Statistics
| Branch: | Revision:

root / hw / pxa2xx.c @ b0eb8449

History | View | Annotate | Download (67.2 kB)

1
/*
2
 * Intel XScale PXA255/270 processor support.
3
 *
4
 * Copyright (c) 2006 Openedhand Ltd.
5
 * Written by Andrzej Zaborowski <balrog@zabor.org>
6
 *
7
 * This code is licensed under the GPL.
8
 */
9

    
10
#include "sysbus.h"
11
#include "pxa.h"
12
#include "sysemu.h"
13
#include "pc.h"
14
#include "i2c.h"
15
#include "ssi.h"
16
#include "qemu-char.h"
17
#include "blockdev.h"
18

    
19
static struct {
20
    target_phys_addr_t io_base;
21
    int irqn;
22
} pxa255_serial[] = {
23
    { 0x40100000, PXA2XX_PIC_FFUART },
24
    { 0x40200000, PXA2XX_PIC_BTUART },
25
    { 0x40700000, PXA2XX_PIC_STUART },
26
    { 0x41600000, PXA25X_PIC_HWUART },
27
    { 0, 0 }
28
}, pxa270_serial[] = {
29
    { 0x40100000, PXA2XX_PIC_FFUART },
30
    { 0x40200000, PXA2XX_PIC_BTUART },
31
    { 0x40700000, PXA2XX_PIC_STUART },
32
    { 0, 0 }
33
};
34

    
35
typedef struct PXASSPDef {
36
    target_phys_addr_t io_base;
37
    int irqn;
38
} PXASSPDef;
39

    
40
#if 0
41
static PXASSPDef pxa250_ssp[] = {
42
    { 0x41000000, PXA2XX_PIC_SSP },
43
    { 0, 0 }
44
};
45
#endif
46

    
47
static PXASSPDef pxa255_ssp[] = {
48
    { 0x41000000, PXA2XX_PIC_SSP },
49
    { 0x41400000, PXA25X_PIC_NSSP },
50
    { 0, 0 }
51
};
52

    
53
#if 0
54
static PXASSPDef pxa26x_ssp[] = {
55
    { 0x41000000, PXA2XX_PIC_SSP },
56
    { 0x41400000, PXA25X_PIC_NSSP },
57
    { 0x41500000, PXA26X_PIC_ASSP },
58
    { 0, 0 }
59
};
60
#endif
61

    
62
static PXASSPDef pxa27x_ssp[] = {
63
    { 0x41000000, PXA2XX_PIC_SSP },
64
    { 0x41700000, PXA27X_PIC_SSP2 },
65
    { 0x41900000, PXA2XX_PIC_SSP3 },
66
    { 0, 0 }
67
};
68

    
69
#define PMCR        0x00        /* Power Manager Control register */
70
#define PSSR        0x04        /* Power Manager Sleep Status register */
71
#define PSPR        0x08        /* Power Manager Scratch-Pad register */
72
#define PWER        0x0c        /* Power Manager Wake-Up Enable register */
73
#define PRER        0x10        /* Power Manager Rising-Edge Detect Enable register */
74
#define PFER        0x14        /* Power Manager Falling-Edge Detect Enable register */
75
#define PEDR        0x18        /* Power Manager Edge-Detect Status register */
76
#define PCFR        0x1c        /* Power Manager General Configuration register */
77
#define PGSR0        0x20        /* Power Manager GPIO Sleep-State register 0 */
78
#define PGSR1        0x24        /* Power Manager GPIO Sleep-State register 1 */
79
#define PGSR2        0x28        /* Power Manager GPIO Sleep-State register 2 */
80
#define PGSR3        0x2c        /* Power Manager GPIO Sleep-State register 3 */
81
#define RCSR        0x30        /* Reset Controller Status register */
82
#define PSLR        0x34        /* Power Manager Sleep Configuration register */
83
#define PTSR        0x38        /* Power Manager Standby Configuration register */
84
#define PVCR        0x40        /* Power Manager Voltage Change Control register */
85
#define PUCR        0x4c        /* Power Manager USIM Card Control/Status register */
86
#define PKWR        0x50        /* Power Manager Keyboard Wake-Up Enable register */
87
#define PKSR        0x54        /* Power Manager Keyboard Level-Detect Status */
88
#define PCMD0        0x80        /* Power Manager I2C Command register File 0 */
89
#define PCMD31        0xfc        /* Power Manager I2C Command register File 31 */
90

