Statistics
| Branch: | Revision:

root / cpu-exec.c @ afc7df11

History | View | Annotate | Download (36.6 kB)

1
/*
2
 *  i386 emulator main execution loop
3
 * 
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "config.h"
21
#include "exec.h"
22
#include "disas.h"
23

    
24
#if !defined(CONFIG_SOFTMMU)
25
#undef EAX
26
#undef ECX
27
#undef EDX
28
#undef EBX
29
#undef ESP
30
#undef EBP
31
#undef ESI
32
#undef EDI
33
#undef EIP
34
#include <signal.h>
35
#include <sys/ucontext.h>
36
#endif
37

    
38
int tb_invalidated_flag;
39

    
40
//#define DEBUG_EXEC
41
//#define DEBUG_SIGNAL
42

    
43
#if defined(TARGET_ARM) || defined(TARGET_SPARC)
44
/* XXX: unify with i386 target */
45
void cpu_loop_exit(void)
46
{
47
    longjmp(env->jmp_env, 1);
48
}
49
#endif
50

    
51
/* exit the current TB from a signal handler. The host registers are
52
   restored in a state compatible with the CPU emulator
53
 */
54
void cpu_resume_from_signal(CPUState *env1, void *puc) 
55
{
56
#if !defined(CONFIG_SOFTMMU)
57
    struct ucontext *uc = puc;
58
#endif
59

    
60
    env = env1;
61

    
62
    /* XXX: restore cpu registers saved in host registers */
63

    
64
#if !defined(CONFIG_SOFTMMU)
65
    if (puc) {
66
        /* XXX: use siglongjmp ? */
67
        sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
68
    }
69
#endif
70
    longjmp(env->jmp_env, 1);
71
}
72

    
73
/* main execution loop */
74

    
75
int cpu_exec(CPUState *env1)
76
{
77
    int saved_T0, saved_T1, saved_T2;
78
    CPUState *saved_env;
79
#ifdef reg_EAX
80
    int saved_EAX;
81
#endif
82
#ifdef reg_ECX
83
    int saved_ECX;
84
#endif
85
#ifdef reg_EDX
86
    int saved_EDX;
87
#endif
88
#ifdef reg_EBX
89
    int saved_EBX;
90
#endif
91
#ifdef reg_ESP
92
    int saved_ESP;
93
#endif
94
#ifdef reg_EBP
95
    int saved_EBP;
96
#endif
97
#ifdef reg_ESI
98
    int saved_ESI;
99
#endif
100
#ifdef reg_EDI
101
    int saved_EDI;
102
#endif
103
#ifdef __sparc__
104
    int saved_i7, tmp_T0;
105
#endif
106
    int code_gen_size, ret, interrupt_request;
107
    void (*gen_func)(void);
108
    TranslationBlock *tb, **ptb;
109
    target_ulong cs_base, pc;
110
    uint8_t *tc_ptr;
111
    unsigned int flags;
112

    
113
    /* first we save global registers */
114
    saved_env = env;
115
    env = env1;
116
    saved_T0 = T0;
117
    saved_T1 = T1;
118
    saved_T2 = T2;
119
#ifdef __sparc__
120
    /* we also save i7 because longjmp may not restore it */
121
    asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
122
#endif
123

    
124
#if defined(TARGET_I386)
125
#ifdef reg_EAX
126
    saved_EAX = EAX;
127
#endif
128
#ifdef reg_ECX
129
    saved_ECX = ECX;
130
#endif
131
#ifdef reg_EDX
132
    saved_EDX = EDX;
133
#endif
134
#ifdef reg_EBX
135
    saved_EBX = EBX;
136
#endif
137
#ifdef reg_ESP
138
    saved_ESP = ESP;
139
#endif
140
#ifdef reg_EBP
141
    saved_EBP = EBP;
142
#endif
143
#ifdef reg_ESI
144
    saved_ESI = ESI;
145
#endif
146
#ifdef reg_EDI
147
    saved_EDI = EDI;
148
#endif
149

    
150
    env_to_regs();
151
    /* put eflags in CPU temporary format */
152
    CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
153
    DF = 1 - (2 * ((env->eflags >> 10) & 1));
154
    CC_OP = CC_OP_EFLAGS;
155
    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
156
#elif defined(TARGET_ARM)
157
    {
158
        unsigned int psr;
159
        psr = env->cpsr;
160
        env->CF = (psr >> 29) & 1;
161
        env->NZF = (psr & 0xc0000000) ^ 0x40000000;
162
        env->VF = (psr << 3) & 0x80000000;
163
        env->QF = (psr >> 27) & 1;
164
        env->cpsr = psr & ~CACHED_CPSR_BITS;
165
    }
166
#elif defined(TARGET_SPARC)
167
#elif defined(TARGET_PPC)
168
#else
169
#error unsupported target CPU
170
#endif
171
    env->exception_index = -1;
172

