Statistics
| Branch: | Revision:

root / memory.c @ ac1970fb

History | View | Annotate | Download (52.4 kB)

1
/*
2
 * Physical memory management
3
 *
4
 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5
 *
6
 * Authors:
7
 *  Avi Kivity <avi@redhat.com>
8
 *
9
 * This work is licensed under the terms of the GNU GPL, version 2.  See
10
 * the COPYING file in the top-level directory.
11
 *
12
 * Contributions after 2012-01-13 are licensed under the terms of the
13
 * GNU GPL, version 2 or (at your option) any later version.
14
 */
15

    
16
#include "memory.h"
17
#include "exec-memory.h"
18
#include "ioport.h"
19
#include "bitops.h"
20
#include "kvm.h"
21
#include <assert.h>
22

    
23
#include "memory-internal.h"
24

    
25
unsigned memory_region_transaction_depth = 0;
26
static bool global_dirty_log = false;
27

    
28
static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
29
    = QTAILQ_HEAD_INITIALIZER(memory_listeners);
30

    
31
static QTAILQ_HEAD(, AddressSpace) address_spaces
32
    = QTAILQ_HEAD_INITIALIZER(address_spaces);
33

    
34
typedef struct AddrRange AddrRange;
35

    
36
/*
37
 * Note using signed integers limits us to physical addresses at most
38
 * 63 bits wide.  They are needed for negative offsetting in aliases
39
 * (large MemoryRegion::alias_offset).
40
 */
41
struct AddrRange {
42
    Int128 start;
43
    Int128 size;
44
};
45

    
46
static AddrRange addrrange_make(Int128 start, Int128 size)
47
{
48
    return (AddrRange) { start, size };
49
}
50

    
51
static bool addrrange_equal(AddrRange r1, AddrRange r2)
52
{
53
    return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
54
}
55

    
56
static Int128 addrrange_end(AddrRange r)
57
{
58
    return int128_add(r.start, r.size);
59
}
60

    
61
static AddrRange addrrange_shift(AddrRange range, Int128 delta)
62
{
63
    int128_addto(&range.start, delta);
64
    return range;
65
}
66

    
67
static bool addrrange_contains(AddrRange range, Int128 addr)
68
{
69
    return int128_ge(addr, range.start)
70
        && int128_lt(addr, addrrange_end(range));
71
}
72

    
73
static bool addrrange_intersects(AddrRange r1, AddrRange r2)
74
{
75
    return addrrange_contains(r1, r2.start)
76
        || addrrange_contains(r2, r1.start);
77
}
78

    
79
static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
80
{
81
    Int128 start = int128_max(r1.start, r2.start);
82
    Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
83
    return addrrange_make(start, int128_sub(end, start));
84
}
85

    
86
enum ListenerDirection { Forward, Reverse };
87

    
88
static bool memory_listener_match(MemoryListener *listener,
89
                                  MemoryRegionSection *section)
90
{
91
    return !listener->address_space_filter
92
        || listener->address_space_filter == section->address_space;
93
}
94

    
95
#define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...)    \
96
    do {                                                                \
97
        MemoryListener *_listener;                                      \
98
                                                                        \
99
        switch (_direction) {                                           \
100
        case Forward:                                                   \
101
            QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
102
                if (_listener->_callback) {                             \
103
                    _listener->_callback(_listener, ##_args);           \
104
                }                                                       \
105
            }                                                           \
106
            break;                                                      \
107
        case Reverse:                                                   \
108
            QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners,        \
109
                                   memory_listeners, link) {            \
110
                if (_listener->_callback) {                             \
111
                    _listener->_callback(_listener, ##_args);           \
112
                }                                                       \
113
            }                                                           \
114
            break;                                                      \
115
        default:                                                        \
116
            abort();                                                    \
117
        }                                                               \
118
    } while (0)
119

    
120
#define MEMORY_LISTENER_CALL(_callback, _direction, _section, _args...) \
121
    do {                                                                \
122
        MemoryListener *_listener;                                      \
123
                                                                        \
124
        switch (_direction) {                                           \
125
        case Forward:                                                   \
126
            QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
127
                if (_listener->_callback                                \
128
                    && memory_listener_match(_listener, _section)) {    \
129
                    _listener->_callback(_listener, _section, ##_args); \
130
                }                                                       \
131
            }                                                           \
132
            break;                                                      \
133
        case Reverse:                                                   \
134
            QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners,        \
135
                                   memory_listeners, link) {            \
136
                if (_listener->_callback                                \
137
                    && memory_listener_match(_listener, _section)) {    \
138
                    _listener->_callback(_listener, _section, ##_args); \
139
                }                                                       \
140
            }                                                           \
141
            break;                                                      \
142
        default:                                                        \
143
            abort();                                                    \
144
        }                                                               \
145
    } while (0)
146

    
147
#define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback)            \
148
    MEMORY_LISTENER_CALL(callback, dir, (&(MemoryRegionSection) {       \
149
        .mr = (fr)->mr,                                                 \
150
        .address_space = (as),                                          \
151
        .offset_within_region = (fr)->offset_in_region,                 \
152
        .size = int128_get64((fr)->addr.size),                          \
153
        .offset_within_address_space = int128_get64((fr)->addr.start),  \
154
        .readonly = (fr)->readonly,                                     \
155
              }))
156

    
157
struct CoalescedMemoryRange {
158
    AddrRange addr;
159
    QTAILQ_ENTRY(CoalescedMemoryRange) link;
160
};
161

    
162
struct MemoryRegionIoeventfd {
163
    AddrRange addr;
164
    bool match_data;
165
    uint64_t data;
166
    EventNotifier *e;
167
};
168

    
169
static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
170
                                           MemoryRegionIoeventfd b)
171
{
172
    if (int128_lt(a.addr.start, b.addr.start)) {
173
        return true;
174
    } else if (int128_gt(a.addr.start, b.addr.start)) {
175
        return false;
176
    } else if (int128_lt(a.addr.size, b.addr.size)) {
177
        return true;
178
    } else if (int128_gt(a.addr.size, b.addr.size)) {
179
        return false;
180
    } else if (a.match_data < b.match_data) {
181
        return true;
182
    } else  if (a.match_data > b.match_data) {
183
        return false;
184
    } else if (a.match_data) {
185
        if (a.data < b.data) {
186
            return true;
187
        } else if (a.data > b.data) {
188
            return false;
189
        }
190
    }
191
    if (a.e < b.e) {
192
        return true;
193
    } else if (a.e > b.e) {
194
        return false;
195
    }
196
    return false;
197
}
198

    
199
static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
200
                                          MemoryRegionIoeventfd b)
201
{
202
    return !memory_region_ioeventfd_before(a, b)
203
        && !memory_region_ioeventfd_before(b, a);
204
}
205

    
206
typedef struct FlatRange FlatRange;
207
typedef struct FlatView FlatView;
208

    
209
/* Range of memory in the global map.  Addresses are absolute. */
210
struct FlatRange {
211
    MemoryRegion *mr;
212
    target_phys_addr_t offset_in_region;
213
    AddrRange addr;
214
    uint8_t dirty_log_mask;
215
    bool readable;
216
    bool readonly;
217
};
218

