Statistics
| Branch: | Revision:

root / cpu-i386.h @ aad13cd1

History | View | Annotate | Download (10.6 kB)

1
/*
2
 * i386 virtual CPU header
3
 * 
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#ifndef CPU_I386_H
21
#define CPU_I386_H
22

    
23
#include "config.h"
24
#include <setjmp.h>
25

    
26
#define R_EAX 0
27
#define R_ECX 1
28
#define R_EDX 2
29
#define R_EBX 3
30
#define R_ESP 4
31
#define R_EBP 5
32
#define R_ESI 6
33
#define R_EDI 7
34

    
35
#define R_AL 0
36
#define R_CL 1
37
#define R_DL 2
38
#define R_BL 3
39
#define R_AH 4
40
#define R_CH 5
41
#define R_DH 6
42
#define R_BH 7
43

    
44
#define R_ES 0
45
#define R_CS 1
46
#define R_SS 2
47
#define R_DS 3
48
#define R_FS 4
49
#define R_GS 5
50

    
51
/* segment descriptor fields */
52
#define DESC_G_MASK     (1 << 23)
53
#define DESC_B_MASK     (1 << 22)
54
#define DESC_AVL_MASK   (1 << 20)
55
#define DESC_P_MASK     (1 << 15)
56
#define DESC_DPL_SHIFT  13
57
#define DESC_S_MASK     (1 << 12)
58
#define DESC_TYPE_SHIFT 8
59
#define DESC_A_MASK     (1 << 8)
60

    
61
#define DESC_CS_MASK    (1 << 11)
62
#define DESC_C_MASK     (1 << 10)
63
#define DESC_R_MASK     (1 << 9)
64

    
65
#define DESC_E_MASK     (1 << 10)
66
#define DESC_W_MASK     (1 << 9)
67

    
68
/* eflags masks */
69
#define CC_C           0x0001
70
#define CC_P         0x0004
71
#define CC_A        0x0010
72
#define CC_Z        0x0040
73
#define CC_S    0x0080
74
#define CC_O    0x0800
75

    
76
#define TF_MASK                 0x00000100
77
#define IF_MASK                 0x00000200
78
#define DF_MASK                 0x00000400
79
#define IOPL_MASK                0x00003000
80
#define NT_MASK                         0x00004000
81
#define RF_MASK                        0x00010000
82
#define VM_MASK                        0x00020000
83
#define AC_MASK                        0x00040000 
84
#define VIF_MASK                0x00080000
85
#define VIP_MASK                0x00100000
86
#define ID_MASK                 0x00200000
87

    
88
#define EXCP00_DIVZ        0
89
#define EXCP01_SSTP        1
90
#define EXCP02_NMI        2
91
#define EXCP03_INT3        3
92
#define EXCP04_INTO        4
93
#define EXCP05_BOUND        5
94
#define EXCP06_ILLOP        6
95
#define EXCP07_PREX        7
96
#define EXCP08_DBLE        8
97
#define EXCP09_XERR        9
98
#define EXCP0A_TSS        10
99
#define EXCP0B_NOSEG        11
100
#define EXCP0C_STACK        12
101
#define EXCP0D_GPF        13
102
#define EXCP0E_PAGE        14
103
#define EXCP10_COPR        16
104
#define EXCP11_ALGN        17
105
#define EXCP12_MCHK        18
106

    
107
#define EXCP_INTERRUPT         256 /* async interruption */
108

    
109
enum {
110
    CC_OP_DYNAMIC, /* must use dynamic code to get cc_op */
111
    CC_OP_EFLAGS,  /* all cc are explicitely computed, CC_SRC = flags */
112
    CC_OP_MUL, /* modify all flags, C, O = (CC_SRC != 0) */
113

    
114
    CC_OP_ADDB, /* modify all flags, CC_DST = res, CC_SRC = src1 */
115
    CC_OP_ADDW,
116
    CC_OP_ADDL,
117

    
118
    CC_OP_ADCB, /* modify all flags, CC_DST = res, CC_SRC = src1 */
119
    CC_OP_ADCW,
120
    CC_OP_ADCL,
121

    
122
    CC_OP_SUBB, /* modify all flags, CC_DST = res, CC_SRC = src1 */
123
    CC_OP_SUBW,
124
    CC_OP_SUBL,
125

    
126
    CC_OP_SBBB, /* modify all flags, CC_DST = res, CC_SRC = src1 */
127
    CC_OP_SBBW,
128
    CC_OP_SBBL,
129

    
130
    CC_OP_LOGICB, /* modify all flags, CC_DST = res */
131
    CC_OP_LOGICW,
132
    CC_OP_LOGICL,
133

    
134
    CC_OP_INCB, /* modify all flags except, CC_DST = res, CC_SRC = C */
135
    CC_OP_INCW,
136
    CC_OP_INCL,
137

    
138
    CC_OP_DECB, /* modify all flags except, CC_DST = res, CC_SRC = C  */
139
    CC_OP_DECW,
140
    CC_OP_DECL,
141

    
142
    CC_OP_SHLB, /* modify all flags, CC_DST = res, CC_SRC.lsb = C */
143
    CC_OP_SHLW,
144
    CC_OP_SHLL,
145

    
146
    CC_OP_SARB, /* modify all flags, CC_DST = res, CC_SRC.lsb = C */
147
    CC_OP_SARW,
148
    CC_OP_SARL,
149

    
150
    CC_OP_NB,
151
};
152

    
153
#ifdef __i386__
154
#define USE_X86LDOUBLE
155
#endif
156

    
157
#ifdef USE_X86LDOUBLE
158
typedef long double CPU86_LDouble;
159
#else
160
typedef double CPU86_LDouble;
161
#endif
162