    
173
    /* prepare setjmp context for exception handling */
174
    for(;;) {
175
        if (setjmp(env->jmp_env) == 0) {
176
            env->current_tb = NULL;
177
            /* if an exception is pending, we execute it here */
178
            if (env->exception_index >= 0) {
179
                if (env->exception_index >= EXCP_INTERRUPT) {
180
                    /* exit request from the cpu execution loop */
181
                    ret = env->exception_index;
182
                    break;
183
                } else if (env->user_mode_only) {
184
                    /* if user mode only, we simulate a fake exception
185
                       which will be hanlded outside the cpu execution
186
                       loop */
187
#if defined(TARGET_I386)
188
                    do_interrupt_user(env->exception_index, 
189
                                      env->exception_is_int, 
190
                                      env->error_code, 
191
                                      env->exception_next_eip);
192
#endif
193
                    ret = env->exception_index;
194
                    break;
195
                } else {
196
#if defined(TARGET_I386)
197
                    /* simulate a real cpu exception. On i386, it can
198
                       trigger new exceptions, but we do not handle
199
                       double or triple faults yet. */
200
                    do_interrupt(env->exception_index, 
201
                                 env->exception_is_int, 
202
                                 env->error_code, 
203
                                 env->exception_next_eip, 0);
204
#elif defined(TARGET_PPC)
205
                    do_interrupt(env);
206
#elif defined(TARGET_SPARC)
207
                    do_interrupt(env->exception_index);
208
#endif
209
                }
210
                env->exception_index = -1;
211
            } 
212
#ifdef USE_KQEMU
213
            if (kqemu_is_ok(env) && env->interrupt_request == 0) {
214
                int ret;
215
                env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
216
                ret = kqemu_cpu_exec(env);
217
                /* put eflags in CPU temporary format */
218
                CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
219
                DF = 1 - (2 * ((env->eflags >> 10) & 1));
220
                CC_OP = CC_OP_EFLAGS;
221
                env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
222
                if (ret == 1) {
223
                    /* exception */
224
                    longjmp(env->jmp_env, 1);
225
                } else if (ret == 2) {
226
                    /* softmmu execution needed */
227
                } else {
228
                    if (env->interrupt_request != 0) {
229
                        /* hardware interrupt will be executed just after */
230
                    } else {
231
                        /* otherwise, we restart */
232
                        longjmp(env->jmp_env, 1);
233
                    }
234
                }
235
            }
236
#endif
237

    
238
            T0 = 0; /* force lookup of first TB */
239
            for(;;) {
240
#ifdef __sparc__
241
                /* g1 can be modified by some libc? functions */ 
242
                tmp_T0 = T0;
243
#endif            
244
                interrupt_request = env->interrupt_request;
245
                if (__builtin_expect(interrupt_request, 0)) {
246
#if defined(TARGET_I386)
247
                    /* if hardware interrupt pending, we execute it */
248
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
249
                        (env->eflags & IF_MASK) && 
250
                        !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
251
                        int intno;
252
                        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
253
                        intno = cpu_get_pic_interrupt(env);
254
                        if (loglevel & CPU_LOG_TB_IN_ASM) {
255
                            fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
256
                        }
257
                        do_interrupt(intno, 0, 0, 0, 1);
258
                        /* ensure that no TB jump will be modified as
259
                           the program flow was changed */
260
#ifdef __sparc__
261
                        tmp_T0 = 0;
262
#else
263
                        T0 = 0;
264
#endif
265
                    }
266
#elif defined(TARGET_PPC)
267
#if 0
268
                    if ((interrupt_request & CPU_INTERRUPT_RESET)) {
269
                        cpu_ppc_reset(env);
270
                    }
271
#endif
272
                    if (msr_ee != 0) {
273
                    if ((interrupt_request & CPU_INTERRUPT_HARD)) {
274
                            /* Raise it */
275
                            env->exception_index = EXCP_EXTERNAL;
276
                            env->error_code = 0;
277
                            do_interrupt(env);
278
                        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
279
                        } else if ((interrupt_request & CPU_INTERRUPT_TIMER)) {
280
                            /* Raise it */
281
                            env->exception_index = EXCP_DECR;
282
                            env->error_code = 0;
283
                            do_interrupt(env);
284
                            env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
285
                        }
286
                    }
287
#elif defined(TARGET_SPARC)
288
                    if (interrupt_request & CPU_INTERRUPT_HARD) {
289
                        do_interrupt(env->interrupt_index);
290
                        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
291
                    } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
292
                        //do_interrupt(0, 0, 0, 0, 0);
293
                        env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
294
                    }
295
#endif
296
                    if (interrupt_request & CPU_INTERRUPT_EXITTB) {
297
                        env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
298
                        /* ensure that no TB jump will be modified as
299
                           the program flow was changed */
300
#ifdef __sparc__
301
                        tmp_T0 = 0;
302
#else
303
                        T0 = 0;
304
#endif
305
                    }
306
                    if (interrupt_request & CPU_INTERRUPT_EXIT) {
307
                        env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
308
                        env->exception_index = EXCP_INTERRUPT;
309
                        cpu_loop_exit();
310
                    }
311
                }
312
#ifdef DEBUG_EXEC
313
                if ((loglevel & CPU_LOG_EXEC)) {
314
#if defined(TARGET_I386)
315
                    /* restore flags in standard format */
316
                    env->regs[R_EAX] = EAX;
317
                    env->regs[R_EBX] = EBX;
318
                    env->regs[R_ECX] = ECX;
319
                    env->regs[R_EDX] = EDX;
320
                    env->regs[R_ESI] = ESI;
321
                    env->regs[R_EDI] = EDI;
322
                    env->regs[R_EBP] = EBP;
323
                    env->regs[R_ESP] = ESP;
324
                    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
325
                    cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
326
                    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
327
#elif defined(TARGET_ARM)
328
                    env->cpsr = compute_cpsr();
329
                    cpu_dump_state(env, logfile, fprintf, 0);
330
                    env->cpsr &= ~CACHED_CPSR_BITS;
331
#elif defined(TARGET_SPARC)
332
                    cpu_dump_state (env, logfile, fprintf, 0);
333
#elif defined(TARGET_PPC)
334
                    cpu_dump_state(env, logfile, fprintf, 0);
335
#else
336
#error unsupported target CPU 
337
#endif
338
                }
339
#endif
340
                /* we record a subset of the CPU state. It will
341
                   always be the same before a given translated block
342
                   is executed. */
343
#if defined(TARGET_I386)
344
                flags = env->hflags;
345
                flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
346
                cs_base = env->segs[R_CS].base;
347
                pc = cs_base + env->eip;
348
#elif defined(TARGET_ARM)
349
                flags = env->thumb;
350
                cs_base = 0;
351
                pc = env->regs[15];
352
#elif defined(TARGET_SPARC)
353
                flags = 0;
354
                cs_base = env->npc;
355
                pc = env->pc;
356
#elif defined(TARGET_PPC)
357
                flags = (msr_pr << MSR_PR) | (msr_fp << MSR_FP) | (msr_se << MSR_SE);
358
                cs_base = 0;
359
                pc = env->nip;
360
#else
361
#error unsupported CPU
362
#endif
363
                tb = tb_find(&ptb, pc, cs_base, 
364
                             flags);
365
                if (!tb) {
366
                    TranslationBlock **ptb1;
367
                    unsigned int h;
368
                    target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
369
                    