    
219
/* Flattened global view of current active memory hierarchy.  Kept in sorted
220
 * order.
221
 */
222
struct FlatView {
223
    FlatRange *ranges;
224
    unsigned nr;
225
    unsigned nr_allocated;
226
};
227

    
228
typedef struct AddressSpaceOps AddressSpaceOps;
229

    
230
#define FOR_EACH_FLAT_RANGE(var, view)          \
231
    for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
232

    
233
static bool flatrange_equal(FlatRange *a, FlatRange *b)
234
{
235
    return a->mr == b->mr
236
        && addrrange_equal(a->addr, b->addr)
237
        && a->offset_in_region == b->offset_in_region
238
        && a->readable == b->readable
239
        && a->readonly == b->readonly;
240
}
241

    
242
static void flatview_init(FlatView *view)
243
{
244
    view->ranges = NULL;
245
    view->nr = 0;
246
    view->nr_allocated = 0;
247
}
248

    
249
/* Insert a range into a given position.  Caller is responsible for maintaining
250
 * sorting order.
251
 */
252
static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
253
{
254
    if (view->nr == view->nr_allocated) {
255
        view->nr_allocated = MAX(2 * view->nr, 10);
256
        view->ranges = g_realloc(view->ranges,
257
                                    view->nr_allocated * sizeof(*view->ranges));
258
    }
259
    memmove(view->ranges + pos + 1, view->ranges + pos,
260
            (view->nr - pos) * sizeof(FlatRange));
261
    view->ranges[pos] = *range;
262
    ++view->nr;
263
}
264

    
265
static void flatview_destroy(FlatView *view)
266
{
267
    g_free(view->ranges);
268
}
269

    
270
static bool can_merge(FlatRange *r1, FlatRange *r2)
271
{
272
    return int128_eq(addrrange_end(r1->addr), r2->addr.start)
273
        && r1->mr == r2->mr
274
        && int128_eq(int128_add(int128_make64(r1->offset_in_region),
275
                                r1->addr.size),
276
                     int128_make64(r2->offset_in_region))
277
        && r1->dirty_log_mask == r2->dirty_log_mask
278
        && r1->readable == r2->readable
279
        && r1->readonly == r2->readonly;
280
}
281

    
282
/* Attempt to simplify a view by merging ajacent ranges */
283
static void flatview_simplify(FlatView *view)
284
{
285
    unsigned i, j;
286

    
287
    i = 0;
288
    while (i < view->nr) {
289
        j = i + 1;
290
        while (j < view->nr
291
               && can_merge(&view->ranges[j-1], &view->ranges[j])) {
292
            int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
293
            ++j;
294
        }
295
        ++i;
296
        memmove(&view->ranges[i], &view->ranges[j],
297
                (view->nr - j) * sizeof(view->ranges[j]));
298
        view->nr -= j - i;
299
    }
300
}
301

    
302
static void memory_region_read_accessor(void *opaque,
303
                                        target_phys_addr_t addr,
304
                                        uint64_t *value,
305
                                        unsigned size,
306
                                        unsigned shift,
307
                                        uint64_t mask)
308
{
309
    MemoryRegion *mr = opaque;
310
    uint64_t tmp;
311

    
312
    if (mr->flush_coalesced_mmio) {
313
        qemu_flush_coalesced_mmio_buffer();
314
    }
315
    tmp = mr->ops->read(mr->opaque, addr, size);
316
    *value |= (tmp & mask) << shift;
317
}
318

    
319
static void memory_region_write_accessor(void *opaque,
320
                                         target_phys_addr_t addr,
321
                                         uint64_t *value,
322
                                         unsigned size,
323
                                         unsigned shift,
324
                                         uint64_t mask)
325
{
326
    MemoryRegion *mr = opaque;
327
    uint64_t tmp;
328

    
329
    if (mr->flush_coalesced_mmio) {
330
        qemu_flush_coalesced_mmio_buffer();
331
    }
332
    tmp = (*value >> shift) & mask;
333
    mr->ops->write(mr->opaque, addr, tmp, size);
334
}
335

    
336
static void access_with_adjusted_size(target_phys_addr_t addr,
337
                                      uint64_t *value,
338
                                      unsigned size,
339
                                      unsigned access_size_min,
340
                                      unsigned access_size_max,
341
                                      void (*access)(void *opaque,
342
                                                     target_phys_addr_t addr,
343
                                                     uint64_t *value,
344
                                                     unsigned size,
345
                                                     unsigned shift,
346
                                                     uint64_t mask),
347
                                      void *opaque)
348
{
349
    uint64_t access_mask;
350
    unsigned access_size;
351
    unsigned i;
352

    
353
    if (!access_size_min) {
354
        access_size_min = 1;
355
    }
356
    if (!access_size_max) {
357
        access_size_max = 4;
358
    }
359
    access_size = MAX(MIN(size, access_size_max), access_size_min);
360
    access_mask = -1ULL >> (64 - access_size * 8);
361
    for (i = 0; i < size; i += access_size) {
362
        /* FIXME: big-endian support */
363
        access(opaque, addr + i, value, access_size, i * 8, access_mask);
364
    }
365
}
366

    
367
static const MemoryRegionPortio *find_portio(MemoryRegion *mr, uint64_t offset,
368
                                             unsigned width, bool write)
369
{
370
    const MemoryRegionPortio *mrp;
371

    
372
    for (mrp = mr->ops->old_portio; mrp->size; ++mrp) {
373
        if (offset >= mrp->offset && offset < mrp->offset + mrp->len
374
            && width == mrp->size
375
            && (write ? (bool)mrp->write : (bool)mrp->read)) {
376
            return mrp;
377
        }
378
    }
379
    return NULL;
380
}
381

    
382
static void memory_region_iorange_read(IORange *iorange,
383
                                       uint64_t offset,
384
                                       unsigned width,
385
                                       uint64_t *data)
386
{
387
    MemoryRegionIORange *mrio
388
        = container_of(iorange, MemoryRegionIORange, iorange);
389
    MemoryRegion *mr = mrio->mr;
390

    
391
    offset += mrio->offset;
392
    if (mr->ops->old_portio) {
393
        const MemoryRegionPortio *mrp = find_portio(mr, offset - mrio->offset,
394
                                                    width, false);
395

    
396
        *data = ((uint64_t)1 << (width * 8)) - 1;
397
        if (mrp) {
398
            *data = mrp->read(mr->opaque, offset);
399
        } else if (width == 2) {
400
            mrp = find_portio(mr, offset - mrio->offset, 1, false);
401
            assert(mrp);
402
            *data = mrp->read(mr->opaque, offset) |
403
                    (mrp->read(mr->opaque, offset + 1) << 8);
404
        }
405
        return;
406
    }
407
    *data = 0;
408
    access_with_adjusted_size(offset, data, width,
409
                              mr->ops->impl.min_access_size,
410
                              mr->ops->impl.max_access_size,
411
                              memory_region_read_accessor, mr);
412
}
413

    
414
static void memory_region_iorange_write(IORange *iorange,
415
                                        uint64_t offset,
416
                                        unsigned width,
417
                                        uint64_t data)
418
{
419
    MemoryRegionIORange *mrio
420
        = container_of(iorange, MemoryRegionIORange, iorange);
421
    MemoryRegion *mr = mrio->mr;
422

    
423
    offset += mrio->offset;
424
    if (mr->ops->old_portio) {
425
        const MemoryRegionPortio *mrp = find_portio(mr, offset - mrio->offset,
426
                                                    width, true);
427