    
163
typedef struct SegmentCache {
164
    uint8_t *base;
165
    unsigned long limit;
166
    uint8_t seg_32bit;
167
} SegmentCache;
168

    
169
typedef struct SegmentDescriptorTable {
170
    uint8_t *base;
171
    unsigned long limit;
172
    /* this is the returned base when reading the register, just to
173
    avoid that the emulated program modifies it */
174
    unsigned long emu_base;
175
} SegmentDescriptorTable;
176

    
177
typedef struct CPUX86State {
178
    /* standard registers */
179
    uint32_t regs[8];
180
    uint32_t eip;
181
    uint32_t eflags; /* eflags register. During CPU emulation, CC
182
                        flags and DF are set to zero because they are
183
                        stored elsewhere */
184

    
185
    /* emulator internal eflags handling */
186
    uint32_t cc_src;
187
    uint32_t cc_dst;
188
    uint32_t cc_op;
189
    int32_t df; /* D flag : 1 if D = 0, -1 if D = 1 */
190

    
191
    /* FPU state */
192
    unsigned int fpstt; /* top of stack index */
193
    unsigned int fpus;
194
    unsigned int fpuc;
195
    uint8_t fptags[8];   /* 0 = valid, 1 = empty */
196
    CPU86_LDouble fpregs[8];    
197

    
198
    /* emulator internal variables */
199
    CPU86_LDouble ft0;
200
    union {
201
        float f;
202
        double d;
203
        int i32;
204
        int64_t i64;
205
    } fp_convert;
206
    
207
    /* segments */
208
    uint32_t segs[6]; /* selector values */
209
    SegmentCache seg_cache[6]; /* info taken from LDT/GDT */
210
    SegmentDescriptorTable gdt;
211
    SegmentDescriptorTable ldt;
212
    SegmentDescriptorTable idt;
213
    
214
    /* exception/interrupt handling */
215
    jmp_buf jmp_env;
216
    int exception_index;
217
    int error_code;
218
    uint32_t cr2;
219
    int interrupt_request;
220

    
221
    /* user data */
222
    void *opaque;
223
} CPUX86State;
224

    
225
/* all CPU memory access use these macros */
226
static inline int ldub(void *ptr)
227
{
228
    return *(uint8_t *)ptr;
229
}
230

    
231
static inline int ldsb(void *ptr)
232
{
233
    return *(int8_t *)ptr;
234
}
235

    
236
static inline void stb(void *ptr, int v)
237
{
238
    *(uint8_t *)ptr = v;
239
}
240

    
241
#ifdef WORDS_BIGENDIAN
242

    
243
/* conservative code for little endian unaligned accesses */
244
static inline int lduw(void *ptr)
245
{
246
#ifdef __powerpc__
247
    int val;
248
    __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
249
    return val;
250
#else
251
    uint8_t *p = ptr;
252
    return p[0] | (p[1] << 8);
253
#endif
254
}
255

    
256
static inline int ldsw(void *ptr)
257
{
258
#ifdef __powerpc__
259
    int val;
260
    __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
261
    return (int16_t)val;
262
#else
263
    uint8_t *p = ptr;
264
    return (int16_t)(p[0] | (p[1] << 8));
265
#endif
266
}
267

    
268
static inline int ldl(void *ptr)
269
{
270
#ifdef __powerpc__
271
    int val;
272
    __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
273
    return val;
274
#else
275
    uint8_t *p = ptr;
276
    return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
277
#endif
278
}
279

    
280
static inline uint64_t ldq(void *ptr)
281
{
282
    uint8_t *p = ptr;
283
    uint32_t v1, v2;
284
    v1 = ldl(p);
285
    v2 = ldl(p + 4);
286
    return v1 | ((uint64_t)v2 << 32);
287
}
288

    
289
static inline void stw(void *ptr, int v)
290
{
291
#ifdef __powerpc__
292
    __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
293
#else
294
    uint8_t *p = ptr;
295
    p[0] = v;
296
    p[1] = v >> 8;
297
#endif
298
}
299

    
300
static inline void stl(void *ptr, int v)
301
{
302
#ifdef __powerpc__
303
    __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
304
#else
305
    uint8_t *p = ptr;
306
    p[0] = v;
307
    p[1] = v >> 8;
308
    p[2] = v >> 16;
309
    p[3] = v >> 24;
310
#endif
311
}
312