370
                    
371
                    spin_lock(&tb_lock);
372

    
373
                    tb_invalidated_flag = 0;
374
                    
375
                    regs_to_env(); /* XXX: do it just before cpu_gen_code() */
376

    
377
                    /* find translated block using physical mappings */
378
                    phys_pc = get_phys_addr_code(env, pc);
379
                    phys_page1 = phys_pc & TARGET_PAGE_MASK;
380
                    phys_page2 = -1;
381
                    h = tb_phys_hash_func(phys_pc);
382
                    ptb1 = &tb_phys_hash[h];
383
                    for(;;) {
384
                        tb = *ptb1;
385
                        if (!tb)
386
                            goto not_found;
387
                        if (tb->pc == pc && 
388
                            tb->page_addr[0] == phys_page1 &&
389
                            tb->cs_base == cs_base && 
390
                            tb->flags == flags) {
391
                            /* check next page if needed */
392
                            if (tb->page_addr[1] != -1) {
393
                                virt_page2 = (pc & TARGET_PAGE_MASK) + 
394
                                    TARGET_PAGE_SIZE;
395
                                phys_page2 = get_phys_addr_code(env, virt_page2);
396
                                if (tb->page_addr[1] == phys_page2)
397
                                    goto found;
398
                            } else {
399
                                goto found;
400
                            }
401
                        }
402
                        ptb1 = &tb->phys_hash_next;
403
                    }
404
                not_found:
405
                    /* if no translated code available, then translate it now */
406
                    tb = tb_alloc(pc);
407
                    if (!tb) {
408
                        /* flush must be done */
409
                        tb_flush(env);
410
                        /* cannot fail at this point */
411
                        tb = tb_alloc(pc);
412
                        /* don't forget to invalidate previous TB info */
413
                        ptb = &tb_hash[tb_hash_func(pc)];
414
                        T0 = 0;
415
                    }
416
                    tc_ptr = code_gen_ptr;
417
                    tb->tc_ptr = tc_ptr;
418
                    tb->cs_base = cs_base;
419
                    tb->flags = flags;
420
                    cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
421
                    code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
422
                    
423
                    /* check next page if needed */
424
                    virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
425
                    phys_page2 = -1;
426
                    if ((pc & TARGET_PAGE_MASK) != virt_page2) {
427
                        phys_page2 = get_phys_addr_code(env, virt_page2);
428
                    }
429
                    tb_link_phys(tb, phys_pc, phys_page2);
430

