Statistics
| Branch: | Revision:

root / hw / spapr_pci.c @ ae710b99

History | View | Annotate | Download (15.5 kB)

1
/*
2
 * QEMU sPAPR PCI host originated from Uninorth PCI host
3
 *
4
 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
5
 * Copyright (C) 2011 David Gibson, IBM Corporation.
6
 *
7
 * Permission is hereby granted, free of charge, to any person obtaining a copy
8
 * of this software and associated documentation files (the "Software"), to deal
9
 * in the Software without restriction, including without limitation the rights
10
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11
 * copies of the Software, and to permit persons to whom the Software is
12
 * furnished to do so, subject to the following conditions:
13
 *
14
 * The above copyright notice and this permission notice shall be included in
15
 * all copies or substantial portions of the Software.
16
 *
17
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23
 * THE SOFTWARE.
24
 */
25
#include "hw.h"
26
#include "pci.h"
27
#include "pci_host.h"
28
#include "hw/spapr.h"
29
#include "hw/spapr_pci.h"
30
#include "exec-memory.h"
31
#include <libfdt.h>
32

    
33
#include "hw/pci_internals.h"
34

    
35
static PCIDevice *find_dev(sPAPREnvironment *spapr,
36
                           uint64_t buid, uint32_t config_addr)
37
{
38
    DeviceState *qdev;
39
    int devfn = (config_addr >> 8) & 0xFF;
40
    sPAPRPHBState *phb;
41

    
42
    QLIST_FOREACH(phb, &spapr->phbs, list) {
43
        if (phb->buid != buid) {
44
            continue;
45
        }
46

    
47
        QTAILQ_FOREACH(qdev, &phb->host_state.bus->qbus.children, sibling) {
48
            PCIDevice *dev = (PCIDevice *)qdev;
49
            if (dev->devfn == devfn) {
50
                return dev;
51
            }
52
        }
53
    }
54

    
55
    return NULL;
56
}
57

    
58
static uint32_t rtas_pci_cfgaddr(uint32_t arg)
59
{
60
    /* This handles the encoding of extended config space addresses */
61
    return ((arg >> 20) & 0xf00) | (arg & 0xff);
62
}
63

    
64
static void finish_read_pci_config(sPAPREnvironment *spapr, uint64_t buid,
65
                                   uint32_t addr, uint32_t size,
66
                                   target_ulong rets)
67
{
68
    PCIDevice *pci_dev;
69
    uint32_t val;
70

    
71
    if ((size != 1) && (size != 2) && (size != 4)) {
72
        /* access must be 1, 2 or 4 bytes */
73
        rtas_st(rets, 0, -1);
74
        return;
75
    }
76

    
77
    pci_dev = find_dev(spapr, buid, addr);
78
    addr = rtas_pci_cfgaddr(addr);
79

    
80
    if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
81
        /* Access must be to a valid device, within bounds and
82
         * naturally aligned */
83
        rtas_st(rets, 0, -1);
84
        return;
85
    }
86

    
87
    val = pci_host_config_read_common(pci_dev, addr,
88
                                      pci_config_size(pci_dev), size);
89

    
90
    rtas_st(rets, 0, 0);
91
    rtas_st(rets, 1, val);
92
}
93

    
94
static void rtas_ibm_read_pci_config(sPAPREnvironment *spapr,
95
                                     uint32_t token, uint32_t nargs,
96
                                     target_ulong args,
97
                                     uint32_t nret, target_ulong rets)
98
{
99
    uint64_t buid;
100
    uint32_t size, addr;
101

    
102
    if ((nargs != 4) || (nret != 2)) {
103
        rtas_st(rets, 0, -1);
104
        return;
105
    }
106

    
107
    buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
108
    size = rtas_ld(args, 3);
109
    addr = rtas_ld(args, 0);
110

    
111
    finish_read_pci_config(spapr, buid, addr, size, rets);
112
}
113

    
114
static void rtas_read_pci_config(sPAPREnvironment *spapr,
115
                                 uint32_t token, uint32_t nargs,
116
                                 target_ulong args,
117
                                 uint32_t nret, target_ulong rets)
118
{
119
    uint32_t size, addr;
120

    
121
    if ((nargs != 2) || (nret != 2)) {
122
        rtas_st(rets, 0, -1);
123
        return;
124
    }
125

    
126
    size = rtas_ld(args, 1);
127
    addr = rtas_ld(args, 0);
128

    
129
    finish_read_pci_config(spapr, 0, addr, size, rets);
130
}
131

    
132
static void finish_write_pci_config(sPAPREnvironment *spapr, uint64_t buid,
133
                                    uint32_t addr, uint32_t size,
134
                                    uint32_t val, target_ulong rets)
135
{
136
    PCIDevice *pci_dev;
137