    
91
static uint64_t pxa2xx_pm_read(void *opaque, target_phys_addr_t addr,
92
                               unsigned size)
93
{
94
    PXA2xxState *s = (PXA2xxState *) opaque;
95

    
96
    switch (addr) {
97
    case PMCR ... PCMD31:
98
        if (addr & 3)
99
            goto fail;
100

    
101
        return s->pm_regs[addr >> 2];
102
    default:
103
    fail:
104
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
105
        break;
106
    }
107
    return 0;
108
}
109

    
110
static void pxa2xx_pm_write(void *opaque, target_phys_addr_t addr,
111
                            uint64_t value, unsigned size)
112
{
113
    PXA2xxState *s = (PXA2xxState *) opaque;
114

    
115
    switch (addr) {
116
    case PMCR:
117
        s->pm_regs[addr >> 2] &= 0x15 & ~(value & 0x2a);
118
        s->pm_regs[addr >> 2] |= value & 0x15;
119
        break;
120

    
121
    case PSSR:        /* Read-clean registers */
122
    case RCSR:
123
    case PKSR:
124
        s->pm_regs[addr >> 2] &= ~value;
125
        break;
126

    
127
    default:        /* Read-write registers */
128
        if (!(addr & 3)) {
129
            s->pm_regs[addr >> 2] = value;
130
            break;
131
        }
132

    
133
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
134
        break;
135
    }
136
}
137

    
138
static const MemoryRegionOps pxa2xx_pm_ops = {
139
    .read = pxa2xx_pm_read,
140
    .write = pxa2xx_pm_write,
141
    .endianness = DEVICE_NATIVE_ENDIAN,
142
};
143

    
144
static const VMStateDescription vmstate_pxa2xx_pm = {
145
    .name = "pxa2xx_pm",
146
    .version_id = 0,
147
    .minimum_version_id = 0,
148
    .minimum_version_id_old = 0,
149
    .fields      = (VMStateField[]) {
150
        VMSTATE_UINT32_ARRAY(pm_regs, PXA2xxState, 0x40),
151
        VMSTATE_END_OF_LIST()
152
    }
153
};
154

    
155
#define CCCR        0x00        /* Core Clock Configuration register */
156
#define CKEN        0x04        /* Clock Enable register */
157
#define OSCC        0x08        /* Oscillator Configuration register */
158
#define CCSR        0x0c        /* Core Clock Status register */
159

    
160
static uint64_t pxa2xx_cm_read(void *opaque, target_phys_addr_t addr,
161
                               unsigned size)
162
{
163
    PXA2xxState *s = (PXA2xxState *) opaque;
164

    
165
    switch (addr) {
166
    case CCCR:
167
    case CKEN:
168
    case OSCC:
169
        return s->cm_regs[addr >> 2];
170

    
171
    case CCSR:
172
        return s->cm_regs[CCCR >> 2] | (3 << 28);
173

    
174
    default:
175
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
176
        break;
177
    }
178
    return 0;
179
}
180

    
181
static void pxa2xx_cm_write(void *opaque, target_phys_addr_t addr,
182
                            uint64_t value, unsigned size)
183
{
184
    PXA2xxState *s = (PXA2xxState *) opaque;
185

    
186
    switch (addr) {
187
    case CCCR:
188
    case CKEN:
189
        s->cm_regs[addr >> 2] = value;
190
        break;
191

    
192
    case OSCC:
193
        s->cm_regs[addr >> 2] &= ~0x6c;
194
        s->cm_regs[addr >> 2] |= value & 0x6e;
195
        if ((value >> 1) & 1)                        /* OON */
196
            s->cm_regs[addr >> 2] |= 1 << 0;        /* Oscillator is now stable */
197
        break;
198

    
199
    default:
200
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
201
        break;
202
    }
203
}
204

    
205
static const MemoryRegionOps pxa2xx_cm_ops = {
206
    .read = pxa2xx_cm_read,
207
    .write = pxa2xx_cm_write,
208
    .endianness = DEVICE_NATIVE_ENDIAN,
209
};
210