    
431
                found:
432
                    if (tb_invalidated_flag) {
433
                        /* as some TB could have been invalidated because
434
                           of memory exceptions while generating the code, we
435
                           must recompute the hash index here */
436
                        ptb = &tb_hash[tb_hash_func(pc)];
437
                        while (*ptb != NULL)
438
                            ptb = &(*ptb)->hash_next;
439
                        T0 = 0;
440
                    }
441
                    /* we add the TB in the virtual pc hash table */
442
                    *ptb = tb;
443
                    tb->hash_next = NULL;
444
                    tb_link(tb);
445
                    spin_unlock(&tb_lock);
446
                }
447
#ifdef DEBUG_EXEC
448
                if ((loglevel & CPU_LOG_EXEC)) {
449
                    fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
450
                            (long)tb->tc_ptr, tb->pc,
451
                            lookup_symbol(tb->pc));
452
                }
453
#endif
454
#ifdef __sparc__
455
                T0 = tmp_T0;
456
#endif            
457
                /* see if we can patch the calling TB. */
458
                {
459
                    if (T0 != 0
460
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
461
                    && (tb->cflags & CF_CODE_COPY) == 
462
                    (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
463
#endif
464
                    ) {
465
                    spin_lock(&tb_lock);
466
                    tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb);
467
#if defined(USE_CODE_COPY)
468
                    /* propagates the FP use info */
469
                    ((TranslationBlock *)(T0 & ~3))->cflags |= 
470
                        (tb->cflags & CF_FP_USED);
471
#endif
472
                    spin_unlock(&tb_lock);
473
                }
474
                }
475
                tc_ptr = tb->tc_ptr;
476
                env->current_tb = tb;
477
                /* execute the generated code */
478
                gen_func = (void *)tc_ptr;
479
#if defined(__sparc__)
480
                __asm__ __volatile__("call        %0\n\t"
481
                                     "mov        %%o7,%%i0"
482
                                     : /* no outputs */
483
                                     : "r" (gen_func) 
484
                                     : "i0", "i1", "i2", "i3", "i4", "i5");
485
#elif defined(__arm__)
486
                asm volatile ("mov pc, %0\n\t"
487
                              ".global exec_loop\n\t"
488
                              "exec_loop:\n\t"
489
                              : /* no outputs */
490
                              : "r" (gen_func)
491
                              : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
492
#elif defined(TARGET_I386) && defined(USE_CODE_COPY)
493
{
494
    if (!(tb->cflags & CF_CODE_COPY)) {
495
        if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) {
496
            save_native_fp_state(env);
497
        }
498
        gen_func();
499
    } else {
500
        if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) {
501
            restore_native_fp_state(env);
502
        }
503
        /* we work with native eflags */
504
        CC_SRC = cc_table[CC_OP].compute_all();
505
        CC_OP = CC_OP_EFLAGS;
506
        asm(".globl exec_loop\n"
507
            "\n"
508
            "debug1:\n"
509
            "    pushl %%ebp\n"
510
            "    fs movl %10, %9\n"
511
            "    fs movl %11, %%eax\n"
512
            "    andl $0x400, %%eax\n"
513
            "    fs orl %8, %%eax\n"
514
            "    pushl %%eax\n"
515
            "    popf\n"
516
            "    fs movl %%esp, %12\n"
517
            "    fs movl %0, %%eax\n"
518
            "    fs movl %1, %%ecx\n"
519
            "    fs movl %2, %%edx\n"
520
            "    fs movl %3, %%ebx\n"
521
            "    fs movl %4, %%esp\n"
522
            "    fs movl %5, %%ebp\n"
523
            "    fs movl %6, %%esi\n"
524
            "    fs movl %7, %%edi\n"
525
            "    fs jmp *%9\n"
526
            "exec_loop:\n"
527
            "    fs movl %%esp, %4\n"
528
            "    fs movl %12, %%esp\n"
529
            "    fs movl %%eax, %0\n"
530
            "    fs movl %%ecx, %1\n"
531
            "    fs movl %%edx, %2\n"
532
            "    fs movl %%ebx, %3\n"
533
            "    fs movl %%ebp, %5\n"
534
            "    fs movl %%esi, %6\n"
535
            "    fs movl %%edi, %7\n"
536
            "    pushf\n"
537
            "    popl %%eax\n"
538
            "    movl %%eax, %%ecx\n"
539
            "    andl $0x400, %%ecx\n"
540
            "    shrl $9, %%ecx\n"
541
            "    andl $0x8d5, %%eax\n"
542
            "    fs movl %%eax, %8\n"
543
            "    movl $1, %%eax\n"
544
            "    subl %%ecx, %%eax\n"
545
            "    fs movl %%eax, %11\n"
546
            "    fs movl %9, %%ebx\n" /* get T0 value */
547
            "    popl %%ebp\n"
548
            :
549
            : "m" (*(uint8_t *)offsetof(CPUState, regs[0])),
550
            "m" (*(uint8_t *)offsetof(CPUState, regs[1])),
551
            "m" (*(uint8_t *)offsetof(CPUState, regs[2])),
552
            "m" (*(uint8_t *)offsetof(CPUState, regs[3])),
553
            "m" (*(uint8_t *)offsetof(CPUState, regs[4])),
554
            "m" (*(uint8_t *)offsetof(CPUState, regs[5])),
555
            "m" (*(uint8_t *)offsetof(CPUState, regs[6])),
556
            "m" (*(uint8_t *)offsetof(CPUState, regs[7])),
557
            "m" (*(uint8_t *)offsetof(CPUState, cc_src)),
558
            "m" (*(uint8_t *)offsetof(CPUState, tmp0)),
559
            "a" (gen_func),
560
            "m" (*(uint8_t *)offsetof(CPUState, df)),
561
            "m" (*(uint8_t *)offsetof(CPUState, saved_esp))
562
            : "%ecx", "%edx"
563
            );
564
    }
565
}
566
#else
567
                gen_func();
568
#endif
569
                env->current_tb = NULL;
570
                /* reset soft MMU for next block (it can currently
571
                   only be set by a memory fault) */
572
#if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
573
                if (env->hflags & HF_SOFTMMU_MASK) {
574
                    env->hflags &= ~HF_SOFTMMU_MASK;
575
                    /* do not allow linking to another block */
576
                    T0 = 0;
577
                }
578
#endif
579
            }
580
        } else {
581
            env_to_regs();
582
        }
583
    } /* for(;;) */
584

