Statistics
| Branch: | Revision:

root / cpu-all.h @ afc7df11

History | View | Annotate | Download (18.3 kB)

1
/*
2
 * defines common to all virtual CPUs
3
 * 
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#ifndef CPU_ALL_H
21
#define CPU_ALL_H
22

    
23
#if defined(__arm__) || defined(__sparc__)
24
#define WORDS_ALIGNED
25
#endif
26

    
27
/* some important defines: 
28
 * 
29
 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
30
 * memory accesses.
31
 * 
32
 * WORDS_BIGENDIAN : if defined, the host cpu is big endian and
33
 * otherwise little endian.
34
 * 
35
 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
36
 * 
37
 * TARGET_WORDS_BIGENDIAN : same for target cpu
38
 */
39

    
40
#include "bswap.h"
41

    
42
#if defined(WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
43
#define BSWAP_NEEDED
44
#endif
45

    
46
#ifdef BSWAP_NEEDED
47

    
48
static inline uint16_t tswap16(uint16_t s)
49
{
50
    return bswap16(s);
51
}
52

    
53
static inline uint32_t tswap32(uint32_t s)
54
{
55
    return bswap32(s);
56
}
57

    
58
static inline uint64_t tswap64(uint64_t s)
59
{
60
    return bswap64(s);
61
}
62

    
63
static inline void tswap16s(uint16_t *s)
64
{
65
    *s = bswap16(*s);
66
}
67

    
68
static inline void tswap32s(uint32_t *s)
69
{
70
    *s = bswap32(*s);
71
}
72

    
73
static inline void tswap64s(uint64_t *s)
74
{
75
    *s = bswap64(*s);
76
}
77

    
78
#else
79

    
80
static inline uint16_t tswap16(uint16_t s)
81
{
82
    return s;
83
}
84

    
85
static inline uint32_t tswap32(uint32_t s)
86
{
87
    return s;
88
}
89

    
90
static inline uint64_t tswap64(uint64_t s)
91
{
92
    return s;
93
}
94

    
95
static inline void tswap16s(uint16_t *s)
96
{
97
}
98

    
99
static inline void tswap32s(uint32_t *s)
100
{
101
}
102

    
103
static inline void tswap64s(uint64_t *s)
104
{
105
}
106

    
107
#endif
108

    
109
#if TARGET_LONG_SIZE == 4
110
#define tswapl(s) tswap32(s)
111
#define tswapls(s) tswap32s((uint32_t *)(s))
112
#define bswaptls(s) bswap32s(s)
113
#else
114
#define tswapl(s) tswap64(s)
115
#define tswapls(s) tswap64s((uint64_t *)(s))
116
#define bswaptls(s) bswap64s(s)
117
#endif
118

    
119
/* NOTE: arm FPA is horrible as double 32 bit words are stored in big
120
   endian ! */
121
typedef union {
122
    double d;
123
#if defined(WORDS_BIGENDIAN) || (defined(__arm__) && !defined(__VFP_FP__))
124
    struct {
125
        uint32_t upper;
126
        uint32_t lower;
127
    } l;
128
#else
129
    struct {
130
        uint32_t lower;
131
        uint32_t upper;
132
    } l;
133
#endif
134
    uint64_t ll;
135
} CPU_DoubleU;
136

    
137
/* CPU memory access without any memory or io remapping */
138

    
139
/*
140
 * the generic syntax for the memory accesses is:
141
 *
142
 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
143
 *
144
 * store: st{type}{size}{endian}_{access_type}(ptr, val)
145
 *
146
 * type is:
147
 * (empty): integer access
148
 *   f    : float access
149
 * 
150
 * sign is:
151
 * (empty): for floats or 32 bit size
152
 *   u    : unsigned
153
 *   s    : signed
154
 *
155
 * size is:
156
 *   b: 8 bits
157
 *   w: 16 bits
158
 *   l: 32 bits
159
 *   q: 64 bits
160
 * 
161
 * endian is:
162
 * (empty): target cpu endianness or 8 bit access
163
 *   r    : reversed target cpu endianness (not implemented yet)
164
 *   be   : big endian (not implemented yet)
165
 *   le   : little endian (not implemented yet)
166
 *
167
 * access_type is:
168
 *   raw    : host memory access
169
 *   user   : user mode access using soft MMU
170
 *   kernel : kernel mode access using soft MMU
171
 */
172
static inline int ldub_p(void *ptr)
173
{
174
    return *(uint8_t *)ptr;
175
}
176