    
428
        if (mrp) {
429
            mrp->write(mr->opaque, offset, data);
430
        } else if (width == 2) {
431
            mrp = find_portio(mr, offset - mrio->offset, 1, true);
432
            assert(mrp);
433
            mrp->write(mr->opaque, offset, data & 0xff);
434
            mrp->write(mr->opaque, offset + 1, data >> 8);
435
        }
436
        return;
437
    }
438
    access_with_adjusted_size(offset, &data, width,
439
                              mr->ops->impl.min_access_size,
440
                              mr->ops->impl.max_access_size,
441
                              memory_region_write_accessor, mr);
442
}
443

    
444
static void memory_region_iorange_destructor(IORange *iorange)
445
{
446
    g_free(container_of(iorange, MemoryRegionIORange, iorange));
447
}
448

    
449
const IORangeOps memory_region_iorange_ops = {
450
    .read = memory_region_iorange_read,
451
    .write = memory_region_iorange_write,
452
    .destructor = memory_region_iorange_destructor,
453
};
454

    
455
static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
456
{
457
    AddressSpace *as;
458

    
459
    while (mr->parent) {
460
        mr = mr->parent;
461
    }
462
    QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
463
        if (mr == as->root) {
464
            return as;
465
        }
466
    }
467
    abort();
468
}
469

    
470
/* Render a memory region into the global view.  Ranges in @view obscure
471
 * ranges in @mr.
472
 */
473
static void render_memory_region(FlatView *view,
474
                                 MemoryRegion *mr,
475
                                 Int128 base,
476
                                 AddrRange clip,
477
                                 bool readonly)
478
{
479
    MemoryRegion *subregion;
480
    unsigned i;
481
    target_phys_addr_t offset_in_region;
482
    Int128 remain;
483
    Int128 now;
484
    FlatRange fr;
485
    AddrRange tmp;
486

    
487
    if (!mr->enabled) {
488
        return;
489
    }
490

    
491
    int128_addto(&base, int128_make64(mr->addr));
492
    readonly |= mr->readonly;
493

    
494
    tmp = addrrange_make(base, mr->size);
495

    
496
    if (!addrrange_intersects(tmp, clip)) {
497
        return;
498
    }
499

    
500
    clip = addrrange_intersection(tmp, clip);
501

    
502
    if (mr->alias) {
503
        int128_subfrom(&base, int128_make64(mr->alias->addr));
504
        int128_subfrom(&base, int128_make64(mr->alias_offset));
505
        render_memory_region(view, mr->alias, base, clip, readonly);
506
        return;
507
    }
508

    
509
    /* Render subregions in priority order. */
510
    QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
511
        render_memory_region(view, subregion, base, clip, readonly);
512
    }
513

    
514
    if (!mr->terminates) {
515
        return;
516
    }
517

    
518
    offset_in_region = int128_get64(int128_sub(clip.start, base));
519
    base = clip.start;
520
    remain = clip.size;
521

    
522
    /* Render the region itself into any gaps left by the current view. */
523
    for (i = 0; i < view->nr && int128_nz(remain); ++i) {
524
        if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
525
            continue;
526
        }
527
        if (int128_lt(base, view->ranges[i].addr.start)) {
528
            now = int128_min(remain,
529
                             int128_sub(view->ranges[i].addr.start, base));
530
            fr.mr = mr;
531
            fr.offset_in_region = offset_in_region;
532
            fr.addr = addrrange_make(base, now);
533
            fr.dirty_log_mask = mr->dirty_log_mask;
534
            fr.readable = mr->readable;
535
            fr.readonly = readonly;
536
            flatview_insert(view, i, &fr);
537
            ++i;
538
            int128_addto(&base, now);
539
            offset_in_region += int128_get64(now);
540
            int128_subfrom(&remain, now);
541
        }
542
        if (int128_eq(base, view->ranges[i].addr.start)) {
543
            now = int128_min(remain, view->ranges[i].addr.size);
544
            int128_addto(&base, now);
545
            offset_in_region += int128_get64(now);
546
            int128_subfrom(&remain, now);
547
        }
548
    }
549
    if (int128_nz(remain)) {
550
        fr.mr = mr;
551
        fr.offset_in_region = offset_in_region;
552
        fr.addr = addrrange_make(base, remain);
553
        fr.dirty_log_mask = mr->dirty_log_mask;
554
        fr.readable = mr->readable;
555
        fr.readonly = readonly;
556
        flatview_insert(view, i, &fr);
557
    }
558
}
559

    
560
/* Render a memory topology into a list of disjoint absolute ranges. */
561
static FlatView generate_memory_topology(MemoryRegion *mr)
562
{
563
    FlatView view;
564

    
565
    flatview_init(&view);
566

    
567
    render_memory_region(&view, mr, int128_zero(),
568
                         addrrange_make(int128_zero(), int128_2_64()), false);
569
    flatview_simplify(&view);
570

    
571
    return view;
572
}
573

    
574
static void address_space_add_del_ioeventfds(AddressSpace *as,
575
                                             MemoryRegionIoeventfd *fds_new,
576
                                             unsigned fds_new_nb,
577
                                             MemoryRegionIoeventfd *fds_old,
578
                                             unsigned fds_old_nb)
579
{
580
    unsigned iold, inew;
581
    MemoryRegionIoeventfd *fd;
582
    MemoryRegionSection section;
583

    
584
    /* Generate a symmetric difference of the old and new fd sets, adding
585
     * and deleting as necessary.
586
     */
587

    
588
    iold = inew = 0;
589
    while (iold < fds_old_nb || inew < fds_new_nb) {
590
        if (iold < fds_old_nb
591
            && (inew == fds_new_nb
592
                || memory_region_ioeventfd_before(fds_old[iold],
593
                                                  fds_new[inew]))) {
594
            fd = &fds_old[iold];
595
            section = (MemoryRegionSection) {
596
                .address_space = as,
597
                .offset_within_address_space = int128_get64(fd->addr.start),
598
                .size = int128_get64(fd->addr.size),
599
            };
600
            MEMORY_LISTENER_CALL(eventfd_del, Forward, &section,
601
                                 fd->match_data, fd->data, fd->e);
602
            ++iold;
603
        } else if (inew < fds_new_nb
604
                   && (iold == fds_old_nb
605
                       || memory_region_ioeventfd_before(fds_new[inew],
606
                                                         fds_old[iold]))) {
607
            fd = &fds_new[inew];
608
            section = (MemoryRegionSection) {
609
                .address_space = as,
610
                .offset_within_address_space = int128_get64(fd->addr.start),
611
                .size = int128_get64(fd->addr.size),
612
            };
613
            MEMORY_LISTENER_CALL(eventfd_add, Reverse, &section,
614
                                 fd->match_data, fd->data, fd->e);
615
            ++inew;
616
        } else {
617
            ++iold;
618
            ++inew;
619
        }
620
    }
621
}
622

    
623
static void address_space_update_ioeventfds(AddressSpace *as)
624
{
625
    FlatRange *fr;
626
    unsigned ioeventfd_nb = 0;
627
    MemoryRegionIoeventfd *ioeventfds = NULL;
628
    AddrRange tmp;
629
    unsigned i;
630

