Statistics
| Branch: | Revision:

root / hw / eccmemctl.c @ ab17b46d

History | View | Annotate | Download (10.5 kB)

1
/*
2
 * QEMU Sparc Sun4m ECC memory controller emulation
3
 *
4
 * Copyright (c) 2007 Robert Reif
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw.h"
25
#include "sun4m.h"
26
#include "sysemu.h"
27

    
28
//#define DEBUG_ECC
29

    
30
#ifdef DEBUG_ECC
31
#define DPRINTF(fmt, args...)                           \
32
    do { printf("ECC: " fmt , ##args); } while (0)
33
#else
34
#define DPRINTF(fmt, args...)
35
#endif
36

    
37
/* There are 3 versions of this chip used in SMP sun4m systems:
38
 * MCC (version 0, implementation 0) SS-600MP
39
 * EMC (version 0, implementation 1) SS-10
40
 * SMC (version 0, implementation 2) SS-10SX and SS-20
41
 */
42

    
43
/* Register indexes */
44
#define ECC_MER        0               /* Memory Enable Register */
45
#define ECC_MDR        1               /* Memory Delay Register */
46
#define ECC_MFSR       2               /* Memory Fault Status Register */
47
#define ECC_VCR        3               /* Video Configuration Register */
48
#define ECC_MFAR0      4               /* Memory Fault Address Register 0 */
49
#define ECC_MFAR1      5               /* Memory Fault Address Register 1 */
50
#define ECC_DR         6               /* Diagnostic Register */
51
#define ECC_ECR0       7               /* Event Count Register 0 */
52
#define ECC_ECR1       8               /* Event Count Register 1 */
53

    
54
/* ECC fault control register */
55
#define ECC_MER_EE     0x00000001      /* Enable ECC checking */
56
#define ECC_MER_EI     0x00000002      /* Enable Interrupts on
57
                                          correctable errors */
58
#define ECC_MER_MRR0   0x00000004      /* SIMM 0 */
59
#define ECC_MER_MRR1   0x00000008      /* SIMM 1 */
60
#define ECC_MER_MRR2   0x00000010      /* SIMM 2 */
61
#define ECC_MER_MRR3   0x00000020      /* SIMM 3 */
62
#define ECC_MER_MRR4   0x00000040      /* SIMM 4 */
63
#define ECC_MER_MRR5   0x00000080      /* SIMM 5 */
64
#define ECC_MER_MRR6   0x00000100      /* SIMM 6 */
65
#define ECC_MER_MRR7   0x00000200      /* SIMM 7 */
66
#define ECC_MER_REU    0x00000200      /* Memory Refresh Enable (600MP) */
67
#define ECC_MER_MRR    0x000003fc      /* MRR mask */
68
#define ECC_MEM_A      0x00000400      /* Memory controller addr map select */
69
#define ECC_MER_DCI    0x00000800      /* Disables Coherent Invalidate ACK */
70
#define ECC_MER_VER    0x0f000000      /* Version */
71
#define ECC_MER_IMPL   0xf0000000      /* Implementation */
72

    
73
/* ECC memory delay register */
74
#define ECC_MDR_RRI    0x000003ff      /* Refresh Request Interval */
75
#define ECC_MDR_MI     0x00001c00      /* MIH Delay */
76
#define ECC_MDR_CI     0x0000e000      /* Coherent Invalidate Delay */
77
#define ECC_MDR_MDL    0x001f0000      /* MBus Master arbitration delay */
78
#define ECC_MDR_MDH    0x03e00000      /* MBus Master arbitration delay */
79
#define ECC_MDR_GAD    0x7c000000      /* Graphics Arbitration Delay */
80
#define ECC_MDR_RSC    0x80000000      /* Refresh load control */
81
#define ECC_MDR_MASK   0x7fffffff
82

    
83
/* ECC fault status register */
84
#define ECC_MFSR_CE    0x00000001      /* Correctable error */
85
#define ECC_MFSR_BS    0x00000002      /* C2 graphics bad slot access */
86
#define ECC_MFSR_TO    0x00000004      /* Timeout on write */
87
#define ECC_MFSR_UE    0x00000008      /* Uncorrectable error */
88
#define ECC_MFSR_DW    0x000000f0      /* Index of double word in block */
89
#define ECC_MFSR_SYND  0x0000ff00      /* Syndrome for correctable error */
90
#define ECC_MFSR_ME    0x00010000      /* Multiple errors */
91
#define ECC_MFSR_C2ERR 0x00020000      /* C2 graphics error */
92