    
138
    if ((size != 1) && (size != 2) && (size != 4)) {
139
        /* access must be 1, 2 or 4 bytes */
140
        rtas_st(rets, 0, -1);
141
        return;
142
    }
143

    
144
    pci_dev = find_dev(spapr, buid, addr);
145
    addr = rtas_pci_cfgaddr(addr);
146

    
147
    if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
148
        /* Access must be to a valid device, within bounds and
149
         * naturally aligned */
150
        rtas_st(rets, 0, -1);
151
        return;
152
    }
153

    
154
    pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev),
155
                                 val, size);
156

    
157
    rtas_st(rets, 0, 0);
158
}
159

    
160
static void rtas_ibm_write_pci_config(sPAPREnvironment *spapr,
161
                                      uint32_t token, uint32_t nargs,
162
                                      target_ulong args,
163
                                      uint32_t nret, target_ulong rets)
164
{
165
    uint64_t buid;
166
    uint32_t val, size, addr;
167

    
168
    if ((nargs != 5) || (nret != 1)) {
169
        rtas_st(rets, 0, -1);
170
        return;
171
    }
172

    
173
    buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
174
    val = rtas_ld(args, 4);
175
    size = rtas_ld(args, 3);
176
    addr = rtas_ld(args, 0);
177

    
178
    finish_write_pci_config(spapr, buid, addr, size, val, rets);
179
}
180

    
181
static void rtas_write_pci_config(sPAPREnvironment *spapr,
182
                                  uint32_t token, uint32_t nargs,
183
                                  target_ulong args,
184
                                  uint32_t nret, target_ulong rets)
185
{
186
    uint32_t val, size, addr;
187

    
188
    if ((nargs != 3) || (nret != 1)) {
189
        rtas_st(rets, 0, -1);
190
        return;
191
    }
192

    
193

    
194
    val = rtas_ld(args, 2);
195
    size = rtas_ld(args, 1);
196
    addr = rtas_ld(args, 0);
197

    
198
    finish_write_pci_config(spapr, 0, addr, size, val, rets);
199
}
200

    
201
static int pci_spapr_swizzle(int slot, int pin)
202
{
203
    return (slot + pin) % PCI_NUM_PINS;
204
}
205

    
206
static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num)
207
{
208
    /*
209
     * Here we need to convert pci_dev + irq_num to some unique value
210
     * which is less than number of IRQs on the specific bus (4).  We
211
     * use standard PCI swizzling, that is (slot number + pin number)
212
     * % 4.
213
     */
214
    return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num);
215
}
216

    
217
static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
218
{
219
    /*
220
     * Here we use the number returned by pci_spapr_map_irq to find a
221
     * corresponding qemu_irq.
222
     */
223
    sPAPRPHBState *phb = opaque;
224

    
225
    qemu_set_irq(phb->lsi_table[irq_num].qirq, level);
226
}
227

    
228
static uint64_t spapr_io_read(void *opaque, target_phys_addr_t addr,
229
                              unsigned size)
230
{
231
    switch (size) {
232
    case 1:
233
        return cpu_inb(addr);
234
    case 2:
235
        return cpu_inw(addr);
236
    case 4:
237
        return cpu_inl(addr);
238
    }
239
    assert(0);
240
}
241

    
242
static void spapr_io_write(void *opaque, target_phys_addr_t addr,
243
                           uint64_t data, unsigned size)
244
{
245
    switch (size) {
246
    case 1:
247
        cpu_outb(addr, data);
248
        return;
249
    case 2:
250
        cpu_outw(addr, data);
251
        return;
252
    case 4:
253
        cpu_outl(addr, data);
254
        return;
255
    }
256
    assert(0);
257
}
258

    
259
static const MemoryRegionOps spapr_io_ops = {
260
    .endianness = DEVICE_LITTLE_ENDIAN,
261
    .read = spapr_io_read,
262
    .write = spapr_io_write
263
};
264

    
265
/*
266
 * PHB PCI device
267
 */
268
static int spapr_phb_init(SysBusDevice *s)
269
{
270
    sPAPRPHBState *phb = FROM_SYSBUS(sPAPRPHBState, s);
271
    char *namebuf;
272
    int i;
273
    PCIBus *bus;
274

    
275
    phb->dtbusname = g_strdup_printf("pci@%" PRIx64, phb->buid);
276
    namebuf = alloca(strlen(phb->dtbusname) + 32);
277