    
211
static const VMStateDescription vmstate_pxa2xx_cm = {
212
    .name = "pxa2xx_cm",
213
    .version_id = 0,
214
    .minimum_version_id = 0,
215
    .minimum_version_id_old = 0,
216
    .fields      = (VMStateField[]) {
217
        VMSTATE_UINT32_ARRAY(cm_regs, PXA2xxState, 4),
218
        VMSTATE_UINT32(clkcfg, PXA2xxState),
219
        VMSTATE_UINT32(pmnc, PXA2xxState),
220
        VMSTATE_END_OF_LIST()
221
    }
222
};
223

    
224
static uint32_t pxa2xx_clkpwr_read(void *opaque, int op2, int reg, int crm)
225
{
226
    PXA2xxState *s = (PXA2xxState *) opaque;
227

    
228
    switch (reg) {
229
    case 6:        /* Clock Configuration register */
230
        return s->clkcfg;
231

    
232
    case 7:        /* Power Mode register */
233
        return 0;
234

    
235
    default:
236
        printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
237
        break;
238
    }
239
    return 0;
240
}
241

    
242
static void pxa2xx_clkpwr_write(void *opaque, int op2, int reg, int crm,
243
                uint32_t value)
244
{
245
    PXA2xxState *s = (PXA2xxState *) opaque;
246
    static const char *pwrmode[8] = {
247
        "Normal", "Idle", "Deep-idle", "Standby",
248
        "Sleep", "reserved (!)", "reserved (!)", "Deep-sleep",
249
    };
250

    
251
    switch (reg) {
252
    case 6:        /* Clock Configuration register */
253
        s->clkcfg = value & 0xf;
254
        if (value & 2)
255
            printf("%s: CPU frequency change attempt\n", __FUNCTION__);
256
        break;
257

    
258
    case 7:        /* Power Mode register */
259
        if (value & 8)
260
            printf("%s: CPU voltage change attempt\n", __FUNCTION__);
261
        switch (value & 7) {
262
        case 0:
263
            /* Do nothing */
264
            break;
265

    
266
        case 1:
267
            /* Idle */
268
            if (!(s->cm_regs[CCCR >> 2] & (1 << 31))) {        /* CPDIS */
269
                cpu_interrupt(s->env, CPU_INTERRUPT_HALT);
270
                break;
271
            }
272
            /* Fall through.  */
273

    
274
        case 2:
275
            /* Deep-Idle */
276
            cpu_interrupt(s->env, CPU_INTERRUPT_HALT);
277
            s->pm_regs[RCSR >> 2] |= 0x8;        /* Set GPR */
278
            goto message;
279

    
280
        case 3:
281
            s->env->uncached_cpsr =
282
                    ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
283
            s->env->cp15.c1_sys = 0;
284
            s->env->cp15.c1_coproc = 0;
285
            s->env->cp15.c2_base0 = 0;
286
            s->env->cp15.c3 = 0;
287
            s->pm_regs[PSSR >> 2] |= 0x8;        /* Set STS */
288
            s->pm_regs[RCSR >> 2] |= 0x8;        /* Set GPR */
289

    
290
            /*
291
             * The scratch-pad register is almost universally used
292
             * for storing the return address on suspend.  For the
293
             * lack of a resuming bootloader, perform a jump
294
             * directly to that address.
295
             */
296
            memset(s->env->regs, 0, 4 * 15);
297
            s->env->regs[15] = s->pm_regs[PSPR >> 2];
298

    
299
#if 0
300
            buffer = 0xe59ff000;        /* ldr     pc, [pc, #0] */
301
            cpu_physical_memory_write(0, &buffer, 4);
302
            buffer = s->pm_regs[PSPR >> 2];
303
            cpu_physical_memory_write(8, &buffer, 4);
304
#endif
305

    
306
            /* Suspend */
307
            cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HALT);
308

    
309
            goto message;
310

    
311
        default:
312
        message:
313
            printf("%s: machine entered %s mode\n", __FUNCTION__,
314
                            pwrmode[value & 7]);
315
        }
316
        break;
317

    
318
    default:
319
        printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
320
        break;
321
    }
322
}
323

    
324
/* Performace Monitoring Registers */
325
#define CPPMNC                0        /* Performance Monitor Control register */
326
#define CPCCNT                1        /* Clock Counter register */
327
#define CPINTEN                4        /* Interrupt Enable register */
328
#define CPFLAG                5        /* Overflow Flag register */
329
#define CPEVTSEL        8        /* Event Selection register */
330