    
631
    FOR_EACH_FLAT_RANGE(fr, as->current_map) {
632
        for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
633
            tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
634
                                  int128_sub(fr->addr.start,
635
                                             int128_make64(fr->offset_in_region)));
636
            if (addrrange_intersects(fr->addr, tmp)) {
637
                ++ioeventfd_nb;
638
                ioeventfds = g_realloc(ioeventfds,
639
                                          ioeventfd_nb * sizeof(*ioeventfds));
640
                ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
641
                ioeventfds[ioeventfd_nb-1].addr = tmp;
642
            }
643
        }
644
    }
645

    
646
    address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
647
                                     as->ioeventfds, as->ioeventfd_nb);
648

    
649
    g_free(as->ioeventfds);
650
    as->ioeventfds = ioeventfds;
651
    as->ioeventfd_nb = ioeventfd_nb;
652
}
653

    
654
static void address_space_update_topology_pass(AddressSpace *as,
655
                                               FlatView old_view,
656
                                               FlatView new_view,
657
                                               bool adding)
658
{
659
    unsigned iold, inew;
660
    FlatRange *frold, *frnew;
661

    
662
    /* Generate a symmetric difference of the old and new memory maps.
663
     * Kill ranges in the old map, and instantiate ranges in the new map.
664
     */
665
    iold = inew = 0;
666
    while (iold < old_view.nr || inew < new_view.nr) {
667
        if (iold < old_view.nr) {
668
            frold = &old_view.ranges[iold];
669
        } else {
670
            frold = NULL;
671
        }
672
        if (inew < new_view.nr) {
673
            frnew = &new_view.ranges[inew];
674
        } else {
675
            frnew = NULL;
676
        }
677

    
678
        if (frold
679
            && (!frnew
680
                || int128_lt(frold->addr.start, frnew->addr.start)
681
                || (int128_eq(frold->addr.start, frnew->addr.start)
682
                    && !flatrange_equal(frold, frnew)))) {
683
            /* In old, but (not in new, or in new but attributes changed). */
684

    
685
            if (!adding) {
686
                MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
687
            }
688

    
689
            ++iold;
690
        } else if (frold && frnew && flatrange_equal(frold, frnew)) {
691
            /* In both (logging may have changed) */
692

    
693
            if (adding) {
694
                MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
695
                if (frold->dirty_log_mask && !frnew->dirty_log_mask) {
696
                    MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop);
697
                } else if (frnew->dirty_log_mask && !frold->dirty_log_mask) {
698
                    MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start);
699
                }
700
            }
701

    
702
            ++iold;
703
            ++inew;
704
        } else {
705
            /* In new */
706

    
707
            if (adding) {
708
                MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
709
            }
710

    
711
            ++inew;
712
        }
713
    }
714
}
715

    
716

    
717
static void address_space_update_topology(AddressSpace *as)
718
{
719
    FlatView old_view = *as->current_map;
720
    FlatView new_view = generate_memory_topology(as->root);
721

    
722
    address_space_update_topology_pass(as, old_view, new_view, false);
723
    address_space_update_topology_pass(as, old_view, new_view, true);
724

    
725
    *as->current_map = new_view;
726
    flatview_destroy(&old_view);
727
    address_space_update_ioeventfds(as);
728
}
729

    
730
void memory_region_transaction_begin(void)
731
{
732
    qemu_flush_coalesced_mmio_buffer();
733
    ++memory_region_transaction_depth;
734
}
735

    
736
void memory_region_transaction_commit(void)
737
{
738
    AddressSpace *as;
739

    
740
    assert(memory_region_transaction_depth);
741
    --memory_region_transaction_depth;
742
    if (!memory_region_transaction_depth) {
743
        MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
744

    
745
        QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
746
            address_space_update_topology(as);
747
        }
748

    
749
        MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
750
    }
751
}
752

    
753
static void memory_region_destructor_none(MemoryRegion *mr)
754
{
755
}
756

    
757
static void memory_region_destructor_ram(MemoryRegion *mr)
758
{
759
    qemu_ram_free(mr->ram_addr);
760
}
761

    
762
static void memory_region_destructor_ram_from_ptr(MemoryRegion *mr)
763
{
764
    qemu_ram_free_from_ptr(mr->ram_addr);
765
}
766

    
767
static void memory_region_destructor_iomem(MemoryRegion *mr)
768
{
769
}
770

    
771
static void memory_region_destructor_rom_device(MemoryRegion *mr)
772
{
773
    qemu_ram_free(mr->ram_addr & TARGET_PAGE_MASK);
774
}
775

    
776
static bool memory_region_wrong_endianness(MemoryRegion *mr)
777
{
778
#ifdef TARGET_WORDS_BIGENDIAN
779
    return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
780
#else
781
    return mr->ops->endianness == DEVICE_BIG_ENDIAN;
782
#endif
783
}
784

    
785
void memory_region_init(MemoryRegion *mr,
786
                        const char *name,
787
                        uint64_t size)
788
{
789
    mr->ops = NULL;
790
    mr->parent = NULL;
791
    mr->size = int128_make64(size);
792
    if (size == UINT64_MAX) {
793
        mr->size = int128_2_64();
794
    }
795
    mr->addr = 0;
796
    mr->subpage = false;
797
    mr->enabled = true;
798
    mr->terminates = false;
799
    mr->ram = false;
800
    mr->readable = true;
801
    mr->readonly = false;
802
    mr->rom_device = false;
803
    mr->destructor = memory_region_destructor_none;
804
    mr->priority = 0;
805
    mr->may_overlap = false;
806
    mr->alias = NULL;
807
    QTAILQ_INIT(&mr->subregions);
808
    memset(&mr->subregions_link, 0, sizeof mr->subregions_link);
809
    QTAILQ_INIT(&mr->coalesced);
810
    mr->name = g_strdup(name);
811
    mr->dirty_log_mask = 0;
812
    mr->ioeventfd_nb = 0;
813
    mr->ioeventfds = NULL;
814
    mr->flush_coalesced_mmio = false;
815
}
816

    
817
static bool memory_region_access_valid(MemoryRegion *mr,
818
                                       target_phys_addr_t addr,
819
                                       unsigned size,
820
                                       bool is_write)
821
{
822
    if (mr->ops->valid.accepts
823
        && !mr->ops->valid.accepts(mr->opaque, addr, size, is_write)) {
824
        return false;
825
    }
826

    
827
    if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
828
        return false;
829
    }
830

    
831
    /* Treat zero as compatibility all valid */
832
    if (!mr->ops->valid.max_access_size) {
833
        return true;
834
    }
835

    
836
    if (size > mr->ops->valid.max_access_size
837
        || size < mr->ops->valid.min_access_size) {
838
        return false;
839
    }
840
    return true;
841
}
842

    
843
static uint64_t memory_region_dispatch_read1(MemoryRegion *mr,
844
                                             target_phys_addr_t addr,
845
                                             unsigned size)
846
{
847
    uint64_t data = 0;
848

    
849
    if (!memory_region_access_valid(mr, addr, size, false)) {
850
        return -1U; /* FIXME: better signalling */
851
    }
852

    
853
    if (!mr->ops->read) {
854
        return mr->ops->old_mmio.read[bitops_ffsl(size)](mr->opaque, addr);
855
    }
856

