 << 9)
1213
#define MP_GPIO_WHEEL_NAV       (1 << 10)
1214
#define MP_GPIO_WHEEL_NAV_INV   (1 << 11)
1215
#define MP_GPIO_LCD_BRIGHTNESS  0x00070000
1216
#define MP_GPIO_BTN_FAVORITS    (1 << 19)
1217
#define MP_GPIO_BTN_MENU        (1 << 20)
1218
#define MP_GPIO_BTN_VOLUME      (1 << 21)
1219
#define MP_GPIO_BTN_NAVIGATION  (1 << 22)
1220
#define MP_GPIO_I2C_DATA_BIT    29
1221
#define MP_GPIO_I2C_DATA        (1 << MP_GPIO_I2C_DATA_BIT)
1222
#define MP_GPIO_I2C_CLOCK_BIT   30
1223

    
1224
/* LCD brightness bits in GPIO_OE_HI */
1225
#define MP_OE_LCD_BRIGHTNESS    0x0007
1226

    
1227
static uint32_t musicpal_read(void *opaque, target_phys_addr_t offset)
1228
{
1229
    offset -= 0x80000000;
1230
    switch (offset) {
1231
    case MP_BOARD_REVISION:
1232
        return 0x0031;
1233

    
1234
    case MP_GPIO_OE_HI: /* used for LCD brightness control */
1235
        return lcd_brightness & MP_OE_LCD_BRIGHTNESS;
1236

    
1237
    case MP_GPIO_OUT_LO:
1238
        return gpio_out_state & 0xFFFF;
1239
    case MP_GPIO_OUT_HI:
1240
        return gpio_out_state >> 16;
1241

    
1242
    case MP_GPIO_IN_LO:
1243
        return gpio_in_state & 0xFFFF;
1244
    case MP_GPIO_IN_HI:
1245
        /* Update received I2C data */
1246
        gpio_in_state = (gpio_in_state & ~MP_GPIO_I2C_DATA) |
1247
                        (i2c_get_data(mixer_i2c) << MP_GPIO_I2C_DATA_BIT);
1248
        return gpio_in_state >> 16;
1249

    
1250
    /* This is a simplification of reality */
1251
    case MP_GPIO_ISR_LO:
1252
        return ~gpio_in_state & 0xFFFF;
1253
    case MP_GPIO_ISR_HI:
1254
        return ~gpio_in_state >> 16;
1255

    
1256
    /* Workaround to allow loading the binary-only wlandrv.ko crap
1257
     * from the original Freecom firmware. */
1258
    case MP_WLAN_MAGIC1:
1259
        return ~3;
1260
    case MP_WLAN_MAGIC2:
1261
        return -1;
1262

    
1263
    default:
1264
        return 0;
1265
    }
1266
}
1267

    
1268
static void musicpal_write(void *opaque, target_phys_addr_t offset,
1269
                           uint32_t value)
1270
{
1271
    offset -= 0x80000000;
1272
    switch (offset) {
1273
    case MP_GPIO_OE_HI: /* used for LCD brightness control */
1274
        lcd_brightness = (lcd_brightness & MP_GPIO_LCD_BRIGHTNESS) |
1275
                         (value & MP_OE_LCD_BRIGHTNESS);
1276
        break;
1277

    
1278
    case MP_GPIO_OUT_LO:
1279
        gpio_out_state = (gpio_out_state & 0xFFFF0000) | (value & 0xFFFF);
1280
        break;
1281
    case MP_GPIO_OUT_HI:
1282
        gpio_out_state = (gpio_out_state & 0xFFFF) | (value << 16);
1283
        lcd_brightness = (lcd_brightness & 0xFFFF) |
1284
                         (gpio_out_state & MP_GPIO_LCD_BRIGHTNESS);
1285
        i2c_state_update(mixer_i2c,
1286
                         (gpio_out_state >> MP_GPIO_I2C_DATA_BIT) & 1,
1287
                         (gpio_out_state >> MP_GPIO_I2C_CLOCK_BIT) & 1);
1288
        break;
1289