    
331
#define CPPMN0                0        /* Performance Count register 0 */
332
#define CPPMN1                1        /* Performance Count register 1 */
333
#define CPPMN2                2        /* Performance Count register 2 */
334
#define CPPMN3                3        /* Performance Count register 3 */
335

    
336
static uint32_t pxa2xx_perf_read(void *opaque, int op2, int reg, int crm)
337
{
338
    PXA2xxState *s = (PXA2xxState *) opaque;
339

    
340
    switch (reg) {
341
    case CPPMNC:
342
        return s->pmnc;
343
    case CPCCNT:
344
        if (s->pmnc & 1)
345
            return qemu_get_clock_ns(vm_clock);
346
        else
347
            return 0;
348
    case CPINTEN:
349
    case CPFLAG:
350
    case CPEVTSEL:
351
        return 0;
352

    
353
    default:
354
        printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
355
        break;
356
    }
357
    return 0;
358
}
359

    
360
static void pxa2xx_perf_write(void *opaque, int op2, int reg, int crm,
361
                uint32_t value)
362
{
363
    PXA2xxState *s = (PXA2xxState *) opaque;
364

    
365
    switch (reg) {
366
    case CPPMNC:
367
        s->pmnc = value;
368
        break;
369

    
370
    case CPCCNT:
371
    case CPINTEN:
372
    case CPFLAG:
373
    case CPEVTSEL:
374
        break;
375

    
376
    default:
377
        printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
378
        break;
379
    }
380
}
381

    
382
static uint32_t pxa2xx_cp14_read(void *opaque, int op2, int reg, int crm)
383
{
384
    switch (crm) {
385
    case 0:
386
        return pxa2xx_clkpwr_read(opaque, op2, reg, crm);
387
    case 1:
388
        return pxa2xx_perf_read(opaque, op2, reg, crm);
389
    case 2:
390
        switch (reg) {
391
        case CPPMN0:
392
        case CPPMN1:
393
        case CPPMN2:
394
        case CPPMN3:
395
            return 0;
396
        }
397
        /* Fall through */
398
    default:
399
        printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
400
        break;
401
    }
402
    return 0;
403
}
404

    
405
static void pxa2xx_cp14_write(void *opaque, int op2, int reg, int crm,
406
                uint32_t value)
407
{
408
    switch (crm) {
409
    case 0:
410
        pxa2xx_clkpwr_write(opaque, op2, reg, crm, value);
411
        break;
412
    case 1:
413
        pxa2xx_perf_write(opaque, op2, reg, crm, value);
414
        break;
415
    case 2:
416
        switch (reg) {
417
        case CPPMN0:
418
        case CPPMN1:
419
        case CPPMN2:
420
        case CPPMN3:
421
            return;
422
        }
423
        /* Fall through */
424
    default:
425
        printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
426
        break;
427
    }
428
}
429

    
430
#define MDCNFG                0x00        /* SDRAM Configuration register */
431
#define MDREFR                0x04        /* SDRAM Refresh Control register */
432
#define MSC0                0x08        /* Static Memory Control register 0 */
433
#define MSC1                0x0c        /* Static Memory Control register 1 */
434
#define MSC2                0x10        /* Static Memory Control register 2 */
435
#define MECR                0x14        /* Expansion Memory Bus Config register */
436
#define SXCNFG                0x1c        /* Synchronous Static Memory Config register */
437
#define MCMEM0                0x28        /* PC Card Memory Socket 0 Timing register */
438
#define MCMEM1                0x2c        /* PC Card Memory Socket 1 Timing register */
439
#define MCATT0                0x30        /* PC Card Attribute Socket 0 register */
440
#define MCATT1                0x34        /* PC Card Attribute Socket 1 register */
441
#define MCIO0                0x38        /* PC Card I/O Socket 0 Timing register */
442
#define MCIO1                0x3c        /* PC Card I/O Socket 1 Timing register */
443
#define MDMRS                0x40        /* SDRAM Mode Register Set Config register */
444
#define BOOT_DEF        0x44        /* Boot-time Default Configuration register */
445
#define ARB_CNTL        0x48        /* Arbiter Control register */
446
#define BSCNTR0                0x4c        /* Memory Buffer Strength Control register 0 */
447
#define BSCNTR1                0x50        /* Memory Buffer Strength Control register 1 */
448
#define LCDBSCNTR        0x54        /* LCD Buffer Strength Control register */
449
#define MDMRSLP                0x58        /* Low Power SDRAM Mode Set Config register */
450
#define BSCNTR2                0x5c        /* Memory Buffer Strength Control register 2 */
451
#define BSCNTR3                0x60        /* Memory Buffer Strength Control register 3 */
452
#define SA1110                0x64        /* SA-1110 Memory Compatibility register */
453

