Statistics
| Branch: | Revision:

root / hw / pflash_cfi02.c @ b0eb8449

History | View | Annotate | Download (21.9 kB)

1
/*
2
 *  CFI parallel flash with AMD command set emulation
3
 *
4
 *  Copyright (c) 2005 Jocelyn Mayer
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18
 */
19

    
20
/*
21
 * For now, this code can emulate flashes of 1, 2 or 4 bytes width.
22
 * Supported commands/modes are:
23
 * - flash read
24
 * - flash write
25
 * - flash ID read
26
 * - sector erase
27
 * - chip erase
28
 * - unlock bypass command
29
 * - CFI queries
30
 *
31
 * It does not support flash interleaving.
32
 * It does not implement boot blocs with reduced size
33
 * It does not implement software data protection as found in many real chips
34
 * It does not implement erase suspend/resume commands
35
 * It does not implement multiple sectors erase
36
 */
37

    
38
#include "hw.h"
39
#include "flash.h"
40
#include "qemu-timer.h"
41
#include "block.h"
42
#include "exec-memory.h"
43

    
44
//#define PFLASH_DEBUG
45
#ifdef PFLASH_DEBUG
46
#define DPRINTF(fmt, ...)                          \
47
do {                                               \
48
    printf("PFLASH: " fmt , ## __VA_ARGS__);       \
49
} while (0)
50
#else
51
#define DPRINTF(fmt, ...) do { } while (0)
52
#endif
53

    
54
#define PFLASH_LAZY_ROMD_THRESHOLD 42
55

    
56
struct pflash_t {
57
    BlockDriverState *bs;
58
    target_phys_addr_t base;
59
    uint32_t sector_len;
60
    uint32_t chip_len;
61
    int mappings;
62
    int width;
63
    int wcycle; /* if 0, the flash is read normally */
64
    int bypass;
65
    int ro;
66
    uint8_t cmd;
67
    uint8_t status;
68
    uint16_t ident[4];
69
    uint16_t unlock_addr[2];
70
    uint8_t cfi_len;
71
    uint8_t cfi_table[0x52];
72
    QEMUTimer *timer;
73
    /* The device replicates the flash memory across its memory space.  Emulate
74
     * that by having a container (.mem) filled with an array of aliases
75
     * (.mem_mappings) pointing to the flash memory (.orig_mem).
76
     */
77
    MemoryRegion mem;
78
    MemoryRegion *mem_mappings;    /* array; one per mapping */
79
    MemoryRegion orig_mem;
80
    int rom_mode;
81
    int read_counter; /* used for lazy switch-back to rom mode */
82
    void *storage;
83
};
84

    
85
/*
86
 * Set up replicated mappings of the same region.
87
 */
88
static void pflash_setup_mappings(pflash_t *pfl)
89
{
90
    unsigned i;
91
    target_phys_addr_t size = memory_region_size(&pfl->orig_mem);
92

    
93
    memory_region_init(&pfl->mem, "pflash", pfl->mappings * size);
94
    pfl->mem_mappings = g_new(MemoryRegion, pfl->mappings);
95
    for (i = 0; i < pfl->mappings; ++i) {
96
        memory_region_init_alias(&pfl->mem_mappings[i], "pflash-alias",
97
                                 &pfl->orig_mem, 0, size);
98
        memory_region_add_subregion(&pfl->mem, i * size, &pfl->mem_mappings[i]);
99
    }
100
}
101

    
102
static void pflash_register_memory(pflash_t *pfl, int rom_mode)
103
{
104
    memory_region_rom_device_set_readable(&pfl->orig_mem, rom_mode);
105
}
106

    
107
static void pflash_timer (void *opaque)
108
{
109
    pflash_t *pfl = opaque;
110

    
111
    DPRINTF("%s: command %02x done\n", __func__, pfl->cmd);
112
    /* Reset flash */
113
    pfl->status ^= 0x80;
114
    if (pfl->bypass) {
115
        pfl->wcycle = 2;
116
    } else {
117
        pflash_register_memory(pfl, 1);
118
        pfl->wcycle = 0;
119
    }
120
    pfl->cmd = 0;
121
}
122