    
1290
    }
1291
}
1292

    
1293
/* Keyboard codes & masks */
1294
#define KEY_PRESSED             0x80
1295
#define KEY_CODE                0x7f
1296

    
1297
#define KEYCODE_TAB             0x0f
1298
#define KEYCODE_ENTER           0x1c
1299
#define KEYCODE_F               0x21
1300
#define KEYCODE_M               0x32
1301

    
1302
#define KEYCODE_EXTENDED        0xe0
1303
#define KEYCODE_UP              0x48
1304
#define KEYCODE_DOWN            0x50
1305
#define KEYCODE_LEFT            0x4b
1306
#define KEYCODE_RIGHT           0x4d
1307

    
1308
static void musicpal_key_event(void *opaque, int keycode)
1309
{
1310
    qemu_irq irq = opaque;
1311
    uint32_t event = 0;
1312
    static int kbd_extended;
1313

    
1314
    if (keycode == KEYCODE_EXTENDED) {
1315
        kbd_extended = 1;
1316
        return;
1317
    }
1318

    
1319
    if (kbd_extended)
1320
        switch (keycode & KEY_CODE) {
1321
        case KEYCODE_UP:
1322
            event = MP_GPIO_WHEEL_NAV | MP_GPIO_WHEEL_NAV_INV;
1323
            break;
1324

    
1325
        case KEYCODE_DOWN:
1326
            event = MP_GPIO_WHEEL_NAV;
1327
            break;
1328

    
1329
        case KEYCODE_LEFT:
1330
            event = MP_GPIO_WHEEL_VOL | MP_GPIO_WHEEL_VOL_INV;
1331
            break;
1332

    
1333
        case KEYCODE_RIGHT:
1334
            event = MP_GPIO_WHEEL_VOL;
1335
            break;
1336
        }
1337
    else
1338
        switch (keycode & KEY_CODE) {
1339
        case KEYCODE_F:
1340
            event = MP_GPIO_BTN_FAVORITS;
1341
            break;
1342

    
1343
        case KEYCODE_TAB:
1344
            event = MP_GPIO_BTN_VOLUME;
1345
            break;
1346

    
1347
        case KEYCODE_ENTER:
1348
            event = MP_GPIO_BTN_NAVIGATION;
1349
            break;
1350

    
1351
        case KEYCODE_M:
1352
            event = MP_GPIO_BTN_MENU;
1353
            break;
1354
        }
1355

    
1356
    if (keycode & KEY_PRESSED)
1357
        gpio_in_state |= event;
1358
    else if (gpio_in_state & event) {
1359
        gpio_in_state &= ~event;
1360
        qemu_irq_raise(irq);
1361
    }
1362

    
1363
    kbd_extended = 0;
1364
}
1365

    
1366
static CPUReadMemoryFunc *musicpal_readfn[] = {
1367
    musicpal_read,
1368
    musicpal_read,
1369
    musicpal_read,
1370
};
1371

    
1372
static CPUWriteMemoryFunc *musicpal_writefn[] = {
1373
    musicpal_write,
1374
    musicpal_write,
1375
    musicpal_write,
1376
};
1377

    
1378
static struct arm_boot_info musicpal_binfo = {
1379
    .loader_start = 0x0,
1380
    .board_id = 0x20e,
1381
};
1382

    
1383
static void musicpal_init(int ram_size, int vga_ram_size,
1384
               const char *boot_device, DisplayState *ds,
1385
               const char *kernel_filename, const char *kernel_cmdline,
1386
               const char *initrd_filename, const char *cpu_model)
1387
{
1388
    CPUState *env;
1389
    qemu_irq *pic;
1390
    int index;
1391
    int iomemtype;
1392
    unsigned long flash_size;
1393

    
1394
    if (!cpu_model)
1395
        cpu_model = "arm926";
1396

    
1397
    env = cpu_init(cpu_model);
1398
    if (!env) {
1399
        fprintf(stderr, "Unable to find CPU definition\n");
1400
        exit(1);
1401
    }
1402
    pic = arm_pic_init_cpu(env);
1403