    
177
static inline int ldsb_p(void *ptr)
178
{
179
    return *(int8_t *)ptr;
180
}
181

    
182
static inline void stb_p(void *ptr, int v)
183
{
184
    *(uint8_t *)ptr = v;
185
}
186

    
187
/* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
188
   kernel handles unaligned load/stores may give better results, but
189
   it is a system wide setting : bad */
190
#if !defined(TARGET_WORDS_BIGENDIAN) && (defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED))
191

    
192
/* conservative code for little endian unaligned accesses */
193
static inline int lduw_p(void *ptr)
194
{
195
#ifdef __powerpc__
196
    int val;
197
    __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
198
    return val;
199
#else
200
    uint8_t *p = ptr;
201
    return p[0] | (p[1] << 8);
202
#endif
203
}
204

    
205
static inline int ldsw_p(void *ptr)
206
{
207
#ifdef __powerpc__
208
    int val;
209
    __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
210
    return (int16_t)val;
211
#else
212
    uint8_t *p = ptr;
213
    return (int16_t)(p[0] | (p[1] << 8));
214
#endif
215
}
216

    
217
static inline int ldl_p(void *ptr)
218
{
219
#ifdef __powerpc__
220
    int val;
221
    __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
222
    return val;
223
#else
224
    uint8_t *p = ptr;
225
    return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
226
#endif
227
}
228

    
229
static inline uint64_t ldq_p(void *ptr)
230
{
231
    uint8_t *p = ptr;
232
    uint32_t v1, v2;
233
    v1 = ldl_p(p);
234
    v2 = ldl_p(p + 4);
235
    return v1 | ((uint64_t)v2 << 32);
236
}
237

    
238
static inline void stw_p(void *ptr, int v)
239
{
240
#ifdef __powerpc__
241
    __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
242
#else
243
    uint8_t *p = ptr;
244
    p[0] = v;
245
    p[1] = v >> 8;
246
#endif
247
}
248

    
249
static inline void stl_p(void *ptr, int v)
250
{
251
#ifdef __powerpc__
252
    __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
253
#else
254
    uint8_t *p = ptr;
255
    p[0] = v;
256
    p[1] = v >> 8;
257
    p[2] = v >> 16;
258
    p[3] = v >> 24;
259
#endif
260
}
261

    
262
static inline void stq_p(void *ptr, uint64_t v)
263
{
264
    uint8_t *p = ptr;
265
    stl_p(p, (uint32_t)v);
266
    stl_p(p + 4, v >> 32);
267
}
268

    
269
/* float access */
270

    
271
static inline float ldfl_p(void *ptr)
272
{
273
    union {
274
        float f;
275
        uint32_t i;
276
    } u;
277
    u.i = ldl_p(ptr);
278
    return u.f;
279
}
280

    
281
static inline void stfl_p(void *ptr, float v)
282
{
283
    union {
284
        float f;
285
        uint32_t i;
286
    } u;
287
    u.f = v;
288
    stl_p(ptr, u.i);
289
}
290

    
291
static inline double ldfq_p(void *ptr)
292
{
293
    CPU_DoubleU u;
294
    u.l.lower = ldl_p(ptr);
295
    u.l.upper = ldl_p(ptr + 4);
296
    return u.d;
297
}
298

    
299
static inline void stfq_p(void *ptr, double v)
300
{
301
    CPU_DoubleU u;
302
    u.d = v;
303
    stl_p(ptr, u.l.lower);
304
    stl_p(ptr + 4, u.l.upper);
305
}
306

    
307
#elif defined(TARGET_WORDS_BIGENDIAN) && (!defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED))
308

    
309
static inline int lduw_p(void *ptr)
310
{
311
#if defined(__i386__)
312
    int val;
313
    asm volatile ("movzwl %1, %0\n"
314
                  "xchgb %b0, %h0\n"
315
                  : "=q" (val)
316
                  : "m" (*(uint16_t *)ptr));
317
    return val;
318
#else
319
    uint8_t *b = (uint8_t *) ptr;
320
    return ((b[0] << 8) | b[1]);
321
#endif
322
}
323