    
454
static uint64_t pxa2xx_mm_read(void *opaque, target_phys_addr_t addr,
455
                               unsigned size)
456
{
457
    PXA2xxState *s = (PXA2xxState *) opaque;
458

    
459
    switch (addr) {
460
    case MDCNFG ... SA1110:
461
        if ((addr & 3) == 0)
462
            return s->mm_regs[addr >> 2];
463

    
464
    default:
465
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
466
        break;
467
    }
468
    return 0;
469
}
470

    
471
static void pxa2xx_mm_write(void *opaque, target_phys_addr_t addr,
472
                            uint64_t value, unsigned size)
473
{
474
    PXA2xxState *s = (PXA2xxState *) opaque;
475

    
476
    switch (addr) {
477
    case MDCNFG ... SA1110:
478
        if ((addr & 3) == 0) {
479
            s->mm_regs[addr >> 2] = value;
480
            break;
481
        }
482

    
483
    default:
484
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
485
        break;
486
    }
487
}
488

    
489
static const MemoryRegionOps pxa2xx_mm_ops = {
490
    .read = pxa2xx_mm_read,
491
    .write = pxa2xx_mm_write,
492
    .endianness = DEVICE_NATIVE_ENDIAN,
493
};
494

    
495
static const VMStateDescription vmstate_pxa2xx_mm = {
496
    .name = "pxa2xx_mm",
497
    .version_id = 0,
498
    .minimum_version_id = 0,
499
    .minimum_version_id_old = 0,
500
    .fields      = (VMStateField[]) {
501
        VMSTATE_UINT32_ARRAY(mm_regs, PXA2xxState, 0x1a),
502
        VMSTATE_END_OF_LIST()
503
    }
504
};
505

    
506
/* Synchronous Serial Ports */
507
typedef struct {
508
    SysBusDevice busdev;
509
    MemoryRegion iomem;
510
    qemu_irq irq;
511
    int enable;
512
    SSIBus *bus;
513

    
514
    uint32_t sscr[2];
515
    uint32_t sspsp;
516
    uint32_t ssto;
517
    uint32_t ssitr;
518
    uint32_t sssr;
519
    uint8_t sstsa;
520
    uint8_t ssrsa;
521
    uint8_t ssacd;
522

    
523
    uint32_t rx_fifo[16];
524
    int rx_level;
525
    int rx_start;
526
} PXA2xxSSPState;
527

    
528
#define SSCR0        0x00        /* SSP Control register 0 */
529
#define SSCR1        0x04        /* SSP Control register 1 */
530
#define SSSR        0x08        /* SSP Status register */
531
#define SSITR        0x0c        /* SSP Interrupt Test register */
532
#define SSDR        0x10        /* SSP Data register */
533
#define SSTO        0x28        /* SSP Time-Out register */
534
#define SSPSP        0x2c        /* SSP Programmable Serial Protocol register */
535
#define SSTSA        0x30        /* SSP TX Time Slot Active register */
536
#define SSRSA        0x34        /* SSP RX Time Slot Active register */
537
#define SSTSS        0x38        /* SSP Time Slot Status register */
538
#define SSACD        0x3c        /* SSP Audio Clock Divider register */
539