    
123
static uint32_t pflash_read (pflash_t *pfl, target_phys_addr_t offset,
124
                             int width, int be)
125
{
126
    target_phys_addr_t boff;
127
    uint32_t ret;
128
    uint8_t *p;
129

    
130
    DPRINTF("%s: offset " TARGET_FMT_plx "\n", __func__, offset);
131
    ret = -1;
132
    /* Lazy reset to ROMD mode after a certain amount of read accesses */
133
    if (!pfl->rom_mode && pfl->wcycle == 0 &&
134
        ++pfl->read_counter > PFLASH_LAZY_ROMD_THRESHOLD) {
135
        pflash_register_memory(pfl, 1);
136
    }
137
    offset &= pfl->chip_len - 1;
138
    boff = offset & 0xFF;
139
    if (pfl->width == 2)
140
        boff = boff >> 1;
141
    else if (pfl->width == 4)
142
        boff = boff >> 2;
143
    switch (pfl->cmd) {
144
    default:
145
        /* This should never happen : reset state & treat it as a read*/
146
        DPRINTF("%s: unknown command state: %x\n", __func__, pfl->cmd);
147
        pfl->wcycle = 0;
148
        pfl->cmd = 0;
149
    case 0x80:
150
        /* We accept reads during second unlock sequence... */
151
    case 0x00:
152
    flash_read:
153
        /* Flash area read */
154
        p = pfl->storage;
155
        switch (width) {
156
        case 1:
157
            ret = p[offset];
158
//            DPRINTF("%s: data offset %08x %02x\n", __func__, offset, ret);
159
            break;
160
        case 2:
161
            if (be) {
162
                ret = p[offset] << 8;
163
                ret |= p[offset + 1];
164
            } else {
165
                ret = p[offset];
166
                ret |= p[offset + 1] << 8;
167
            }
168
//            DPRINTF("%s: data offset %08x %04x\n", __func__, offset, ret);
169
            break;
170
        case 4:
171
            if (be) {
172
                ret = p[offset] << 24;
173
                ret |= p[offset + 1] << 16;
174
                ret |= p[offset + 2] << 8;
175
                ret |= p[offset + 3];
176
            } else {
177
                ret = p[offset];
178
                ret |= p[offset + 1] << 8;
179
                ret |= p[offset + 2] << 16;
180
                ret |= p[offset + 3] << 24;
181
            }
182
//            DPRINTF("%s: data offset %08x %08x\n", __func__, offset, ret);
183
            break;
184
        }
185
        break;
186
    case 0x90:
187
        /* flash ID read */
188
        switch (boff) {
189
        case 0x00:
190
        case 0x01:
191
            ret = pfl->ident[boff & 0x01];
192
            break;
193
        case 0x02:
194
            ret = 0x00; /* Pretend all sectors are unprotected */
195
            break;
196
        case 0x0E:
197
        case 0x0F:
198
            if (pfl->ident[2 + (boff & 0x01)] == (uint8_t)-1)
199
                goto flash_read;
200
            ret = pfl->ident[2 + (boff & 0x01)];
201
            break;
202
        default:
203
            goto flash_read;
204
        }
205
        DPRINTF("%s: ID " TARGET_FMT_plx " %x\n", __func__, boff, ret);
206
        break;
207
    case 0xA0:
208
    case 0x10:
209
    case 0x30:
210
        /* Status register read */
211
        ret = pfl->status;
212
        DPRINTF("%s: status %x\n", __func__, ret);
213
        /* Toggle bit 6 */
214
        pfl->status ^= 0x40;
215
        break;
216
    case 0x98:
217
        /* CFI query mode */
218
        if (boff > pfl->cfi_len)
219
            ret = 0;
220
        else
221
            ret = pfl->cfi_table[boff];
222
        break;
223
    }
224

    
225
    return ret;
226
}
227

    
228
/* update flash content on disk */
229
static void pflash_update(pflash_t *pfl, int offset,
230
                          int size)
231
{
232
    int offset_end;
233
    if (pfl->bs) {
234
        offset_end = offset + size;
235
        /* round to sectors */
236
        offset = offset >> 9;
237
        offset_end = (offset_end + 511) >> 9;
238
        bdrv_write(pfl->bs, offset, pfl->storage + (offset << 9),
239
                   offset_end - offset);
240
    }
241
}
242