    
93
/* ECC fault address register 0 */
94
#define ECC_MFAR0_PADDR 0x0000000f     /* PA[32-35] */
95
#define ECC_MFAR0_TYPE  0x000000f0     /* Transaction type */
96
#define ECC_MFAR0_SIZE  0x00000700     /* Transaction size */
97
#define ECC_MFAR0_CACHE 0x00000800     /* Mapped cacheable */
98
#define ECC_MFAR0_LOCK  0x00001000     /* Error occurred in atomic cycle */
99
#define ECC_MFAR0_BMODE 0x00002000     /* Boot mode */
100
#define ECC_MFAR0_VADDR 0x003fc000     /* VA[12-19] (superset bits) */
101
#define ECC_MFAR0_S     0x08000000     /* Supervisor mode */
102
#define ECC_MFARO_MID   0xf0000000     /* Module ID */
103

    
104
/* ECC diagnostic register */
105
#define ECC_DR_CBX     0x00000001
106
#define ECC_DR_CB0     0x00000002
107
#define ECC_DR_CB1     0x00000004
108
#define ECC_DR_CB2     0x00000008
109
#define ECC_DR_CB4     0x00000010
110
#define ECC_DR_CB8     0x00000020
111
#define ECC_DR_CB16    0x00000040
112
#define ECC_DR_CB32    0x00000080
113
#define ECC_DR_DMODE   0x00000c00
114

    
115
#define ECC_NREGS      9
116
#define ECC_SIZE       (ECC_NREGS * sizeof(uint32_t))
117
#define ECC_ADDR_MASK  0x1f
118

    
119
#define ECC_DIAG_SIZE  4
120
#define ECC_DIAG_MASK  (ECC_DIAG_SIZE - 1)
121

    
122
typedef struct ECCState {
123
    qemu_irq irq;
124
    uint32_t regs[ECC_NREGS];
125
    uint8_t diag[ECC_DIAG_SIZE];
126
} ECCState;
127

    
128
static void ecc_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
129
{
130
    ECCState *s = opaque;
131

    
132
    switch ((addr & ECC_ADDR_MASK) >> 2) {
133
    case ECC_MER:
134
        s->regs[ECC_MER] = (s->regs[ECC_MER] & (ECC_MER_VER | ECC_MER_IMPL)) |
135
            (val & ~(ECC_MER_VER | ECC_MER_IMPL));
136
        DPRINTF("Write memory enable %08x\n", val);
137
        break;
138
    case ECC_MDR:
139
        s->regs[ECC_MDR] =  val & ECC_MDR_MASK;
140
        DPRINTF("Write memory delay %08x\n", val);
141
        break;
142
    case ECC_MFSR:
143
        s->regs[ECC_MFSR] =  val;
144
        DPRINTF("Write memory fault status %08x\n", val);
145
        break;
146
    case ECC_VCR:
147
        s->regs[ECC_VCR] =  val;
148
        DPRINTF("Write slot configuration %08x\n", val);
149
        break;
150
    case ECC_DR:
151
        s->regs[ECC_DR] =  val;
152
        DPRINTF("Write diagnosiic %08x\n", val);
153
        break;
154
    case ECC_ECR0:
155
        s->regs[ECC_ECR0] =  val;
156
        DPRINTF("Write event count 1 %08x\n", val);
157
        break;
158
    case ECC_ECR1:
159
        s->regs[ECC_ECR0] =  val;
160
        DPRINTF("Write event count 2 %08x\n", val);
161
        break;
162
    }
163
}
164

    
165
static uint32_t ecc_mem_readl(void *opaque, target_phys_addr_t addr)
166
{
167
    ECCState *s = opaque;
168
    uint32_t ret = 0;
169

    
170
    switch ((addr & ECC_ADDR_MASK) >> 2) {
171
    case ECC_MER:
172
        ret = s->regs[ECC_MER];
173
        DPRINTF("Read memory enable %08x\n", ret);
174
        break;
175
    case ECC_MDR:
176
        ret = s->regs[ECC_MDR];
177
        DPRINTF("Read memory delay %08x\n", ret);
178
        break;
179
    case ECC_MFSR:
180
        ret = s->regs[ECC_MFSR];
181
        DPRINTF("Read memory fault status %08x\n", ret);
182
        break;
183
    case ECC_VCR:
184
        ret = s->regs[ECC_VCR];
185
        DPRINTF("Read slot configuration %08x\n", ret);
186
        break;
187
    case ECC_MFAR0:
188
        ret = s->regs[ECC_MFAR0];
189
        DPRINTF("Read memory fault address 0 %08x\n", ret);
190
        break;
191
    case ECC_MFAR1:
192
        ret = s->regs[ECC_MFAR1];
193
        DPRINTF("Read memory fault address 1 %08x\n", ret);
194
        break;
195
    case ECC_DR:
196
        ret = s->regs[ECC_DR];
197
        DPRINTF("Read diagnostic %08x\n", ret);
198
        break;
199
    case ECC_ECR0:
200
        ret = s->regs[ECC_ECR0];
201
        DPRINTF("Read event count 1 %08x\n", ret);
202
        break;
203
    case ECC_ECR1:
204
        ret = s->regs[ECC_ECR0];
205
        DPRINTF("Read event count 2 %08x\n", ret);
206
        break;
207
    }
208
    return ret;
209
}
210