    
585

    
586
#if defined(TARGET_I386)
587
#if defined(USE_CODE_COPY)
588
    if (env->native_fp_regs) {
589
        save_native_fp_state(env);
590
    }
591
#endif
592
    /* restore flags in standard format */
593
    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
594

    
595
    /* restore global registers */
596
#ifdef reg_EAX
597
    EAX = saved_EAX;
598
#endif
599
#ifdef reg_ECX
600
    ECX = saved_ECX;
601
#endif
602
#ifdef reg_EDX
603
    EDX = saved_EDX;
604
#endif
605
#ifdef reg_EBX
606
    EBX = saved_EBX;
607
#endif
608
#ifdef reg_ESP
609
    ESP = saved_ESP;
610
#endif
611
#ifdef reg_EBP
612
    EBP = saved_EBP;
613
#endif
614
#ifdef reg_ESI
615
    ESI = saved_ESI;
616
#endif
617
#ifdef reg_EDI
618
    EDI = saved_EDI;
619
#endif
620
#elif defined(TARGET_ARM)
621
    env->cpsr = compute_cpsr();
622
#elif defined(TARGET_SPARC)
623
#elif defined(TARGET_PPC)
624
#else
625
#error unsupported target CPU
626
#endif
627
#ifdef __sparc__
628
    asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
629
#endif
630
    T0 = saved_T0;
631
    T1 = saved_T1;
632
    T2 = saved_T2;
633
    env = saved_env;
634
    return ret;
635
}
636

    
637
/* must only be called from the generated code as an exception can be
638
   generated */
639
void tb_invalidate_page_range(target_ulong start, target_ulong end)
640
{
641
    /* XXX: cannot enable it yet because it yields to MMU exception
642
       where NIP != read address on PowerPC */
643
#if 0
644
    target_ulong phys_addr;
645
    phys_addr = get_phys_addr_code(env, start);
646
    tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
647
#endif
648
}
649

    
650
#if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
651

    
652
void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
653
{
654
    CPUX86State *saved_env;
655

    
656
    saved_env = env;
657
    env = s;
658
    if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
659
        selector &= 0xffff;
660
        cpu_x86_load_seg_cache(env, seg_reg, selector, 
661
                               (selector << 4), 0xffff, 0);
662
    } else {
663
        load_seg(seg_reg, selector);
664
    }
665
    env = saved_env;
666
}
667

    
668
void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
669
{
670
    CPUX86State *saved_env;
671

    
672
    saved_env = env;
673
    env = s;
674
    
675
    helper_fsave((target_ulong)ptr, data32);
676

    
677
    env = saved_env;
678
}
679

    
680
void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
681
{
682
    CPUX86State *saved_env;
683

    
684
    saved_env = env;
685
    env = s;
686
    
687
    helper_frstor((target_ulong)ptr, data32);
688

    
689
    env = saved_env;
690
}
691

    
692
#endif /* TARGET_I386 */
693

    
694
#if !defined(CONFIG_SOFTMMU)
695

    
696
#if defined(TARGET_I386)
697

    
698
/* 'pc' is the host PC at which the exception was raised. 'address' is
699
   the effective address of the memory exception. 'is_write' is 1 if a
700
   write caused the exception and otherwise 0'. 'old_set' is the
701
   signal set which should be restored */
702
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
703
                                    int is_write, sigset_t *old_set, 
704
                                    void *puc)
705
{
706
    TranslationBlock *tb;
707
    int ret;
708

    
709
    if (cpu_single_env)
710
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
711
#if defined(DEBUG_SIGNAL)
712
    qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
713
                pc, address, is_write, *(unsigned long *)old_set);
714
#endif
715
    /* XXX: locking issue */
716
    if (is_write && page_unprotect(address, pc, puc)) {
717
        return 1;
718
    }
719