    
243
static void pflash_write (pflash_t *pfl, target_phys_addr_t offset,
244
                          uint32_t value, int width, int be)
245
{
246
    target_phys_addr_t boff;
247
    uint8_t *p;
248
    uint8_t cmd;
249

    
250
    cmd = value;
251
    if (pfl->cmd != 0xA0 && cmd == 0xF0) {
252
#if 0
253
        DPRINTF("%s: flash reset asked (%02x %02x)\n",
254
                __func__, pfl->cmd, cmd);
255
#endif
256
        goto reset_flash;
257
    }
258
    DPRINTF("%s: offset " TARGET_FMT_plx " %08x %d %d\n", __func__,
259
            offset, value, width, pfl->wcycle);
260
    offset &= pfl->chip_len - 1;
261

    
262
    DPRINTF("%s: offset " TARGET_FMT_plx " %08x %d\n", __func__,
263
            offset, value, width);
264
    boff = offset & (pfl->sector_len - 1);
265
    if (pfl->width == 2)
266
        boff = boff >> 1;
267
    else if (pfl->width == 4)
268
        boff = boff >> 2;
269
    switch (pfl->wcycle) {
270
    case 0:
271
        /* Set the device in I/O access mode if required */
272
        if (pfl->rom_mode)
273
            pflash_register_memory(pfl, 0);
274
        pfl->read_counter = 0;
275
        /* We're in read mode */
276
    check_unlock0:
277
        if (boff == 0x55 && cmd == 0x98) {
278
        enter_CFI_mode:
279
            /* Enter CFI query mode */
280
            pfl->wcycle = 7;
281
            pfl->cmd = 0x98;
282
            return;
283
        }
284
        if (boff != pfl->unlock_addr[0] || cmd != 0xAA) {
285
            DPRINTF("%s: unlock0 failed " TARGET_FMT_plx " %02x %04x\n",
286
                    __func__, boff, cmd, pfl->unlock_addr[0]);
287
            goto reset_flash;
288
        }
289
        DPRINTF("%s: unlock sequence started\n", __func__);
290
        break;
291
    case 1:
292
        /* We started an unlock sequence */
293
    check_unlock1:
294
        if (boff != pfl->unlock_addr[1] || cmd != 0x55) {
295
            DPRINTF("%s: unlock1 failed " TARGET_FMT_plx " %02x\n", __func__,
296
                    boff, cmd);
297
            goto reset_flash;
298
        }
299
        DPRINTF("%s: unlock sequence done\n", __func__);
300
        break;
301
    case 2:
302
        /* We finished an unlock sequence */
303
        if (!pfl->bypass && boff != pfl->unlock_addr[0]) {
304
            DPRINTF("%s: command failed " TARGET_FMT_plx " %02x\n", __func__,
305
                    boff, cmd);
306
            goto reset_flash;
307
        }
308
        switch (cmd) {
309
        case 0x20:
310
            pfl->bypass = 1;
311
            goto do_bypass;
312
        case 0x80:
313
        case 0x90:
314
        case 0xA0:
315
            pfl->cmd = cmd;
316
            DPRINTF("%s: starting command %02x\n", __func__, cmd);
317
            break;
318
        default:
319
            DPRINTF("%s: unknown command %02x\n", __func__, cmd);
320
            goto reset_flash;
321
        }
322
        break;
323
    case 3:
324
        switch (pfl->cmd) {
325
        case 0x80:
326
            /* We need another unlock sequence */
327
            goto check_unlock0;
328
        case 0xA0:
329
            DPRINTF("%s: write data offset " TARGET_FMT_plx " %08x %d\n",
330
                    __func__, offset, value, width);
331
            p = pfl->storage;
332
            switch (width) {
333
            case 1:
334
                p[offset] &= value;
335
                pflash_update(pfl, offset, 1);
336
                break;
337
            case 2:
338
                if (be) {
339
                    p[offset] &= value >> 8;
340
                    p[offset + 1] &= value;
341
                } else {
342
                    p[offset] &= value;
343
                    p[offset + 1] &= value >> 8;
344
                }
345
                pflash_update(pfl, offset, 2);
346
                break;
347
            case 4:
348
                if (be) {
349
                    p[offset] &= value >> 24;
350
                    p[offset + 1] &= value >> 16;
351
                    p[offset + 2] &= value >> 8;
352
                    p[offset + 3] &= value;
353