    
324
static inline int ldsw_p(void *ptr)
325
{
326
#if defined(__i386__)
327
    int val;
328
    asm volatile ("movzwl %1, %0\n"
329
                  "xchgb %b0, %h0\n"
330
                  : "=q" (val)
331
                  : "m" (*(uint16_t *)ptr));
332
    return (int16_t)val;
333
#else
334
    uint8_t *b = (uint8_t *) ptr;
335
    return (int16_t)((b[0] << 8) | b[1]);
336
#endif
337
}
338

    
339
static inline int ldl_p(void *ptr)
340
{
341
#if defined(__i386__) || defined(__x86_64__)
342
    int val;
343
    asm volatile ("movl %1, %0\n"
344
                  "bswap %0\n"
345
                  : "=r" (val)
346
                  : "m" (*(uint32_t *)ptr));
347
    return val;
348
#else
349
    uint8_t *b = (uint8_t *) ptr;
350
    return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
351
#endif
352
}
353

    
354
static inline uint64_t ldq_p(void *ptr)
355
{
356
    uint32_t a,b;
357
    a = ldl_p(ptr);
358
    b = ldl_p(ptr+4);
359
    return (((uint64_t)a<<32)|b);
360
}
361

    
362
static inline void stw_p(void *ptr, int v)
363
{
364
#if defined(__i386__)
365
    asm volatile ("xchgb %b0, %h0\n"
366
                  "movw %w0, %1\n"
367
                  : "=q" (v)
368
                  : "m" (*(uint16_t *)ptr), "0" (v));
369
#else
370
    uint8_t *d = (uint8_t *) ptr;
371
    d[0] = v >> 8;
372
    d[1] = v;
373
#endif
374
}
375

    
376
static inline void stl_p(void *ptr, int v)
377
{
378
#if defined(__i386__) || defined(__x86_64__)
379
    asm volatile ("bswap %0\n"
380
                  "movl %0, %1\n"
381
                  : "=r" (v)
382
                  : "m" (*(uint32_t *)ptr), "0" (v));
383
#else
384
    uint8_t *d = (uint8_t *) ptr;
385
    d[0] = v >> 24;
386
    d[1] = v >> 16;
387
    d[2] = v >> 8;
388
    d[3] = v;
389
#endif
390
}
391

    
392
static inline void stq_p(void *ptr, uint64_t v)
393
{
394
    stl_p(ptr, v >> 32);
395
    stl_p(ptr + 4, v);
396
}
397

    
398
/* float access */
399

    
400
static inline float ldfl_p(void *ptr)
401
{
402
    union {
403
        float f;
404
        uint32_t i;
405
    } u;
406
    u.i = ldl_p(ptr);
407
    return u.f;
408
}
409

    
410
static inline void stfl_p(void *ptr, float v)
411
{
412
    union {
413
        float f;
414
        uint32_t i;
415
    } u;
416
    u.f = v;
417
    stl_p(ptr, u.i);
418
}
419

    
420
static inline double ldfq_p(void *ptr)
421
{
422
    CPU_DoubleU u;
423
    u.l.upper = ldl_p(ptr);
424
    u.l.lower = ldl_p(ptr + 4);
425
    return u.d;
426
}
427

    
428
static inline void stfq_p(void *ptr, double v)
429
{
430
    CPU_DoubleU u;
431
    u.d = v;
432
    stl_p(ptr, u.l.upper);
433
    stl_p(ptr + 4, u.l.lower);
434
}
435

    
436
#else
437

    
438
static inline int lduw_p(void *ptr)
439
{
440
    return *(uint16_t *)ptr;
441
}
442

    
443
static inline int ldsw_p(void *ptr)
444
{
445
    return *(int16_t *)ptr;
446
}
447

    
448
static inline int ldl_p(void *ptr)
449
{
450
    return *(uint32_t *)ptr;
451
}
452

    
453
static inline uint64_t ldq_p(void *ptr)
454
{
455
    return *(uint64_t *)ptr;
456
}
457

    
458
static inline void stw_p(void *ptr, int v)
459
{
460
    *(uint16_t *)ptr = v;
461
}
462

    
463
static inline void stl_p(void *ptr, int v)
464
{
465
    *(uint32_t *)ptr = v;
466
}
467