    
857
    /* FIXME: support unaligned access */
858
    access_with_adjusted_size(addr, &data, size,
859
                              mr->ops->impl.min_access_size,
860
                              mr->ops->impl.max_access_size,
861
                              memory_region_read_accessor, mr);
862

    
863
    return data;
864
}
865

    
866
static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
867
{
868
    if (memory_region_wrong_endianness(mr)) {
869
        switch (size) {
870
        case 1:
871
            break;
872
        case 2:
873
            *data = bswap16(*data);
874
            break;
875
        case 4:
876
            *data = bswap32(*data);
877
            break;
878
        default:
879
            abort();
880
        }
881
    }
882
}
883

    
884
static uint64_t memory_region_dispatch_read(MemoryRegion *mr,
885
                                            target_phys_addr_t addr,
886
                                            unsigned size)
887
{
888
    uint64_t ret;
889

    
890
    ret = memory_region_dispatch_read1(mr, addr, size);
891
    adjust_endianness(mr, &ret, size);
892
    return ret;
893
}
894

    
895
static void memory_region_dispatch_write(MemoryRegion *mr,
896
                                         target_phys_addr_t addr,
897
                                         uint64_t data,
898
                                         unsigned size)
899
{
900
    if (!memory_region_access_valid(mr, addr, size, true)) {
901
        return; /* FIXME: better signalling */
902
    }
903

    
904
    adjust_endianness(mr, &data, size);
905

    
906
    if (!mr->ops->write) {
907
        mr->ops->old_mmio.write[bitops_ffsl(size)](mr->opaque, addr, data);
908
        return;
909
    }
910

    
911
    /* FIXME: support unaligned access */
912
    access_with_adjusted_size(addr, &data, size,
913
                              mr->ops->impl.min_access_size,
914
                              mr->ops->impl.max_access_size,
915
                              memory_region_write_accessor, mr);
916
}
917

    
918
void memory_region_init_io(MemoryRegion *mr,
919
                           const MemoryRegionOps *ops,
920
                           void *opaque,
921
                           const char *name,
922
                           uint64_t size)
923
{
924
    memory_region_init(mr, name, size);
925
    mr->ops = ops;
926
    mr->opaque = opaque;
927
    mr->terminates = true;
928
    mr->destructor = memory_region_destructor_iomem;
929
    mr->ram_addr = ~(ram_addr_t)0;
930
}
931

    
932
void memory_region_init_ram(MemoryRegion *mr,
933
                            const char *name,
934
                            uint64_t size)
935
{
936
    memory_region_init(mr, name, size);
937
    mr->ram = true;
938
    mr->terminates = true;
939
    mr->destructor = memory_region_destructor_ram;
940
    mr->ram_addr = qemu_ram_alloc(size, mr);
941
}
942

    
943
void memory_region_init_ram_ptr(MemoryRegion *mr,
944
                                const char *name,
945
                                uint64_t size,
946
                                void *ptr)
947
{
948
    memory_region_init(mr, name, size);
949
    mr->ram = true;
950
    mr->terminates = true;
951
    mr->destructor = memory_region_destructor_ram_from_ptr;
952
    mr->ram_addr = qemu_ram_alloc_from_ptr(size, ptr, mr);
953
}
954

    
955
void memory_region_init_alias(MemoryRegion *mr,
956
                              const char *name,
957
                              MemoryRegion *orig,
958
                              target_phys_addr_t offset,
959
                              uint64_t size)
960
{
961
    memory_region_init(mr, name, size);
962
    mr->alias = orig;
963
    mr->alias_offset = offset;
964
}
965

    
966
void memory_region_init_rom_device(MemoryRegion *mr,
967
                                   const MemoryRegionOps *ops,
968
                                   void *opaque,
969
                                   const char *name,
970
                                   uint64_t size)
971
{
972
    memory_region_init(mr, name, size);
973
    mr->ops = ops;
974
    mr->opaque = opaque;
975
    mr->terminates = true;
976
    mr->rom_device = true;
977
    mr->destructor = memory_region_destructor_rom_device;
978
    mr->ram_addr = qemu_ram_alloc(size, mr);
979
}
980

    
981
static uint64_t invalid_read(void *opaque, target_phys_addr_t addr,
982
                             unsigned size)
983
{
984
    MemoryRegion *mr = opaque;
985

    
986
    if (!mr->warning_printed) {
987
        fprintf(stderr, "Invalid read from memory region %s\n", mr->name);
988
        mr->warning_printed = true;
989
    }
990
    return -1U;
991
}
992

    
993
static void invalid_write(void *opaque, target_phys_addr_t addr, uint64_t data,
994
                          unsigned size)
995
{
996
    MemoryRegion *mr = opaque;
997

    
998
    if (!mr->warning_printed) {
999
        fprintf(stderr, "Invalid write to memory region %s\n", mr->name);
1000
        mr->warning_printed = true;
1001
    }
1002
}
1003

    
1004
static const MemoryRegionOps reservation_ops = {
1005
    .read = invalid_read,
1006
    .write = invalid_write,
1007
    .endianness = DEVICE_NATIVE_ENDIAN,
1008
};
1009

    
1010
void memory_region_init_reservation(MemoryRegion *mr,
1011
                                    const char *name,
1012
                                    uint64_t size)
1013
{
1014
    memory_region_init_io(mr, &reservation_ops, mr, name, size);
1015
}
1016

    
1017
void memory_region_destroy(MemoryRegion *mr)
1018
{
1019
    assert(QTAILQ_EMPTY(&mr->subregions));
1020
    mr->destructor(mr);
1021
    memory_region_clear_coalescing(mr);
1022
    g_free((char *)mr->name);
1023
    g_free(mr->ioeventfds);
1024
}
1025

    
1026
uint64_t memory_region_size(MemoryRegion *mr)
1027
{
1028
    if (int128_eq(mr->size, int128_2_64())) {
1029
        return UINT64_MAX;
1030
    }
1031
    return int128_get64(mr->size);
1032
}
1033

    
1034
const char *memory_region_name(MemoryRegion *mr)
1035
{
1036
    return mr->name;
1037
}
1038

    
1039
bool memory_region_is_ram(MemoryRegion *mr)
1040
{
1041
    return mr->ram;
1042
}
1043

    
1044
bool memory_region_is_logging(MemoryRegion *mr)
1045
{
1046
    return mr->dirty_log_mask;
1047
}
1048

    
1049
bool memory_region_is_rom(MemoryRegion *mr)
1050
{
1051
    return mr->ram && mr->readonly;
1052
}
1053

    
1054
void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1055
{
1056
    uint8_t mask = 1 << client;
1057

    
1058
    memory_region_transaction_begin();
1059
    mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
1060
    memory_region_transaction_commit();
1061
}
1062

    
1063
bool memory_region_get_dirty(MemoryRegion *mr, target_phys_addr_t addr,
1064
                             target_phys_addr_t size, unsigned client)
1065
{
1066
    assert(mr->terminates);
1067
    return cpu_physical_memory_get_dirty(mr->ram_addr + addr, size,
1068
                                         1 << client);
1069
}
1070

    
1071
void memory_region_set_dirty(MemoryRegion *mr, target_phys_addr_t addr,
1072
                             target_phys_addr_t size)
1073
{
1074
    assert(mr->terminates);
1075
    return cpu_physical_memory_set_dirty_range(mr->ram_addr + addr, size, -1);
1076
}
1077