    
540
/* Bitfields for above registers */
541
#define SSCR0_SPI(x)        (((x) & 0x30) == 0x00)
542
#define SSCR0_SSP(x)        (((x) & 0x30) == 0x10)
543
#define SSCR0_UWIRE(x)        (((x) & 0x30) == 0x20)
544
#define SSCR0_PSP(x)        (((x) & 0x30) == 0x30)
545
#define SSCR0_SSE        (1 << 7)
546
#define SSCR0_RIM        (1 << 22)
547
#define SSCR0_TIM        (1 << 23)
548
#define SSCR0_MOD        (1 << 31)
549
#define SSCR0_DSS(x)        (((((x) >> 16) & 0x10) | ((x) & 0xf)) + 1)
550
#define SSCR1_RIE        (1 << 0)
551
#define SSCR1_TIE        (1 << 1)
552
#define SSCR1_LBM        (1 << 2)
553
#define SSCR1_MWDS        (1 << 5)
554
#define SSCR1_TFT(x)        ((((x) >> 6) & 0xf) + 1)
555
#define SSCR1_RFT(x)        ((((x) >> 10) & 0xf) + 1)
556
#define SSCR1_EFWR        (1 << 14)
557
#define SSCR1_PINTE        (1 << 18)
558
#define SSCR1_TINTE        (1 << 19)
559
#define SSCR1_RSRE        (1 << 20)
560
#define SSCR1_TSRE        (1 << 21)
561
#define SSCR1_EBCEI        (1 << 29)
562
#define SSITR_INT        (7 << 5)
563
#define SSSR_TNF        (1 << 2)
564
#define SSSR_RNE        (1 << 3)
565
#define SSSR_TFS        (1 << 5)
566
#define SSSR_RFS        (1 << 6)
567
#define SSSR_ROR        (1 << 7)
568
#define SSSR_PINT        (1 << 18)
569
#define SSSR_TINT        (1 << 19)
570
#define SSSR_EOC        (1 << 20)
571
#define SSSR_TUR        (1 << 21)
572
#define SSSR_BCE        (1 << 23)
573
#define SSSR_RW                0x00bc0080
574

    
575
static void pxa2xx_ssp_int_update(PXA2xxSSPState *s)
576
{
577
    int level = 0;
578

    
579
    level |= s->ssitr & SSITR_INT;
580
    level |= (s->sssr & SSSR_BCE)  &&  (s->sscr[1] & SSCR1_EBCEI);
581
    level |= (s->sssr & SSSR_TUR)  && !(s->sscr[0] & SSCR0_TIM);
582
    level |= (s->sssr & SSSR_EOC)  &&  (s->sssr & (SSSR_TINT | SSSR_PINT));
583
    level |= (s->sssr & SSSR_TINT) &&  (s->sscr[1] & SSCR1_TINTE);
584
    level |= (s->sssr & SSSR_PINT) &&  (s->sscr[1] & SSCR1_PINTE);
585
    level |= (s->sssr & SSSR_ROR)  && !(s->sscr[0] & SSCR0_RIM);
586
    level |= (s->sssr & SSSR_RFS)  &&  (s->sscr[1] & SSCR1_RIE);
587
    level |= (s->sssr & SSSR_TFS)  &&  (s->sscr[1] & SSCR1_TIE);
588
    qemu_set_irq(s->irq, !!level);
589
}
590

    
591
static void pxa2xx_ssp_fifo_update(PXA2xxSSPState *s)
592
{
593
    s->sssr &= ~(0xf << 12);        /* Clear RFL */
594
    s->sssr &= ~(0xf << 8);        /* Clear TFL */
595
    s->sssr &= ~SSSR_TFS;
596
    s->sssr &= ~SSSR_TNF;
597
    if (s->enable) {
598
        s->sssr |= ((s->rx_level - 1) & 0xf) << 12;
599
        if (s->rx_level >= SSCR1_RFT(s->sscr[1]))
600
            s->sssr |= SSSR_RFS;
601
        else
602
            s->sssr &= ~SSSR_RFS;
603
        if (s->rx_level)
604
            s->sssr |= SSSR_RNE;
605
        else
606
            s->sssr &= ~SSSR_RNE;
607
        /* TX FIFO is never filled, so it is always in underrun
608
           condition if SSP is enabled */
609
        s->sssr |= SSSR_TFS;
610
        s->sssr |= SSSR_TNF;
611
    }
612

    
613
    pxa2xx_ssp_int_update(s);
614
}
615

    
616
static uint64_t pxa2xx_ssp_read(void *opaque, target_phys_addr_t addr,
617
                                unsigned size)
618
{
619
    PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
620
    uint32_t retval;
621