    
720
    /* see if it is an MMU fault */
721
    ret = cpu_x86_handle_mmu_fault(env, address, is_write, 
722
                                   ((env->hflags & HF_CPL_MASK) == 3), 0);
723
    if (ret < 0)
724
        return 0; /* not an MMU fault */
725
    if (ret == 0)
726
        return 1; /* the MMU fault was handled without causing real CPU fault */
727
    /* now we have a real cpu fault */
728
    tb = tb_find_pc(pc);
729
    if (tb) {
730
        /* the PC is inside the translated code. It means that we have
731
           a virtual CPU fault */
732
        cpu_restore_state(tb, env, pc, puc);
733
    }
734
    if (ret == 1) {
735
#if 0
736
        printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n", 
737
               env->eip, env->cr[2], env->error_code);
738
#endif
739
        /* we restore the process signal mask as the sigreturn should
740
           do it (XXX: use sigsetjmp) */
741
        sigprocmask(SIG_SETMASK, old_set, NULL);
742
        raise_exception_err(EXCP0E_PAGE, env->error_code);
743
    } else {
744
        /* activate soft MMU for this block */
745
        env->hflags |= HF_SOFTMMU_MASK;
746
        cpu_resume_from_signal(env, puc);
747
    }
748
    /* never comes here */
749
    return 1;
750
}
751

    
752
#elif defined(TARGET_ARM)
753
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
754
                                    int is_write, sigset_t *old_set,
755
                                    void *puc)
756
{
757
    TranslationBlock *tb;
758
    int ret;
759

    
760
    if (cpu_single_env)
761
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
762
#if defined(DEBUG_SIGNAL)
763
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
764
           pc, address, is_write, *(unsigned long *)old_set);
765
#endif
766
    /* XXX: locking issue */
767
    if (is_write && page_unprotect(address, pc, puc)) {
768
        return 1;
769
    }
770
    /* see if it is an MMU fault */
771
    ret = cpu_arm_handle_mmu_fault(env, address, is_write, 1, 0);
772
    if (ret < 0)
773
        return 0; /* not an MMU fault */
774
    if (ret == 0)
775
        return 1; /* the MMU fault was handled without causing real CPU fault */
776
    /* now we have a real cpu fault */
777
    tb = tb_find_pc(pc);
778
    if (tb) {
779
        /* the PC is inside the translated code. It means that we have
780
           a virtual CPU fault */
781
        cpu_restore_state(tb, env, pc, puc);
782
    }
783
    /* we restore the process signal mask as the sigreturn should
784
       do it (XXX: use sigsetjmp) */
785
    sigprocmask(SIG_SETMASK, old_set, NULL);
786
    cpu_loop_exit();
787
}
788
#elif defined(TARGET_SPARC)
789
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
790
                                    int is_write, sigset_t *old_set,
791
                                    void *puc)
792
{
793
    TranslationBlock *tb;
794
    int ret;
795

    
796
    if (cpu_single_env)
797
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
798
#if defined(DEBUG_SIGNAL)
799
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
800
           pc, address, is_write, *(unsigned long *)old_set);
801
#endif
802
    /* XXX: locking issue */
803
    if (is_write && page_unprotect(address, pc, puc)) {
804
        return 1;
805
    }
806
    /* see if it is an MMU fault */
807
    ret = cpu_sparc_handle_mmu_fault(env, address, is_write, 1, 0);
808
    if (ret < 0)
809
        return 0; /* not an MMU fault */
810
    if (ret == 0)
811
        return 1; /* the MMU fault was handled without causing real CPU fault */
812
    /* now we have a real cpu fault */
813
    tb = tb_find_pc(pc);
814
    if (tb) {
815
        /* the PC is inside the translated code. It means that we have
816
           a virtual CPU fault */
817
        cpu_restore_state(tb, env, pc, puc);
818
    }
819
    /* we restore the process signal mask as the sigreturn should
820
       do it (XXX: use sigsetjmp) */
821
    sigprocmask(SIG_SETMASK, old_set, NULL);
822
    cpu_loop_exit();
823
}
824
#elif defined (TARGET_PPC)
825
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
826
                                    int is_write, sigset_t *old_set,
827
                                    void *puc)
828
{
829
    TranslationBlock *tb;
830
    int ret;
831
    
832
    if (cpu_single_env)
833
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
834
#if defined(DEBUG_SIGNAL)
835
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
836
           pc, address, is_write, *(unsigned long *)old_set);
837
#endif
838
    /* XXX: locking issue */
839
    if (is_write && page_unprotect(address, pc, puc)) {
840
        return 1;
841
    }
842

    
843
    /* see if it is an MMU fault */
844
    ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
845
    if (ret < 0)
846
        return 0; /* not an MMU fault */
847
    if (ret == 0)
848
        return 1; /* the MMU fault was handled without causing real CPU fault */
849