    
1078
void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
1079
{
1080
    AddressSpace *as;
1081
    FlatRange *fr;
1082

    
1083
    QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1084
        FOR_EACH_FLAT_RANGE(fr, as->current_map) {
1085
            if (fr->mr == mr) {
1086
                MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1087
            }
1088
        }
1089
    }
1090
}
1091

    
1092
void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
1093
{
1094
    if (mr->readonly != readonly) {
1095
        memory_region_transaction_begin();
1096
        mr->readonly = readonly;
1097
        memory_region_transaction_commit();
1098
    }
1099
}
1100

    
1101
void memory_region_rom_device_set_readable(MemoryRegion *mr, bool readable)
1102
{
1103
    if (mr->readable != readable) {
1104
        memory_region_transaction_begin();
1105
        mr->readable = readable;
1106
        memory_region_transaction_commit();
1107
    }
1108
}
1109

    
1110
void memory_region_reset_dirty(MemoryRegion *mr, target_phys_addr_t addr,
1111
                               target_phys_addr_t size, unsigned client)
1112
{
1113
    assert(mr->terminates);
1114
    cpu_physical_memory_reset_dirty(mr->ram_addr + addr,
1115
                                    mr->ram_addr + addr + size,
1116
                                    1 << client);
1117
}
1118

    
1119
void *memory_region_get_ram_ptr(MemoryRegion *mr)
1120
{
1121
    if (mr->alias) {
1122
        return memory_region_get_ram_ptr(mr->alias) + mr->alias_offset;
1123
    }
1124

    
1125
    assert(mr->terminates);
1126

    
1127
    return qemu_get_ram_ptr(mr->ram_addr & TARGET_PAGE_MASK);
1128
}
1129

    
1130
static void memory_region_update_coalesced_range_as(MemoryRegion *mr, AddressSpace *as)
1131
{
1132
    FlatRange *fr;
1133
    CoalescedMemoryRange *cmr;
1134
    AddrRange tmp;
1135
    MemoryRegionSection section;
1136

    
1137
    FOR_EACH_FLAT_RANGE(fr, as->current_map) {
1138
        if (fr->mr == mr) {
1139
            section = (MemoryRegionSection) {
1140
                .address_space = as,
1141
                .offset_within_address_space = int128_get64(fr->addr.start),
1142
                .size = int128_get64(fr->addr.size),
1143
            };
1144

    
1145
            MEMORY_LISTENER_CALL(coalesced_mmio_del, Reverse, &section,
1146
                                 int128_get64(fr->addr.start),
1147
                                 int128_get64(fr->addr.size));
1148
            QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
1149
                tmp = addrrange_shift(cmr->addr,
1150
                                      int128_sub(fr->addr.start,
1151
                                                 int128_make64(fr->offset_in_region)));
1152
                if (!addrrange_intersects(tmp, fr->addr)) {
1153
                    continue;
1154
                }
1155
                tmp = addrrange_intersection(tmp, fr->addr);
1156
                MEMORY_LISTENER_CALL(coalesced_mmio_add, Forward, &section,
1157
                                     int128_get64(tmp.start),
1158
                                     int128_get64(tmp.size));
1159
            }
1160
        }
1161
    }
1162
}
1163

    
1164
static void memory_region_update_coalesced_range(MemoryRegion *mr)
1165
{
1166
    AddressSpace *as;
1167

    
1168
    QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1169
        memory_region_update_coalesced_range_as(mr, as);
1170
    }
1171
}
1172

    
1173
void memory_region_set_coalescing(MemoryRegion *mr)
1174
{
1175
    memory_region_clear_coalescing(mr);
1176
    memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
1177
}
1178

    
1179
void memory_region_add_coalescing(MemoryRegion *mr,
1180
                                  target_phys_addr_t offset,
1181
                                  uint64_t size)
1182
{
1183
    CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
1184

    
1185
    cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
1186
    QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
1187
    memory_region_update_coalesced_range(mr);
1188
    memory_region_set_flush_coalesced(mr);
1189
}
1190

    
1191
void memory_region_clear_coalescing(MemoryRegion *mr)
1192
{
1193
    CoalescedMemoryRange *cmr;
1194

    
1195
    qemu_flush_coalesced_mmio_buffer();
1196
    mr->flush_coalesced_mmio = false;
1197

    
1198
    while (!QTAILQ_EMPTY(&mr->coalesced)) {
1199
        cmr = QTAILQ_FIRST(&mr->coalesced);
1200
        QTAILQ_REMOVE(&mr->coalesced, cmr, link);
1201
        g_free(cmr);
1202
    }
1203
    memory_region_update_coalesced_range(mr);
1204
}
1205

    
1206
void memory_region_set_flush_coalesced(MemoryRegion *mr)
1207
{
1208
    mr->flush_coalesced_mmio = true;
1209
}
1210

    
1211
void memory_region_clear_flush_coalesced(MemoryRegion *mr)
1212
{
1213
    qemu_flush_coalesced_mmio_buffer();
1214
    if (QTAILQ_EMPTY(&mr->coalesced)) {
1215
        mr->flush_coalesced_mmio = false;
1216
    }
1217
}
1218

    
1219
void memory_region_add_eventfd(MemoryRegion *mr,
1220
                               target_phys_addr_t addr,
1221
                               unsigned size,
1222
                               bool match_data,
1223
                               uint64_t data,
1224
                               EventNotifier *e)
1225
{
1226
    MemoryRegionIoeventfd mrfd = {
1227
        .addr.start = int128_make64(addr),
1228
        .addr.size = int128_make64(size),
1229
        .match_data = match_data,
1230
        .data = data,
1231
        .e = e,
1232
    };
1233
    unsigned i;
1234

    
1235
    memory_region_transaction_begin();
1236
    for (i = 0; i < mr->ioeventfd_nb; ++i) {
1237
        if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
1238
            break;
1239
        }
1240
    }
1241
    ++mr->ioeventfd_nb;
1242
    mr->ioeventfds = g_realloc(mr->ioeventfds,
1243
                                  sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
1244
    memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
1245
            sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
1246
    mr->ioeventfds[i] = mrfd;
1247
    memory_region_transaction_commit();
1248
}
1249

    
1250
void memory_region_del_eventfd(MemoryRegion *mr,
1251
                               target_phys_addr_t addr,
1252
                               unsigned size,
1253
                               bool match_data,
1254
                               uint64_t data,
1255
                               EventNotifier *e)
1256
{
1257
    MemoryRegionIoeventfd mrfd = {
1258
        .addr.start = int128_make64(addr),
1259
        .addr.size = int128_make64(size),
1260
        .match_data = match_data,
1261
        .data = data,
1262
        .e = e,
1263
    };
1264
    unsigned i;
1265

    
1266
    memory_region_transaction_begin();
1267
    for (i = 0; i < mr->ioeventfd_nb; ++i) {
1268
        if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
1269
            break;
1270
        }
1271
    }
1272
    assert(i != mr->ioeventfd_nb);
1273
    memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
1274
            sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
1275
    --mr->ioeventfd_nb;
1276
    mr->ioeventfds = g_realloc(mr->ioeventfds,
1277
                                  sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
1278
    memory_region_transaction_commit();
1279
}
1280