    
468
static inline void stq_p(void *ptr, uint64_t v)
469
{
470
    *(uint64_t *)ptr = v;
471
}
472

    
473
/* float access */
474

    
475
static inline float ldfl_p(void *ptr)
476
{
477
    return *(float *)ptr;
478
}
479

    
480
static inline double ldfq_p(void *ptr)
481
{
482
    return *(double *)ptr;
483
}
484

    
485
static inline void stfl_p(void *ptr, float v)
486
{
487
    *(float *)ptr = v;
488
}
489

    
490
static inline void stfq_p(void *ptr, double v)
491
{
492
    *(double *)ptr = v;
493
}
494
#endif
495

    
496
/* MMU memory access macros */
497

    
498
/* NOTE: we use double casts if pointers and target_ulong have
499
   different sizes */
500
#define ldub_raw(p) ldub_p((uint8_t *)(long)(p))
501
#define ldsb_raw(p) ldsb_p((uint8_t *)(long)(p))
502
#define lduw_raw(p) lduw_p((uint8_t *)(long)(p))
503
#define ldsw_raw(p) ldsw_p((uint8_t *)(long)(p))
504
#define ldl_raw(p) ldl_p((uint8_t *)(long)(p))
505
#define ldq_raw(p) ldq_p((uint8_t *)(long)(p))
506
#define ldfl_raw(p) ldfl_p((uint8_t *)(long)(p))
507
#define ldfq_raw(p) ldfq_p((uint8_t *)(long)(p))
508
#define stb_raw(p, v) stb_p((uint8_t *)(long)(p), v)
509
#define stw_raw(p, v) stw_p((uint8_t *)(long)(p), v)
510
#define stl_raw(p, v) stl_p((uint8_t *)(long)(p), v)
511
#define stq_raw(p, v) stq_p((uint8_t *)(long)(p), v)
512
#define stfl_raw(p, v) stfl_p((uint8_t *)(long)(p), v)
513
#define stfq_raw(p, v) stfq_p((uint8_t *)(long)(p), v)
514

    
515

    
516
#if defined(CONFIG_USER_ONLY) 
517

    
518
/* if user mode, no other memory access functions */
519
#define ldub(p) ldub_raw(p)
520
#define ldsb(p) ldsb_raw(p)
521
#define lduw(p) lduw_raw(p)
522
#define ldsw(p) ldsw_raw(p)
523
#define ldl(p) ldl_raw(p)
524
#define ldq(p) ldq_raw(p)
525
#define ldfl(p) ldfl_raw(p)
526
#define ldfq(p) ldfq_raw(p)
527
#define stb(p, v) stb_raw(p, v)
528
#define stw(p, v) stw_raw(p, v)
529
#define stl(p, v) stl_raw(p, v)
530
#define stq(p, v) stq_raw(p, v)
531
#define stfl(p, v) stfl_raw(p, v)
532
#define stfq(p, v) stfq_raw(p, v)
533

    
534
#define ldub_code(p) ldub_raw(p)
535
#define ldsb_code(p) ldsb_raw(p)
536
#define lduw_code(p) lduw_raw(p)
537
#define ldsw_code(p) ldsw_raw(p)
538
#define ldl_code(p) ldl_raw(p)
539

    
540
#define ldub_kernel(p) ldub_raw(p)
541
#define ldsb_kernel(p) ldsb_raw(p)
542
#define lduw_kernel(p) lduw_raw(p)
543
#define ldsw_kernel(p) ldsw_raw(p)
544
#define ldl_kernel(p) ldl_raw(p)
545
#define ldfl_kernel(p) ldfl_raw(p)
546
#define ldfq_kernel(p) ldfq_raw(p)
547
#define stb_kernel(p, v) stb_raw(p, v)
548
#define stw_kernel(p, v) stw_raw(p, v)
549
#define stl_kernel(p, v) stl_raw(p, v)
550
#define stq_kernel(p, v) stq_raw(p, v)
551
#define stfl_kernel(p, v) stfl_raw(p, v)
552
#define stfq_kernel(p, vt) stfq_raw(p, v)
553

    
554
#endif /* defined(CONFIG_USER_ONLY) */
555

    
556
/* page related stuff */
557

    
558
#define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
559
#define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
560
#define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
561