                } else {
354
                    p[offset] &= value;
355
                    p[offset + 1] &= value >> 8;
356
                    p[offset + 2] &= value >> 16;
357
                    p[offset + 3] &= value >> 24;
358
                }
359
                pflash_update(pfl, offset, 4);
360
                break;
361
            }
362
            pfl->status = 0x00 | ~(value & 0x80);
363
            /* Let's pretend write is immediate */
364
            if (pfl->bypass)
365
                goto do_bypass;
366
            goto reset_flash;
367
        case 0x90:
368
            if (pfl->bypass && cmd == 0x00) {
369
                /* Unlock bypass reset */
370
                goto reset_flash;
371
            }
372
            /* We can enter CFI query mode from autoselect mode */
373
            if (boff == 0x55 && cmd == 0x98)
374
                goto enter_CFI_mode;
375
            /* No break here */
376
        default:
377
            DPRINTF("%s: invalid write for command %02x\n",
378
                    __func__, pfl->cmd);
379
            goto reset_flash;
380
        }
381
    case 4:
382
        switch (pfl->cmd) {
383
        case 0xA0:
384
            /* Ignore writes while flash data write is occurring */
385
            /* As we suppose write is immediate, this should never happen */
386
            return;
387
        case 0x80:
388
            goto check_unlock1;
389
        default:
390
            /* Should never happen */
391
            DPRINTF("%s: invalid command state %02x (wc 4)\n",
392
                    __func__, pfl->cmd);
393
            goto reset_flash;
394
        }
395
        break;
396
    case 5:
397
        switch (cmd) {
398
        case 0x10:
399
            if (boff != pfl->unlock_addr[0]) {
400
                DPRINTF("%s: chip erase: invalid address " TARGET_FMT_plx "\n",
401
                        __func__, offset);
402
                goto reset_flash;
403
            }
404
            /* Chip erase */
405
            DPRINTF("%s: start chip erase\n", __func__);
406
            memset(pfl->storage, 0xFF, pfl->chip_len);
407
            pfl->status = 0x00;
408
            pflash_update(pfl, 0, pfl->chip_len);
409
            /* Let's wait 5 seconds before chip erase is done */
410
            qemu_mod_timer(pfl->timer,
411
                           qemu_get_clock_ns(vm_clock) + (get_ticks_per_sec() * 5));
412
            break;
413
        case 0x30:
414
            /* Sector erase */
415
            p = pfl->storage;
416
            offset &= ~(pfl->sector_len - 1);
417
            DPRINTF("%s: start sector erase at " TARGET_FMT_plx "\n", __func__,
418
                    offset);
419
            memset(p + offset, 0xFF, pfl->sector_len);
420
            pflash_update(pfl, offset, pfl->sector_len);
421
            pfl->status = 0x00;
422
            /* Let's wait 1/2 second before sector erase is done */
423
            qemu_mod_timer(pfl->timer,
424
                           qemu_get_clock_ns(vm_clock) + (get_ticks_per_sec() / 2));
425
            break;
426
        default:
427
            DPRINTF("%s: invalid command %02x (wc 5)\n", __func__, cmd);
428
            goto reset_flash;
429
        }
430
        pfl->cmd = cmd;
431
        break;
432
    case 6:
433
        switch (pfl->cmd) {
434
        case 0x10:
435
            /* Ignore writes during chip erase */
436
            return;
437
        case 0x30:
438
            /* Ignore writes during sector erase */
439
            return;
440
        default:
441
            /* Should never happen */
442
            DPRINTF("%s: invalid command state %02x (wc 6)\n",
443
                    __func__, pfl->cmd);
444
            goto reset_flash;
445
        }
446
        break;
447
    case 7: /* Special value for CFI queries */
448
        DPRINTF("%s: invalid write in CFI query mode\n", __func__);
449
        goto reset_flash;
450
    default:
451
        /* Should never happen */
452
        DPRINTF("%s: invalid write state (wc 7)\n",  __func__);
453
        goto reset_flash;
454
    }
455
    pfl->wcycle++;
456