    
1281
static void memory_region_add_subregion_common(MemoryRegion *mr,
1282
                                               target_phys_addr_t offset,
1283
                                               MemoryRegion *subregion)
1284
{
1285
    MemoryRegion *other;
1286

    
1287
    memory_region_transaction_begin();
1288

    
1289
    assert(!subregion->parent);
1290
    subregion->parent = mr;
1291
    subregion->addr = offset;
1292
    QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1293
        if (subregion->may_overlap || other->may_overlap) {
1294
            continue;
1295
        }
1296
        if (int128_gt(int128_make64(offset),
1297
                      int128_add(int128_make64(other->addr), other->size))
1298
            || int128_le(int128_add(int128_make64(offset), subregion->size),
1299
                         int128_make64(other->addr))) {
1300
            continue;
1301
        }
1302
#if 0
1303
        printf("warning: subregion collision %llx/%llx (%s) "
1304
               "vs %llx/%llx (%s)\n",
1305
               (unsigned long long)offset,
1306
               (unsigned long long)int128_get64(subregion->size),
1307
               subregion->name,
1308
               (unsigned long long)other->addr,
1309
               (unsigned long long)int128_get64(other->size),
1310
               other->name);
1311
#endif
1312
    }
1313
    QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1314
        if (subregion->priority >= other->priority) {
1315
            QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
1316
            goto done;
1317
        }
1318
    }
1319
    QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
1320
done:
1321
    memory_region_transaction_commit();
1322
}
1323

    
1324

    
1325
void memory_region_add_subregion(MemoryRegion *mr,
1326
                                 target_phys_addr_t offset,
1327
                                 MemoryRegion *subregion)
1328
{
1329
    subregion->may_overlap = false;
1330
    subregion->priority = 0;
1331
    memory_region_add_subregion_common(mr, offset, subregion);
1332
}
1333

    
1334
void memory_region_add_subregion_overlap(MemoryRegion *mr,
1335
                                         target_phys_addr_t offset,
1336
                                         MemoryRegion *subregion,
1337
                                         unsigned priority)
1338
{
1339
    subregion->may_overlap = true;
1340
    subregion->priority = priority;
1341
    memory_region_add_subregion_common(mr, offset, subregion);
1342
}
1343

    
1344
void memory_region_del_subregion(MemoryRegion *mr,
1345
                                 MemoryRegion *subregion)
1346
{
1347
    memory_region_transaction_begin();
1348
    assert(subregion->parent == mr);
1349
    subregion->parent = NULL;
1350
    QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
1351
    memory_region_transaction_commit();
1352
}
1353

    
1354
void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
1355
{
1356
    if (enabled == mr->enabled) {
1357
        return;
1358
    }
1359
    memory_region_transaction_begin();
1360
    mr->enabled = enabled;
1361
    memory_region_transaction_commit();
1362
}
1363

    
1364
void memory_region_set_address(MemoryRegion *mr, target_phys_addr_t addr)
1365
{
1366
    MemoryRegion *parent = mr->parent;
1367
    unsigned priority = mr->priority;
1368
    bool may_overlap = mr->may_overlap;
1369

    
1370
    if (addr == mr->addr || !parent) {
1371
        mr->addr = addr;
1372
        return;
1373
    }
1374

    
1375
    memory_region_transaction_begin();
1376
    memory_region_del_subregion(parent, mr);
1377
    if (may_overlap) {
1378
        memory_region_add_subregion_overlap(parent, addr, mr, priority);
1379
    } else {
1380
        memory_region_add_subregion(parent, addr, mr);
1381
    }
1382
    memory_region_transaction_commit();
1383
}
1384

    
1385
void memory_region_set_alias_offset(MemoryRegion *mr, target_phys_addr_t offset)
1386
{
1387
    assert(mr->alias);
1388

    
1389
    if (offset == mr->alias_offset) {
1390
        return;
1391
    }
1392

    
1393
    memory_region_transaction_begin();
1394
    mr->alias_offset = offset;
1395
    memory_region_transaction_commit();
1396
}
1397

    
1398
ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
1399
{
1400
    return mr->ram_addr;
1401
}
1402

    
1403
static int cmp_flatrange_addr(const void *addr_, const void *fr_)
1404
{
1405
    const AddrRange *addr = addr_;
1406
    const FlatRange *fr = fr_;
1407

    
1408
    if (int128_le(addrrange_end(*addr), fr->addr.start)) {
1409
        return -1;
1410
    } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
1411
        return 1;
1412
    }
1413
    return 0;
1414
}
1415

    
1416
static FlatRange *address_space_lookup(AddressSpace *as, AddrRange addr)
1417
{
1418
    return bsearch(&addr, as->current_map->ranges, as->current_map->nr,
1419
                   sizeof(FlatRange), cmp_flatrange_addr);
1420
}
1421

    
1422
MemoryRegionSection memory_region_find(MemoryRegion *address_space,
1423
                                       target_phys_addr_t addr, uint64_t size)
1424
{
1425
    AddressSpace *as = memory_region_to_address_space(address_space);
1426
    AddrRange range = addrrange_make(int128_make64(addr),
1427
                                     int128_make64(size));
1428
    FlatRange *fr = address_space_lookup(as, range);
1429
    MemoryRegionSection ret = { .mr = NULL, .size = 0 };
1430

    
1431
    if (!fr) {
1432
        return ret;
1433
    }
1434

    
1435
    while (fr > as->current_map->ranges
1436
           && addrrange_intersects(fr[-1].addr, range)) {
1437
        --fr;
1438
    }
1439

    
1440
    ret.mr = fr->mr;
1441
    range = addrrange_intersection(range, fr->addr);
1442
    ret.offset_within_region = fr->offset_in_region;
1443
    ret.offset_within_region += int128_get64(int128_sub(range.start,
1444
                                                        fr->addr.start));
1445
    ret.size = int128_get64(range.size);
1446
    ret.offset_within_address_space = int128_get64(range.start);
1447
    ret.readonly = fr->readonly;
1448
    return ret;
1449
}
1450

    
1451
void memory_global_sync_dirty_bitmap(MemoryRegion *address_space)
1452
{
1453
    AddressSpace *as = memory_region_to_address_space(address_space);
1454
    FlatRange *fr;
1455

    
1456
    FOR_EACH_FLAT_RANGE(fr, as->current_map) {
1457
        MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1458
    }
1459
}
1460

    
1461
void memory_global_dirty_log_start(void)
1462
{
1463
    global_dirty_log = true;
1464
    MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
1465
}
1466

    
1467
void memory_global_dirty_log_stop(void)
1468
{
1469
    global_dirty_log = false;
1470
    MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
1471
}
1472

    
1473
static void listener_add_address_space(MemoryListener *listener,
1474
                                       AddressSpace *as)
1475
{
1476
    FlatRange *fr;
1477

    
1478
    if (listener->address_space_filter
1479
        && listener->address_space_filter != as) {
1480
        return;
1481
    }
1482

    
1483
    if (global_dirty_log) {
1484
        if (listener->log_global_start) {
1485
            listener->log_global_start(listener);
1486
        }
1487
    }
1488