    
562
extern unsigned long qemu_real_host_page_size;
563
extern unsigned long qemu_host_page_bits;
564
extern unsigned long qemu_host_page_size;
565
extern unsigned long qemu_host_page_mask;
566

    
567
#define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
568

    
569
/* same as PROT_xxx */
570
#define PAGE_READ      0x0001
571
#define PAGE_WRITE     0x0002
572
#define PAGE_EXEC      0x0004
573
#define PAGE_BITS      (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
574
#define PAGE_VALID     0x0008
575
/* original state of the write flag (used when tracking self-modifying
576
   code */
577
#define PAGE_WRITE_ORG 0x0010 
578

    
579
void page_dump(FILE *f);
580
int page_get_flags(unsigned long address);
581
void page_set_flags(unsigned long start, unsigned long end, int flags);
582
void page_unprotect_range(uint8_t *data, unsigned long data_size);
583

    
584
#define SINGLE_CPU_DEFINES
585
#ifdef SINGLE_CPU_DEFINES
586

    
587
#if defined(TARGET_I386)
588

    
589
#define CPUState CPUX86State
590
#define cpu_init cpu_x86_init
591
#define cpu_exec cpu_x86_exec
592
#define cpu_gen_code cpu_x86_gen_code
593
#define cpu_signal_handler cpu_x86_signal_handler
594

    
595
#elif defined(TARGET_ARM)
596

    
597
#define CPUState CPUARMState
598
#define cpu_init cpu_arm_init
599
#define cpu_exec cpu_arm_exec
600
#define cpu_gen_code cpu_arm_gen_code
601
#define cpu_signal_handler cpu_arm_signal_handler
602

    
603
#elif defined(TARGET_SPARC)
604

    
605
#define CPUState CPUSPARCState
606
#define cpu_init cpu_sparc_init
607
#define cpu_exec cpu_sparc_exec
608
#define cpu_gen_code cpu_sparc_gen_code
609
#define cpu_signal_handler cpu_sparc_signal_handler
610

    
611
#elif defined(TARGET_PPC)
612

    
613
#define CPUState CPUPPCState
614
#define cpu_init cpu_ppc_init
615
#define cpu_exec cpu_ppc_exec
616
#define cpu_gen_code cpu_ppc_gen_code
617
#define cpu_signal_handler cpu_ppc_signal_handler
618

    
619
#else
620

    
621
#error unsupported target CPU
622

    
623
#endif
624

    
625
#endif /* SINGLE_CPU_DEFINES */
626

    
627
void cpu_dump_state(CPUState *env, FILE *f, 
628
                    int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
629
                    int flags);
630

    
631
void cpu_abort(CPUState *env, const char *fmt, ...);
632
extern CPUState *cpu_single_env;
633
extern int code_copy_enabled;
634

    
635
#define CPU_INTERRUPT_EXIT   0x01 /* wants exit from main loop */
636
#define CPU_INTERRUPT_HARD   0x02 /* hardware interrupt pending */
637
#define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
638
#define CPU_INTERRUPT_TIMER  0x08 /* internal timer exception pending */
639
void cpu_interrupt(CPUState *s, int mask);
640
void cpu_reset_interrupt(CPUState *env, int mask);
641

    
642
int cpu_breakpoint_insert(CPUState *env, target_ulong pc);
643
int cpu_breakpoint_remove(CPUState *env, target_ulong pc);
644
void cpu_single_step(CPUState *env, int enabled);
645
void cpu_reset(CPUState *s);
646

    
647
/* Return the physical page corresponding to a virtual one. Use it
648
   only for debugging because no protection checks are done. Return -1
649
   if no page found. */
650
target_ulong cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
651

    
652
#define CPU_LOG_TB_OUT_ASM (1 << 0) 
653
#define CPU_LOG_TB_IN_ASM  (1 << 1)
654
#define CPU_LOG_TB_OP      (1 << 2)
655
#define CPU_LOG_TB_OP_OPT  (1 << 3)
656
#define CPU_LOG_INT        (1 << 4)
657
#define CPU_LOG_EXEC       (1 << 5)
658
#define CPU_LOG_PCALL      (1 << 6)
659
#define CPU_LOG_IOPORT     (1 << 7)
660
#define CPU_LOG_TB_CPU     (1 << 8)
661