    
457
    return;
458

    
459
    /* Reset flash */
460
 reset_flash:
461
    pfl->bypass = 0;
462
    pfl->wcycle = 0;
463
    pfl->cmd = 0;
464
    return;
465

    
466
 do_bypass:
467
    pfl->wcycle = 2;
468
    pfl->cmd = 0;
469
    return;
470
}
471

    
472

    
473
static uint32_t pflash_readb_be(void *opaque, target_phys_addr_t addr)
474
{
475
    return pflash_read(opaque, addr, 1, 1);
476
}
477

    
478
static uint32_t pflash_readb_le(void *opaque, target_phys_addr_t addr)
479
{
480
    return pflash_read(opaque, addr, 1, 0);
481
}
482

    
483
static uint32_t pflash_readw_be(void *opaque, target_phys_addr_t addr)
484
{
485
    pflash_t *pfl = opaque;
486

    
487
    return pflash_read(pfl, addr, 2, 1);
488
}
489

    
490
static uint32_t pflash_readw_le(void *opaque, target_phys_addr_t addr)
491
{
492
    pflash_t *pfl = opaque;
493

    
494
    return pflash_read(pfl, addr, 2, 0);
495
}
496

    
497
static uint32_t pflash_readl_be(void *opaque, target_phys_addr_t addr)
498
{
499
    pflash_t *pfl = opaque;
500

    
501
    return pflash_read(pfl, addr, 4, 1);
502
}
503

    
504
static uint32_t pflash_readl_le(void *opaque, target_phys_addr_t addr)
505
{
506
    pflash_t *pfl = opaque;
507

    
508
    return pflash_read(pfl, addr, 4, 0);
509
}
510

    
511
static void pflash_writeb_be(void *opaque, target_phys_addr_t addr,
512
                             uint32_t value)
513
{
514
    pflash_write(opaque, addr, value, 1, 1);
515
}
516

    
517
static void pflash_writeb_le(void *opaque, target_phys_addr_t addr,
518
                             uint32_t value)
519
{
520
    pflash_write(opaque, addr, value, 1, 0);
521
}
522

    
523
static void pflash_writew_be(void *opaque, target_phys_addr_t addr,
524
                             uint32_t value)
525
{
526
    pflash_t *pfl = opaque;
527

    
528
    pflash_write(pfl, addr, value, 2, 1);
529
}
530

    
531
static void pflash_writew_le(void *opaque, target_phys_addr_t addr,
532
                             uint32_t value)
533
{
534
    pflash_t *pfl = opaque;
535

    
536
    pflash_write(pfl, addr, value, 2, 0);
537
}
538

    
539
static void pflash_writel_be(void *opaque, target_phys_addr_t addr,
540
                             uint32_t value)
541
{
542
    pflash_t *pfl = opaque;
543

    
544
    pflash_write(pfl, addr, value, 4, 1);
545
}
546

    
547
static void pflash_writel_le(void *opaque, target_phys_addr_t addr,
548
                             uint32_t value)
549
{
550
    pflash_t *pfl = opaque;
551

    
552
    pflash_write(pfl, addr, value, 4, 0);
553
}
554

    
555
static const MemoryRegionOps pflash_cfi02_ops_be = {
556
    .old_mmio = {
557
        .read = { pflash_readb_be, pflash_readw_be, pflash_readl_be, },
558
        .write = { pflash_writeb_be, pflash_writew_be, pflash_writel_be, },
559
    },
560
    .endianness = DEVICE_NATIVE_ENDIAN,
561
};
562