    
313
static inline void stq(void *ptr, uint64_t v)
314
{
315
    uint8_t *p = ptr;
316
    stl(p, (uint32_t)v);
317
    stl(p + 4, v >> 32);
318
}
319

    
320
/* float access */
321

    
322
static inline float ldfl(void *ptr)
323
{
324
    union {
325
        float f;
326
        uint32_t i;
327
    } u;
328
    u.i = ldl(ptr);
329
    return u.f;
330
}
331

    
332
static inline double ldfq(void *ptr)
333
{
334
    union {
335
        double d;
336
        uint64_t i;
337
    } u;
338
    u.i = ldq(ptr);
339
    return u.d;
340
}
341

    
342
static inline void stfl(void *ptr, float v)
343
{
344
    union {
345
        float f;
346
        uint32_t i;
347
    } u;
348
    u.f = v;
349
    stl(ptr, u.i);
350
}
351

    
352
static inline void stfq(void *ptr, double v)
353
{
354
    union {
355
        double d;
356
        uint64_t i;
357
    } u;
358
    u.d = v;
359
    stq(ptr, u.i);
360
}
361

    
362
#else
363

    
364
static inline int lduw(void *ptr)
365
{
366
    return *(uint16_t *)ptr;
367
}
368

    
369
static inline int ldsw(void *ptr)
370
{
371
    return *(int16_t *)ptr;
372
}
373

    
374
static inline int ldl(void *ptr)
375
{
376
    return *(uint32_t *)ptr;
377
}
378

    
379
static inline uint64_t ldq(void *ptr)
380
{
381
    return *(uint64_t *)ptr;
382
}
383

    
384
static inline void stw(void *ptr, int v)
385
{
386
    *(uint16_t *)ptr = v;
387
}
388

    
389
static inline void stl(void *ptr, int v)
390
{
391
    *(uint32_t *)ptr = v;
392
}
393

    
394
static inline void stq(void *ptr, uint64_t v)
395
{
396
    *(uint64_t *)ptr = v;
397
}
398

    
399
/* float access */
400

    
401
static inline float ldfl(void *ptr)
402
{
403
    return *(float *)ptr;
404
}
405

    
406
static inline double ldfq(void *ptr)
407
{
408
    return *(double *)ptr;
409
}
410

    
411
static inline void stfl(void *ptr, float v)
412
{
413
    *(float *)ptr = v;
414
}
415

    
416
static inline void stfq(void *ptr, double v)
417
{
418
    *(double *)ptr = v;
419
}
420
#endif
421

    
422
#ifndef IN_OP_I386
423
void cpu_x86_outb(CPUX86State *env, int addr, int val);
424
void cpu_x86_outw(CPUX86State *env, int addr, int val);
425
void cpu_x86_outl(CPUX86State *env, int addr, int val);
426
int cpu_x86_inb(CPUX86State *env, int addr);
427
int cpu_x86_inw(CPUX86State *env, int addr);
428
int cpu_x86_inl(CPUX86State *env, int addr);
429
#endif
430

    
431
CPUX86State *cpu_x86_init(void);
432
int cpu_x86_exec(CPUX86State *s);
433
void cpu_x86_interrupt(CPUX86State *s);
434
void cpu_x86_close(CPUX86State *s);
435

    
436
/* needed to load some predefinied segment registers */
437
void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector);
438

    
439
/* you can call this signal handler from your SIGBUS and SIGSEGV
440
   signal handlers to inform the virtual CPU of exceptions. non zero
441
   is returned if the signal was handled by the virtual CPU.  */
442
struct siginfo;
443
int cpu_x86_signal_handler(int host_signum, struct siginfo *info, 
444
                           void *puc);
445

    
446
/* used to debug */
447
#define X86_DUMP_FPU  0x0001 /* dump FPU state too */
448
#define X86_DUMP_CCOP 0x0002 /* dump qemu flag cache */
449
void cpu_x86_dump_state(CPUX86State *env, FILE *f, int flags);
450

    
451
/* page related stuff */
452
#define TARGET_PAGE_BITS 12
453
#define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
454
#define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
455
#define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
456

    
457
extern unsigned long real_host_page_size;
458
extern unsigned long host_page_bits;
459
extern unsigned long host_page_size;
460
extern unsigned long host_page_mask;
461

    
462
#define HOST_PAGE_ALIGN(addr) (((addr) + host_page_size - 1) & host_page_mask)
463

    
464
/* same as PROT_xxx */
465
#define PAGE_READ      0x0001
466
#define PAGE_WRITE     0x0002
467
#define PAGE_EXEC      0x0004
468
#define PAGE_BITS      (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
469
#define PAGE_VALID     0x0008
470
/* original state of the write flag (used when tracking self-modifying
471
   code */
472
#define PAGE_WRITE_ORG 0x0010 
473

    
474
void page_dump(FILE *f);
475
int page_get_flags(unsigned long address);
476
void page_set_flags(unsigned long start, unsigned long end, int flags);
477
void page_unprotect_range(uint8_t *data, unsigned long data_size);
478

    
479
#endif /* CPU_I386_H */