    
1404
    /* For now we use a fixed - the original - RAM size */
1405
    cpu_register_physical_memory(0, MP_RAM_DEFAULT_SIZE,
1406
                                 qemu_ram_alloc(MP_RAM_DEFAULT_SIZE));
1407

    
1408
    sram_off = qemu_ram_alloc(MP_SRAM_SIZE);
1409
    cpu_register_physical_memory(MP_SRAM_BASE, MP_SRAM_SIZE, sram_off);
1410

    
1411
    /* Catch various stuff not handled by separate subsystems */
1412
    iomemtype = cpu_register_io_memory(0, musicpal_readfn,
1413
                                       musicpal_writefn, first_cpu);
1414
    cpu_register_physical_memory(0x80000000, 0x10000, iomemtype);
1415

    
1416
    pic = mv88w8618_pic_init(MP_PIC_BASE, pic[ARM_PIC_CPU_IRQ]);
1417
    mv88w8618_pit_init(MP_PIT_BASE, pic, MP_TIMER1_IRQ);
1418

    
1419
    if (serial_hds[0])
1420
        serial_mm_init(MP_UART1_BASE, 2, pic[MP_UART1_IRQ], /*1825000,*/
1421
                   serial_hds[0], 1);
1422
    if (serial_hds[1])
1423
        serial_mm_init(MP_UART2_BASE, 2, pic[MP_UART2_IRQ], /*1825000,*/
1424
                   serial_hds[1], 1);
1425

    
1426
    /* Register flash */
1427
    index = drive_get_index(IF_PFLASH, 0, 0);
1428
    if (index != -1) {
1429
        flash_size = bdrv_getlength(drives_table[index].bdrv);
1430
        if (flash_size != 8*1024*1024 && flash_size != 16*1024*1024 &&
1431
            flash_size != 32*1024*1024) {
1432
            fprintf(stderr, "Invalid flash image size\n");
1433
            exit(1);
1434
        }
1435

    
1436
        /*
1437
         * The original U-Boot accesses the flash at 0xFE000000 instead of
1438
         * 0xFF800000 (if there is 8 MB flash). So remap flash access if the
1439
         * image is smaller than 32 MB.
1440
         */
1441
        pflash_cfi02_register(0-MP_FLASH_SIZE_MAX, qemu_ram_alloc(flash_size),
1442
                              drives_table[index].bdrv, 0x10000,
1443
                              (flash_size + 0xffff) >> 16,
1444
                              MP_FLASH_SIZE_MAX / flash_size,
1445
                              2, 0x00BF, 0x236D, 0x0000, 0x0000,
1446
                              0x5555, 0x2AAA);
1447
    }
1448
    mv88w8618_flashcfg_init(MP_FLASHCFG_BASE);
1449

    
1450
    musicpal_lcd_init(ds, MP_LCD_BASE);
1451

    
1452
    qemu_add_kbd_event_handler(musicpal_key_event, pic[MP_GPIO_IRQ]);
1453

    
1454
    /*
1455
     * Wait a bit to catch menu button during U-Boot start-up
1456
     * (to trigger emergency update).
1457
     */
1458
    sleep(1);
1459

    
1460
    mv88w8618_eth_init(&nd_table[0], MP_ETH_BASE, pic[MP_ETH_IRQ]);
1461

    
1462
    mixer_i2c = musicpal_audio_init(MP_AUDIO_BASE, pic[MP_AUDIO_IRQ]);
1463

    
1464
    musicpal_binfo.ram_size = MP_RAM_DEFAULT_SIZE;
1465
    musicpal_binfo.kernel_filename = kernel_filename;
1466
    musicpal_binfo.kernel_cmdline = kernel_cmdline;
1467
    musicpal_binfo.initrd_filename = initrd_filename;
1468
    arm_load_kernel(first_cpu, &musicpal_binfo);
1469
}
1470

    
1471
QEMUMachine musicpal_machine = {
1472
    "musicpal",
1473
    "Marvell 88w8618 / MusicPal (ARM926EJ-S)",
1474
    musicpal_init,
1475
    MP_RAM_DEFAULT_SIZE + MP_SRAM_SIZE + MP_FLASH_SIZE_MAX + RAMSIZE_FIXED
1476
};