    
1489
    FOR_EACH_FLAT_RANGE(fr, as->current_map) {
1490
        MemoryRegionSection section = {
1491
            .mr = fr->mr,
1492
            .address_space = as,
1493
            .offset_within_region = fr->offset_in_region,
1494
            .size = int128_get64(fr->addr.size),
1495
            .offset_within_address_space = int128_get64(fr->addr.start),
1496
            .readonly = fr->readonly,
1497
        };
1498
        if (listener->region_add) {
1499
            listener->region_add(listener, &section);
1500
        }
1501
    }
1502
}
1503

    
1504
void memory_listener_register(MemoryListener *listener, AddressSpace *filter)
1505
{
1506
    MemoryListener *other = NULL;
1507
    AddressSpace *as;
1508

    
1509
    listener->address_space_filter = filter;
1510
    if (QTAILQ_EMPTY(&memory_listeners)
1511
        || listener->priority >= QTAILQ_LAST(&memory_listeners,
1512
                                             memory_listeners)->priority) {
1513
        QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
1514
    } else {
1515
        QTAILQ_FOREACH(other, &memory_listeners, link) {
1516
            if (listener->priority < other->priority) {
1517
                break;
1518
            }
1519
        }
1520
        QTAILQ_INSERT_BEFORE(other, listener, link);
1521
    }
1522

    
1523
    QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1524
        listener_add_address_space(listener, as);
1525
    }
1526
}
1527

    
1528
void memory_listener_unregister(MemoryListener *listener)
1529
{
1530
    QTAILQ_REMOVE(&memory_listeners, listener, link);
1531
}
1532

    
1533
void address_space_init(AddressSpace *as, MemoryRegion *root)
1534
{
1535
    memory_region_transaction_begin();
1536
    as->root = root;
1537
    as->current_map = g_new(FlatView, 1);
1538
    flatview_init(as->current_map);
1539
    QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
1540
    as->name = NULL;
1541
    memory_region_transaction_commit();
1542
    address_space_init_dispatch(as);
1543
}
1544

    
1545
uint64_t io_mem_read(MemoryRegion *mr, target_phys_addr_t addr, unsigned size)
1546
{
1547
    return memory_region_dispatch_read(mr, addr, size);
1548
}
1549

    
1550
void io_mem_write(MemoryRegion *mr, target_phys_addr_t addr,
1551
                  uint64_t val, unsigned size)
1552
{
1553
    memory_region_dispatch_write(mr, addr, val, size);
1554
}
1555

    
1556
typedef struct MemoryRegionList MemoryRegionList;
1557

    
1558
struct MemoryRegionList {
1559
    const MemoryRegion *mr;
1560
    bool printed;
1561
    QTAILQ_ENTRY(MemoryRegionList) queue;
1562
};
1563

    
1564
typedef QTAILQ_HEAD(queue, MemoryRegionList) MemoryRegionListHead;
1565

    
1566
static void mtree_print_mr(fprintf_function mon_printf, void *f,
1567
                           const MemoryRegion *mr, unsigned int level,
1568
                           target_phys_addr_t base,
1569
                           MemoryRegionListHead *alias_print_queue)
1570
{
1571
    MemoryRegionList *new_ml, *ml, *next_ml;
1572
    MemoryRegionListHead submr_print_queue;
1573
    const MemoryRegion *submr;
1574
    unsigned int i;
1575

    
1576
    if (!mr) {
1577
        return;
1578
    }
1579

    
1580
    for (i = 0; i < level; i++) {
1581
        mon_printf(f, "  ");
1582
    }
1583

    
1584
    if (mr->alias) {
1585
        MemoryRegionList *ml;
1586
        bool found = false;
1587

    
1588
        /* check if the alias is already in the queue */
1589
        QTAILQ_FOREACH(ml, alias_print_queue, queue) {
1590
            if (ml->mr == mr->alias && !ml->printed) {
1591
                found = true;
1592
            }
1593
        }
1594

    
1595
        if (!found) {
1596
            ml = g_new(MemoryRegionList, 1);
1597
            ml->mr = mr->alias;
1598
            ml->printed = false;
1599
            QTAILQ_INSERT_TAIL(alias_print_queue, ml, queue);
1600
        }
1601
        mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx
1602
                   " (prio %d, %c%c): alias %s @%s " TARGET_FMT_plx
1603
                   "-" TARGET_FMT_plx "\n",
1604
                   base + mr->addr,
1605
                   base + mr->addr
1606
                   + (target_phys_addr_t)int128_get64(mr->size) - 1,
1607
                   mr->priority,
1608
                   mr->readable ? 'R' : '-',
1609
                   !mr->readonly && !(mr->rom_device && mr->readable) ? 'W'
1610
                                                                      : '-',
1611
                   mr->name,
1612
                   mr->alias->name,
1613
                   mr->alias_offset,
1614
                   mr->alias_offset
1615
                   + (target_phys_addr_t)int128_get64(mr->size) - 1);
1616
    } else {
1617
        mon_printf(f,
1618
                   TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %c%c): %s\n",
1619
                   base + mr->addr,
1620
                   base + mr->addr
1621
                   + (target_phys_addr_t)int128_get64(mr->size) - 1,
1622
                   mr->priority,
1623
                   mr->readable ? 'R' : '-',
1624
                   !mr->readonly && !(mr->rom_device && mr->readable) ? 'W'
1625
                                                                      : '-',
1626
                   mr->name);
1627
    }
1628

    
1629
    QTAILQ_INIT(&submr_print_queue);
1630

    
1631
    QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
1632
        new_ml = g_new(MemoryRegionList, 1);
1633
        new_ml->mr = submr;
1634
        QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
1635
            if (new_ml->mr->addr < ml->mr->addr ||
1636
                (new_ml->mr->addr == ml->mr->addr &&
1637
                 new_ml->mr->priority > ml->mr->priority)) {
1638
                QTAILQ_INSERT_BEFORE(ml, new_ml, queue);
1639
                new_ml = NULL;
1640
                break;
1641
            }
1642
        }
1643
        if (new_ml) {
1644
            QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, queue);
1645
        }
1646
    }
1647

    
1648
    QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
1649
        mtree_print_mr(mon_printf, f, ml->mr, level + 1, base + mr->addr,
1650
                       alias_print_queue);
1651
    }
1652

    
1653
    QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, queue, next_ml) {
1654
        g_free(ml);
1655
    }
1656
}
1657

    
1658
void mtree_info(fprintf_function mon_printf, void *f)
1659
{
1660
    MemoryRegionListHead ml_head;
1661
    MemoryRegionList *ml, *ml2;
1662
    AddressSpace *as;
1663

    
1664
    QTAILQ_INIT(&ml_head);
1665

    
1666
    QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1667
        if (!as->name) {
1668
            continue;
1669
        }
1670
        mon_printf(f, "%s\n", as->name);
1671
        mtree_print_mr(mon_printf, f, as->root, 0, 0, &ml_head);
1672
    }
1673

    
1674
    mon_printf(f, "aliases\n");
1675
    /* print aliased regions */
1676
    QTAILQ_FOREACH(ml, &ml_head, queue) {
1677
        if (!ml->printed) {
1678
            mon_printf(f, "%s\n", ml->mr->name);
1679
            mtree_print_mr(mon_printf, f, ml->mr, 0, 0, &ml_head);
1680
        }
1681
    }
1682

    
1683
    QTAILQ_FOREACH_SAFE(ml, &ml_head, queue, ml2) {
1684
        g_free(ml);
1685
    }
1686
}