    
563
static const MemoryRegionOps pflash_cfi02_ops_le = {
564
    .old_mmio = {
565
        .read = { pflash_readb_le, pflash_readw_le, pflash_readl_le, },
566
        .write = { pflash_writeb_le, pflash_writew_le, pflash_writel_le, },
567
    },
568
    .endianness = DEVICE_NATIVE_ENDIAN,
569
};
570

    
571
/* Count trailing zeroes of a 32 bits quantity */
572
static int ctz32 (uint32_t n)
573
{
574
    int ret;
575

    
576
    ret = 0;
577
    if (!(n & 0xFFFF)) {
578
        ret += 16;
579
        n = n >> 16;
580
    }
581
    if (!(n & 0xFF)) {
582
        ret += 8;
583
        n = n >> 8;
584
    }
585
    if (!(n & 0xF)) {
586
        ret += 4;
587
        n = n >> 4;
588
    }
589
    if (!(n & 0x3)) {
590
        ret += 2;
591
        n = n >> 2;
592
    }
593
    if (!(n & 0x1)) {
594
        ret++;
595
#if 0 /* This is not necessary as n is never 0 */
596
        n = n >> 1;
597
#endif
598
    }
599
#if 0 /* This is not necessary as n is never 0 */
600
    if (!n)
601
        ret++;
602
#endif
603

    
604
    return ret;
605
}
606

    
607
pflash_t *pflash_cfi02_register(target_phys_addr_t base,
608
                                DeviceState *qdev, const char *name,
609
                                target_phys_addr_t size,
610
                                BlockDriverState *bs, uint32_t sector_len,
611
                                int nb_blocs, int nb_mappings, int width,
612
                                uint16_t id0, uint16_t id1,
613
                                uint16_t id2, uint16_t id3,
614
                                uint16_t unlock_addr0, uint16_t unlock_addr1,
615
                                int be)
616
{
617
    pflash_t *pfl;
618
    int32_t chip_len;
619
    int ret;
620