    
850
    /* now we have a real cpu fault */
851
    tb = tb_find_pc(pc);
852
    if (tb) {
853
        /* the PC is inside the translated code. It means that we have
854
           a virtual CPU fault */
855
        cpu_restore_state(tb, env, pc, puc);
856
    }
857
    if (ret == 1) {
858
#if 0
859
        printf("PF exception: NIP=0x%08x error=0x%x %p\n", 
860
               env->nip, env->error_code, tb);
861
#endif
862
    /* we restore the process signal mask as the sigreturn should
863
       do it (XXX: use sigsetjmp) */
864
        sigprocmask(SIG_SETMASK, old_set, NULL);
865
        do_raise_exception_err(env->exception_index, env->error_code);
866
    } else {
867
        /* activate soft MMU for this block */
868
        cpu_resume_from_signal(env, puc);
869
    }
870
    /* never comes here */
871
    return 1;
872
}
873
#else
874
#error unsupported target CPU
875
#endif
876

    
877
#if defined(__i386__)
878

    
879
#if defined(USE_CODE_COPY)
880
static void cpu_send_trap(unsigned long pc, int trap, 
881
                          struct ucontext *uc)
882
{
883
    TranslationBlock *tb;
884

    
885
    if (cpu_single_env)
886
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
887
    /* now we have a real cpu fault */
888
    tb = tb_find_pc(pc);
889
    if (tb) {
890
        /* the PC is inside the translated code. It means that we have
891
           a virtual CPU fault */
892
        cpu_restore_state(tb, env, pc, uc);
893
    }
894
    sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
895
    raise_exception_err(trap, env->error_code);
896
}
897
#endif
898

    
899
int cpu_signal_handler(int host_signum, struct siginfo *info, 
900
                       void *puc)
901
{
902
    struct ucontext *uc = puc;
903
    unsigned long pc;
904
    int trapno;
905

    
906
#ifndef REG_EIP
907
/* for glibc 2.1 */
908
#define REG_EIP    EIP
909
#define REG_ERR    ERR
910
#define REG_TRAPNO TRAPNO
911
#endif
912
    pc = uc->uc_mcontext.gregs[REG_EIP];
913
    trapno = uc->uc_mcontext.gregs[REG_TRAPNO];
914
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
915
    if (trapno == 0x00 || trapno == 0x05) {
916
        /* send division by zero or bound exception */
917
        cpu_send_trap(pc, trapno, uc);
918
        return 1;
919
    } else
920
#endif
921
        return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
922
                                 trapno == 0xe ? 
923
                                 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
924
                                 &uc->uc_sigmask, puc);
925
}
926

    
927
#elif defined(__x86_64__)
928

    
929
int cpu_signal_handler(int host_signum, struct siginfo *info,
930
                       void *puc)
931
{
932
    struct ucontext *uc = puc;
933
    unsigned long pc;
934

    
935
    pc = uc->uc_mcontext.gregs[REG_RIP];
936
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
937
                             uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ? 
938
                             (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
939
                             &uc->uc_sigmask, puc);
940
}
941

    
942
#elif defined(__powerpc__)
943

    
944
/***********************************************************************
945
 * signal context platform-specific definitions
946
 * From Wine
947
 */
948
#ifdef linux
949
/* All Registers access - only for local access */
950
# define REG_sig(reg_name, context)                ((context)->uc_mcontext.regs->reg_name)
951
/* Gpr Registers access  */
952
# define GPR_sig(reg_num, context)                REG_sig(gpr[reg_num], context)
953
# define IAR_sig(context)                        REG_sig(nip, context)        /* Program counter */
954
# define MSR_sig(context)                        REG_sig(msr, context)   /* Machine State Register (Supervisor) */
955
# define CTR_sig(context)                        REG_sig(ctr, context)   /* Count register */
956
# define XER_sig(context)                        REG_sig(xer, context) /* User's integer exception register */
957
# define LR_sig(context)                        REG_sig(link, context) /* Link register */
958
# define CR_sig(context)                        REG_sig(ccr, context) /* Condition register */
959
/* Float Registers access  */
960
# define FLOAT_sig(reg_num, context)                (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
961
# define FPSCR_sig(context)                        (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
962
/* Exception Registers access */
963
# define DAR_sig(context)                        REG_sig(dar, context)
964
# define DSISR_sig(context)                        REG_sig(dsisr, context)
965
# define TRAP_sig(context)                        REG_sig(trap, context)
966
#endif /* linux */
967