    
211
static CPUReadMemoryFunc *ecc_mem_read[3] = {
212
    NULL,
213
    NULL,
214
    ecc_mem_readl,
215
};
216

    
217
static CPUWriteMemoryFunc *ecc_mem_write[3] = {
218
    NULL,
219
    NULL,
220
    ecc_mem_writel,
221
};
222

    
223
static void ecc_diag_mem_writeb(void *opaque, target_phys_addr_t addr,
224
                                uint32_t val)
225
{
226
    ECCState *s = opaque;
227

    
228
    DPRINTF("Write diagnostic[%d] = %02x\n", (int)(addr & ECC_DIAG_MASK), val);
229
    s->diag[addr & ECC_DIAG_MASK] = val;
230
}
231

    
232
static uint32_t ecc_diag_mem_readb(void *opaque, target_phys_addr_t addr)
233
{
234
    ECCState *s = opaque;
235
    uint32_t ret = s->diag[addr & ECC_DIAG_MASK];
236
    DPRINTF("Read diagnostic[%d] = %02x\n", (int)(addr & ECC_DIAG_MASK), ret);
237
    return ret;
238
}
239

    
240
static CPUReadMemoryFunc *ecc_diag_mem_read[3] = {
241
    ecc_diag_mem_readb,
242
    NULL,
243
    NULL,
244
};
245

    
246
static CPUWriteMemoryFunc *ecc_diag_mem_write[3] = {
247
    ecc_diag_mem_writeb,
248
    NULL,
249
    NULL,
250
};
251

    
252
static int ecc_load(QEMUFile *f, void *opaque, int version_id)
253
{
254
    ECCState *s = opaque;
255
    int i;
256

    
257
    if (version_id != 2)
258
        return -EINVAL;
259

    
260
    for (i = 0; i < ECC_NREGS; i++)
261
        qemu_get_be32s(f, &s->regs[i]);
262

    
263
    for (i = 0; i < ECC_DIAG_SIZE; i++)
264
        qemu_get_8s(f, &s->diag[i]);
265

    
266
    return 0;
267
}
268

    
269
static void ecc_save(QEMUFile *f, void *opaque)
270
{
271
    ECCState *s = opaque;
272
    int i;
273

    
274
    for (i = 0; i < ECC_NREGS; i++)
275
        qemu_put_be32s(f, &s->regs[i]);
276

    
277
    for (i = 0; i < ECC_DIAG_SIZE; i++)
278
        qemu_put_8s(f, &s->diag[i]);
279
}
280

    
281
static void ecc_reset(void *opaque)
282
{
283
    ECCState *s = opaque;
284

    
285
    s->regs[ECC_MER] &= (ECC_MER_VER | ECC_MER_IMPL);
286
    s->regs[ECC_MER] |= ECC_MER_MRR;
287
    s->regs[ECC_MDR] = 0x20;
288
    s->regs[ECC_MFSR] = 0;
289
    s->regs[ECC_VCR] = 0;
290
    s->regs[ECC_MFAR0] = 0x07c00000;
291
    s->regs[ECC_MFAR1] = 0;
292
    s->regs[ECC_DR] = 0;
293
    s->regs[ECC_ECR0] = 0;
294
    s->regs[ECC_ECR1] = 0;
295
}
296

    
297
void * ecc_init(target_phys_addr_t base, qemu_irq irq, uint32_t version)
298
{
299
    int ecc_io_memory;
300
    ECCState *s;
301

    
302
    s = qemu_mallocz(sizeof(ECCState));
303
    if (!s)
304
        return NULL;
305

    
306
    s->regs[0] = version;
307
    s->irq = irq;
308

    
309
    ecc_io_memory = cpu_register_io_memory(0, ecc_mem_read, ecc_mem_write, s);
310
    cpu_register_physical_memory(base, ECC_SIZE, ecc_io_memory);
311
    if (version == 0) { // SS-600MP only
312
        ecc_io_memory = cpu_register_io_memory(0, ecc_diag_mem_read,
313
                                               ecc_diag_mem_write, s);
314
        cpu_register_physical_memory(base + 0x1000, ECC_DIAG_SIZE,
315
                                     ecc_io_memory);
316
    }
317
    register_savevm("ECC", base, 2, ecc_save, ecc_load, s);
318
    qemu_register_reset(ecc_reset, s);
319
    ecc_reset(s);
320
    return s;
321
}