    
621
    chip_len = sector_len * nb_blocs;
622
    /* XXX: to be fixed */
623
#if 0
624
    if (total_len != (8 * 1024 * 1024) && total_len != (16 * 1024 * 1024) &&
625
        total_len != (32 * 1024 * 1024) && total_len != (64 * 1024 * 1024))
626
        return NULL;
627
#endif
628
    pfl = g_malloc0(sizeof(pflash_t));
629
    memory_region_init_rom_device(
630
        &pfl->orig_mem, be ? &pflash_cfi02_ops_be : &pflash_cfi02_ops_le, pfl,
631
        qdev, name, size);
632
    pfl->storage = memory_region_get_ram_ptr(&pfl->orig_mem);
633
    pfl->base = base;
634
    pfl->chip_len = chip_len;
635
    pfl->mappings = nb_mappings;
636
    pfl->bs = bs;
637
    if (pfl->bs) {
638
        /* read the initial flash content */
639
        ret = bdrv_read(pfl->bs, 0, pfl->storage, chip_len >> 9);
640
        if (ret < 0) {
641
            g_free(pfl);
642
            return NULL;
643
        }
644
        bdrv_attach_dev_nofail(pfl->bs, pfl);
645
    }
646
    pflash_setup_mappings(pfl);
647
    pfl->rom_mode = 1;
648
    memory_region_add_subregion(get_system_memory(), pfl->base, &pfl->mem);
649
#if 0 /* XXX: there should be a bit to set up read-only,
650
       *      the same way the hardware does (with WP pin).
651
       */
652
    pfl->ro = 1;
653
#else
654
    pfl->ro = 0;
655
#endif
656
    pfl->timer = qemu_new_timer_ns(vm_clock, pflash_timer, pfl);
657
    pfl->sector_len = sector_len;
658
    pfl->width = width;
659
    pfl->wcycle = 0;
660
    pfl->cmd = 0;
661
    pfl->status = 0;
662
    pfl->ident[0] = id0;
663
    pfl->ident[1] = id1;
664
    pfl->ident[2] = id2;
665
    pfl->ident[3] = id3;
666
    pfl->unlock_addr[0] = unlock_addr0;
667
    pfl->unlock_addr[1] = unlock_addr1;
668
    /* Hardcoded CFI table (mostly from SG29 Spansion flash) */
669
    pfl->cfi_len = 0x52;
670
    /* Standard "QRY" string */
671
    pfl->cfi_table[0x10] = 'Q';
672
    pfl->cfi_table[0x11] = 'R';
673
    pfl->cfi_table[0x12] = 'Y';
674
    /* Command set (AMD/Fujitsu) */
675
    pfl->cfi_table[0x13] = 0x02;
676
    pfl->cfi_table[0x14] = 0x00;
677
    /* Primary extended table address */
678
    pfl->cfi_table[0x15] = 0x31;
679
    pfl->cfi_table[0x16] = 0x00;
680
    /* Alternate command set (none) */
681
    pfl->cfi_table[0x17] = 0x00;
682
    pfl->cfi_table[0x18] = 0x00;
683
    /* Alternate extended table (none) */
684
    pfl->cfi_table[0x19] = 0x00;
685
    pfl->cfi_table[0x1A] = 0x00;
686
    /* Vcc min */
687
    pfl->cfi_table[0x1B] = 0x27;
688
    /* Vcc max */
689
    pfl->cfi_table[0x1C] = 0x36;
690
    /* Vpp min (no Vpp pin) */
691
    pfl->cfi_table[0x1D] = 0x00;
692
    /* Vpp max (no Vpp pin) */
693
    pfl->cfi_table[0x1E] = 0x00;
694
    /* Reserved */
695
    pfl->cfi_table[0x1F] = 0x07;
696
    /* Timeout for min size buffer write (NA) */
697
    pfl->cfi_table[0x20] = 0x00;
698
    /* Typical timeout for block erase (512 ms) */
699
    pfl->cfi_table[0x21] = 0x09;
700
    /* Typical timeout for full chip erase (4096 ms) */
701
    pfl->cfi_table[0x22] = 0x0C;
702
    /* Reserved */
703
    pfl->cfi_table[0x23] = 0x01;
704
    /* Max timeout for buffer write (NA) */
705
    pfl->cfi_table[0x24] = 0x00;
706
    /* Max timeout for block erase */
707
    pfl->cfi_table[0x25] = 0x0A;
708
    /* Max timeout for chip erase */
709
    pfl->cfi_table[0x26] = 0x0D;
710
    /* Device size */
711
    pfl->cfi_table[0x27] = ctz32(chip_len);
712
    /* Flash device interface (8 & 16 bits) */
713
    pfl->cfi_table[0x28] = 0x02;
714
    pfl->cfi_table[0x29] = 0x00;
715
    /* Max number of bytes in multi-bytes write */
716
    /* XXX: disable buffered write as it's not supported */
717
    //    pfl->cfi_table[0x2A] = 0x05;
718
    pfl->cfi_table[0x2A] = 0x00;
719
    pfl->cfi_table[0x2B] = 0x00;
720
    /* Number of erase block regions (uniform) */
721
    pfl->cfi_table[0x2C] = 0x01;
722
    /* Erase block region 1 */
723
    pfl->cfi_table[0x2D] = nb_blocs - 1;
724
    pfl->cfi_table[0x2E] = (nb_blocs - 1) >> 8;
725
    pfl->cfi_table[0x2F] = sector_len >> 8;
726
    pfl->cfi_table[0x30] = sector_len >> 16;
727

    
728
    /* Extended */
729
    pfl->cfi_table[0x31] = 'P';
730
    pfl->cfi_table[0x32] = 'R';
731
    pfl->cfi_table[0x33] = 'I';
732

    
733
    pfl->cfi_table[0x34] = '1';
734
    pfl->cfi_table[0x35] = '0';
735

    
736
    pfl->cfi_table[0x36] = 0x00;
737
    pfl->cfi_table[0x37] = 0x00;
738
    pfl->cfi_table[0x38] = 0x00;
739
    pfl->cfi_table[0x39] = 0x00;
740

    
741
    pfl->cfi_table[0x3a] = 0x00;
742

    
743
    pfl->cfi_table[0x3b] = 0x00;
744
    pfl->cfi_table[0x3c] = 0x00;
745

    
746
    return pfl;
747
}