    
968
#ifdef __APPLE__
969
# include <sys/ucontext.h>
970
typedef struct ucontext SIGCONTEXT;
971
/* All Registers access - only for local access */
972
# define REG_sig(reg_name, context)                ((context)->uc_mcontext->ss.reg_name)
973
# define FLOATREG_sig(reg_name, context)        ((context)->uc_mcontext->fs.reg_name)
974
# define EXCEPREG_sig(reg_name, context)        ((context)->uc_mcontext->es.reg_name)
975
# define VECREG_sig(reg_name, context)                ((context)->uc_mcontext->vs.reg_name)
976
/* Gpr Registers access */
977
# define GPR_sig(reg_num, context)                REG_sig(r##reg_num, context)
978
# define IAR_sig(context)                        REG_sig(srr0, context)        /* Program counter */
979
# define MSR_sig(context)                        REG_sig(srr1, context)  /* Machine State Register (Supervisor) */
980
# define CTR_sig(context)                        REG_sig(ctr, context)
981
# define XER_sig(context)                        REG_sig(xer, context) /* Link register */
982
# define LR_sig(context)                        REG_sig(lr, context)  /* User's integer exception register */
983
# define CR_sig(context)                        REG_sig(cr, context)  /* Condition register */
984
/* Float Registers access */
985
# define FLOAT_sig(reg_num, context)                FLOATREG_sig(fpregs[reg_num], context)
986
# define FPSCR_sig(context)                        ((double)FLOATREG_sig(fpscr, context))
987
/* Exception Registers access */
988
# define DAR_sig(context)                        EXCEPREG_sig(dar, context)     /* Fault registers for coredump */
989
# define DSISR_sig(context)                        EXCEPREG_sig(dsisr, context)
990
# define TRAP_sig(context)                        EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
991
#endif /* __APPLE__ */
992

    
993
int cpu_signal_handler(int host_signum, struct siginfo *info, 
994
                       void *puc)
995
{
996
    struct ucontext *uc = puc;
997
    unsigned long pc;
998
    int is_write;
999

    
1000
    pc = IAR_sig(uc);
1001
    is_write = 0;
1002
#if 0
1003
    /* ppc 4xx case */
1004
    if (DSISR_sig(uc) & 0x00800000)
1005
        is_write = 1;
1006
#else
1007
    if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
1008
        is_write = 1;
1009
#endif
1010
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1011
                             is_write, &uc->uc_sigmask, puc);
1012
}
1013

    
1014
#elif defined(__alpha__)
1015

    
1016
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1017
                           void *puc)
1018
{
1019
    struct ucontext *uc = puc;
1020
    uint32_t *pc = uc->uc_mcontext.sc_pc;
1021
    uint32_t insn = *pc;
1022
    int is_write = 0;
1023

    
1024
    /* XXX: need kernel patch to get write flag faster */
1025
    switch (insn >> 26) {
1026
    case 0x0d: // stw
1027
    case 0x0e: // stb
1028
    case 0x0f: // stq_u
1029
    case 0x24: // stf
1030
    case 0x25: // stg
1031
    case 0x26: // sts
1032
    case 0x27: // stt
1033
    case 0x2c: // stl
1034
    case 0x2d: // stq
1035
    case 0x2e: // stl_c
1036
    case 0x2f: // stq_c
1037
        is_write = 1;
1038
    }
1039

    
1040
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1041
                             is_write, &uc->uc_sigmask, puc);
1042
}
1043
#elif defined(__sparc__)
1044

    
1045
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1046
                       void *puc)
1047
{
1048
    uint32_t *regs = (uint32_t *)(info + 1);
1049
    void *sigmask = (regs + 20);
1050
    unsigned long pc;
1051
    int is_write;
1052
    uint32_t insn;
1053
    
1054
    /* XXX: is there a standard glibc define ? */
1055
    pc = regs[1];
1056
    /* XXX: need kernel patch to get write flag faster */
1057
    is_write = 0;
1058
    insn = *(uint32_t *)pc;
1059
    if ((insn >> 30) == 3) {
1060
      switch((insn >> 19) & 0x3f) {
1061
      case 0x05: // stb
1062
      case 0x06: // sth
1063
      case 0x04: // st
1064
      case 0x07: // std
1065
      case 0x24: // stf
1066
      case 0x27: // stdf
1067
      case 0x25: // stfsr
1068
        is_write = 1;
1069
        break;
1070
      }
1071
    }
1072
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1073
                             is_write, sigmask, NULL);
1074
}
1075

    
1076
#elif defined(__arm__)
1077

    
1078
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1079
                       void *puc)
1080
{
1081
    struct ucontext *uc = puc;
1082
    unsigned long pc;
1083
    int is_write;
1084
    
1085
    pc = uc->uc_mcontext.gregs[R15];
1086
    /* XXX: compute is_write */
1087
    is_write = 0;
1088
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1089
                             is_write,
1090
                             &uc->uc_sigmask);
1091
}
1092

    
1093
#elif defined(__mc68000)
1094

    
1095
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1096
                       void *puc)
1097
{
1098
    struct ucontext *uc = puc;
1099
    unsigned long pc;
1100
    int is_write;
1101
    
1102
    pc = uc->uc_mcontext.gregs[16];
1103
    /* XXX: compute is_write */
1104
    is_write = 0;
1105
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1106
                             is_write,
1107
                             &uc->uc_sigmask, puc);
1108
}
1109

    
1110
#else
1111

    
1112
#error host CPU specific signal handler needed
1113

    
1114
#endif
1115

    
1116
#endif /* !defined(CONFIG_SOFTMMU) */