    
662
/* define log items */
663
typedef struct CPULogItem {
664
    int mask;
665
    const char *name;
666
    const char *help;
667
} CPULogItem;
668

    
669
extern CPULogItem cpu_log_items[];
670

    
671
void cpu_set_log(int log_flags);
672
void cpu_set_log_filename(const char *filename);
673
int cpu_str_to_log_mask(const char *str);
674

    
675
/* IO ports API */
676

    
677
/* NOTE: as these functions may be even used when there is an isa
678
   brige on non x86 targets, we always defined them */
679
#ifndef NO_CPU_IO_DEFS
680
void cpu_outb(CPUState *env, int addr, int val);
681
void cpu_outw(CPUState *env, int addr, int val);
682
void cpu_outl(CPUState *env, int addr, int val);
683
int cpu_inb(CPUState *env, int addr);
684
int cpu_inw(CPUState *env, int addr);
685
int cpu_inl(CPUState *env, int addr);
686
#endif
687

    
688
/* memory API */
689

    
690
extern int phys_ram_size;
691
extern int phys_ram_fd;
692
extern uint8_t *phys_ram_base;
693
extern uint8_t *phys_ram_dirty;
694

    
695
/* physical memory access */
696
#define IO_MEM_NB_ENTRIES  256
697
#define TLB_INVALID_MASK   (1 << 3)
698
#define IO_MEM_SHIFT       4
699

    
700
#define IO_MEM_RAM         (0 << IO_MEM_SHIFT) /* hardcoded offset */
701
#define IO_MEM_ROM         (1 << IO_MEM_SHIFT) /* hardcoded offset */
702
#define IO_MEM_UNASSIGNED  (2 << IO_MEM_SHIFT)
703
#define IO_MEM_CODE        (3 << IO_MEM_SHIFT) /* used internally, never use directly */
704
#define IO_MEM_NOTDIRTY    (4 << IO_MEM_SHIFT) /* used internally, never use directly */
705

    
706
typedef void CPUWriteMemoryFunc(void *opaque, target_phys_addr_t addr, uint32_t value);
707
typedef uint32_t CPUReadMemoryFunc(void *opaque, target_phys_addr_t addr);
708

    
709
void cpu_register_physical_memory(target_phys_addr_t start_addr, 
710
                                  unsigned long size,
711
                                  unsigned long phys_offset);
712
int cpu_register_io_memory(int io_index,
713
                           CPUReadMemoryFunc **mem_read,
714
                           CPUWriteMemoryFunc **mem_write,
715
                           void *opaque);
716
CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index);
717
CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index);
718

    
719
void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
720
                            int len, int is_write);
721
static inline void cpu_physical_memory_read(target_phys_addr_t addr, 
722
                                            uint8_t *buf, int len)
723
{
724
    cpu_physical_memory_rw(addr, buf, len, 0);
725
}
726
static inline void cpu_physical_memory_write(target_phys_addr_t addr, 
727
                                             const uint8_t *buf, int len)
728
{
729
    cpu_physical_memory_rw(addr, (uint8_t *)buf, len, 1);
730
}
731
uint32_t ldl_phys(target_phys_addr_t addr);
732
void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val);
733
void stl_phys(target_phys_addr_t addr, uint32_t val);
734

    
735
int cpu_memory_rw_debug(CPUState *env, target_ulong addr, 
736
                        uint8_t *buf, int len, int is_write);
737

    
738
#define VGA_DIRTY_FLAG 0x01
739

    
740
/* read dirty bit (return 0 or 1) */
741
static inline int cpu_physical_memory_is_dirty(target_ulong addr)
742
{
743
    return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
744
}
745

    
746
static inline int cpu_physical_memory_get_dirty(target_ulong addr, 
747
                                                int dirty_flags)
748
{
749
    return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
750
}
751

    
752
static inline void cpu_physical_memory_set_dirty(target_ulong addr)
753
{
754
    phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
755
}
756

    
757
void cpu_physical_memory_reset_dirty(target_ulong start, target_ulong end,
758
                                     int dirty_flags);
759

    
760
void dump_exec_info(FILE *f,
761
                    int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
762

    
763
#endif /* CPU_ALL_H */