    
278
    /* Initialize memory regions */
279
    sprintf(namebuf, "%s.mmio", phb->dtbusname);
280
    memory_region_init(&phb->memspace, namebuf, INT64_MAX);
281

    
282
    sprintf(namebuf, "%s.mmio-alias", phb->dtbusname);
283
    memory_region_init_alias(&phb->memwindow, namebuf, &phb->memspace,
284
                             SPAPR_PCI_MEM_WIN_BUS_OFFSET, phb->mem_win_size);
285
    memory_region_add_subregion(get_system_memory(), phb->mem_win_addr,
286
                                &phb->memwindow);
287

    
288
    /* On ppc, we only have MMIO no specific IO space from the CPU
289
     * perspective.  In theory we ought to be able to embed the PCI IO
290
     * memory region direction in the system memory space.  However,
291
     * if any of the IO BAR subregions use the old_portio mechanism,
292
     * that won't be processed properly unless accessed from the
293
     * system io address space.  This hack to bounce things via
294
     * system_io works around the problem until all the users of
295
     * old_portion are updated */
296
    sprintf(namebuf, "%s.io", phb->dtbusname);
297
    memory_region_init(&phb->iospace, namebuf, SPAPR_PCI_IO_WIN_SIZE);
298
    /* FIXME: fix to support multiple PHBs */
299
    memory_region_add_subregion(get_system_io(), 0, &phb->iospace);
300

    
301
    sprintf(namebuf, "%s.io-alias", phb->dtbusname);
302
    memory_region_init_io(&phb->iowindow, &spapr_io_ops, phb,
303
                          namebuf, SPAPR_PCI_IO_WIN_SIZE);
304
    memory_region_add_subregion(get_system_memory(), phb->io_win_addr,
305
                                &phb->iowindow);
306

    
307
    bus = pci_register_bus(&phb->busdev.qdev,
308
                           phb->busname ? phb->busname : phb->dtbusname,
309
                           pci_spapr_set_irq, pci_spapr_map_irq, phb,
310
                           &phb->memspace, &phb->iospace,
311
                           PCI_DEVFN(0, 0), PCI_NUM_PINS);
312
    phb->host_state.bus = bus;
313

    
314
    QLIST_INSERT_HEAD(&spapr->phbs, phb, list);
315

    
316
    /* Initialize the LSI table */
317
    for (i = 0; i < PCI_NUM_PINS; i++) {
318
        qemu_irq qirq;
319
        uint32_t num;
320

    
321
        qirq = spapr_allocate_lsi(0, &num);
322
        if (!qirq) {
323
            return -1;
324
        }
325

    
326
        phb->lsi_table[i].dt_irq = num;
327
        phb->lsi_table[i].qirq = qirq;
328
    }
329

    
330
    return 0;
331
}
332

    
333
static Property spapr_phb_properties[] = {
334
    DEFINE_PROP_HEX64("buid", sPAPRPHBState, buid, 0),
335
    DEFINE_PROP_STRING("busname", sPAPRPHBState, busname),
336
    DEFINE_PROP_HEX64("mem_win_addr", sPAPRPHBState, mem_win_addr, 0),
337
    DEFINE_PROP_HEX64("mem_win_size", sPAPRPHBState, mem_win_size, 0x20000000),
338
    DEFINE_PROP_HEX64("io_win_addr", sPAPRPHBState, io_win_addr, 0),
339
    DEFINE_PROP_HEX64("io_win_size", sPAPRPHBState, io_win_size, 0x10000),
340
    DEFINE_PROP_END_OF_LIST(),
341
};
342

    
343
static void spapr_phb_class_init(ObjectClass *klass, void *data)
344
{
345
    SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
346
    DeviceClass *dc = DEVICE_CLASS(klass);
347

    
348
    sdc->init = spapr_phb_init;
349
    dc->props = spapr_phb_properties;
350

    
351
    spapr_rtas_register("read-pci-config", rtas_read_pci_config);
352
    spapr_rtas_register("write-pci-config", rtas_write_pci_config);
353
    spapr_rtas_register("ibm,read-pci-config", rtas_ibm_read_pci_config);
354
    spapr_rtas_register("ibm,write-pci-config", rtas_ibm_write_pci_config);
355
}
356

    
357
static TypeInfo spapr_phb_info = {
358
    .name          = "spapr-pci-host-bridge",
359
    .parent        = TYPE_SYS_BUS_DEVICE,
360
    .instance_size = sizeof(sPAPRPHBState),
361
    .class_init    = spapr_phb_class_init,
362
};
363

    
364
void spapr_create_phb(sPAPREnvironment *spapr,
365
                      const char *busname, uint64_t buid,
366
                      uint64_t mem_win_addr, uint64_t mem_win_size,
367
                      uint64_t io_win_addr)
368
{
369
    DeviceState *dev;
370

    
371
    dev = qdev_create(NULL, spapr_phb_info.name);
372

    
373
    if (busname) {
374
        qdev_prop_set_string(dev, "busname", g_strdup(busname));
375
    }
376
    qdev_prop_set_uint64(dev, "buid", buid);
377
    qdev_prop_set_uint64(dev, "mem_win_addr", mem_win_addr);
378
    qdev_prop_set_uint64(dev, "mem_win_size", mem_win_size);
379
    qdev_prop_set_uint64(dev, "io_win_addr", io_win_addr);
380

    
381
    qdev_init_nofail(dev);
382
}
383

    
384
/* Macros to operate with address in OF binding to PCI */
385
#define b_x(x, p, l)    (((x) & ((1<<(l))-1)) << (p))
386
#define b_n(x)          b_x((x), 31, 1) /* 0 if relocatable */
387
#define b_p(x)          b_x((x), 30, 1) /* 1 if prefetchable */
388
#define b_t(x)          b_x((x), 29, 1) /* 1 if the address is aliased */
389
#define b_ss(x)         b_x((x), 24, 2) /* the space code */
390
#define b_bbbbbbbb(x)   b_x((x), 16, 8) /* bus number */
391
#define b_ddddd(x)      b_x((x), 11, 5) /* device number */
392
#define b_fff(x)        b_x((x), 8, 3)  /* function number */
393
#define b_rrrrrrrr(x)   b_x((x), 0, 8)  /* register number */
394

    
395
int spapr_populate_pci_devices(sPAPRPHBState *phb,
396
                               uint32_t xics_phandle,
397
                               void *fdt)
398
{
399
    int bus_off, i, j;
400
    char nodename[256];
401
    uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
402
    struct {
403
        uint32_t hi;
404
        uint64_t child;
405
        uint64_t parent;
406
        uint64_t size;
407
    } __attribute__((packed)) ranges[] = {
408
        {
409
            cpu_to_be32(b_ss(1)), cpu_to_be64(0),
410
            cpu_to_be64(phb->io_win_addr),
411
            cpu_to_be64(memory_region_size(&phb->iospace)),
412
        },
413
        {
414
            cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
415
            cpu_to_be64(phb->mem_win_addr),
416
            cpu_to_be64(memory_region_size(&phb->memwindow)),
417
        },
418
    };
419
    uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
420
    uint32_t interrupt_map_mask[] = {
421
        cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
422
    uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7];
423

    
424
    /* Start populating the FDT */
425
    sprintf(nodename, "pci@%" PRIx64, phb->buid);
426
    bus_off = fdt_add_subnode(fdt, 0, nodename);
427
    if (bus_off < 0) {
428
        return bus_off;
429
    }
430

    
431
#define _FDT(exp) \
432
    do { \
433
        int ret = (exp);                                           \
434
        if (ret < 0) {                                             \
435
            return ret;                                            \
436
        }                                                          \
437
    } while (0)
438

    
439
    /* Write PHB properties */
440
    _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
441
    _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
442
    _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3));
443
    _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2));
444
    _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
445
    _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
446
    _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
447
    _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof(ranges)));
448
    _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
449
    _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
450

    
451
    /* Build the interrupt-map, this must matches what is done
452
     * in pci_spapr_map_irq
453
     */
454
    _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
455
                     &interrupt_map_mask, sizeof(interrupt_map_mask)));
456
    for (i = 0; i < PCI_SLOT_MAX; i++) {
457
        for (j = 0; j < PCI_NUM_PINS; j++) {
458
            uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j];
459
            int lsi_num = pci_spapr_swizzle(i, j);
460

    
461
            irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
462
            irqmap[1] = 0;
463
            irqmap[2] = 0;
464
            irqmap[3] = cpu_to_be32(j+1);
465
            irqmap[4] = cpu_to_be32(xics_phandle);
466
            irqmap[5] = cpu_to_be32(phb->lsi_table[lsi_num].dt_irq);
467
            irqmap[6] = cpu_to_be32(0x8);
468
        }
469
    }
470
    /* Write interrupt map */
471
    _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
472
                     sizeof(interrupt_map)));
473

    
474
    return 0;
475
}
476

    
477
static void register_types(void)
478
{
479
    type_register_static(&spapr_phb_info);
480
}
481
type_init(register_types)