    
622
    switch (addr) {
623
    case SSCR0:
624
        return s->sscr[0];
625
    case SSCR1:
626
        return s->sscr[1];
627
    case SSPSP:
628
        return s->sspsp;
629
    case SSTO:
630
        return s->ssto;
631
    case SSITR:
632
        return s->ssitr;
633
    case SSSR:
634
        return s->sssr | s->ssitr;
635
    case SSDR:
636
        if (!s->enable)
637
            return 0xffffffff;
638
        if (s->rx_level < 1) {
639
            printf("%s: SSP Rx Underrun\n", __FUNCTION__);
640
            return 0xffffffff;
641
        }
642
        s->rx_level --;
643
        retval = s->rx_fifo[s->rx_start ++];
644
        s->rx_start &= 0xf;
645
        pxa2xx_ssp_fifo_update(s);
646
        return retval;
647
    case SSTSA:
648
        return s->sstsa;
649
    case SSRSA:
650
        return s->ssrsa;
651
    case SSTSS:
652
        return 0;
653
    case SSACD:
654
        return s->ssacd;
655
    default:
656
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
657
        break;
658
    }
659
    return 0;
660
}
661

    
662
static void pxa2xx_ssp_write(void *opaque, target_phys_addr_t addr,
663
                             uint64_t value64, unsigned size)
664
{
665
    PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
666
    uint32_t value = value64;
667

    
668
    switch (addr) {
669
    case SSCR0:
670
        s->sscr[0] = value & 0xc7ffffff;
671
        s->enable = value & SSCR0_SSE;
672
        if (value & SSCR0_MOD)
673
            printf("%s: Attempt to use network mode\n", __FUNCTION__);
674
        if (s->enable && SSCR0_DSS(value) < 4)
675
            printf("%s: Wrong data size: %i bits\n", __FUNCTION__,
676
                            SSCR0_DSS(value));
677
        if (!(value & SSCR0_SSE)) {
678
            s->sssr = 0;
679
            s->ssitr = 0;
680
            s->rx_level = 0;
681
        }
682
        pxa2xx_ssp_fifo_update(s);
683
        break;
684

    
685
    case SSCR1:
686
        s->sscr[1] = value;
687
        if (value & (SSCR1_LBM | SSCR1_EFWR))
688
            printf("%s: Attempt to use SSP test mode\n", __FUNCTION__);
689
        pxa2xx_ssp_fifo_update(s);
690
        break;
691

    
692
    case SSPSP:
693
        s->sspsp = value;
694
        break;
695

    
696
    case SSTO:
697
        s->ssto = value;
698
        break;
699

    
700
    case SSITR:
701
        s->ssitr = value & SSITR_INT;
702
        pxa2xx_ssp_int_update(s);
703
        break;
704

    
705
    case SSSR:
706
        s->sssr &= ~(value & SSSR_RW);
707
        pxa2xx_ssp_int_update(s);
708
        break;
709

    
710
    case SSDR:
711
        if (SSCR0_UWIRE(s->sscr[0])) {
712
            if (s->sscr[1] & SSCR1_MWDS)
713
                value &= 0xffff;
714
            else
715
                value &= 0xff;
716
        } else
717
            /* Note how 32bits overflow does no harm here */
718
            value &= (1 << SSCR0_DSS(s->sscr[0])) - 1;
719

    
720
        /* Data goes from here to the Tx FIFO and is shifted out from
721
         * there directly to the slave, no need to buffer it.
722
         */
723
        if (s->enable) {
724
            uint32_t readval;
725
            readval = ssi_transfer(s->bus, value);
726
            if (s->rx_level < 0x10) {
727
                s->rx_fifo[(s->rx_start + s->rx_level ++) & 0xf] = readval;
728
            } else {
729
                s->sssr |= SSSR_ROR;
730
            }
731
        }
732
        pxa2xx_ssp_fifo_update(s);
733
        break;
734

    
735
    case SSTSA:
736
        s->sstsa = value;
737
        break;
738

    
739
    case SSRSA:
740
        s->ssrsa = value;
741
        break;
742

    
743
    case SSACD:
744
        s->ssacd = value;
745
        break;
746

    
747
    default:
748
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
749
        break;
750
    }
751
}
752

    
753
static const MemoryRegionOps pxa2xx_ssp_ops = {
754
    .read = pxa2xx_ssp_read,
755
    .write = pxa2xx_ssp_write,
756
    .endianness = DEVICE_NATIVE_ENDIAN,
757
};
758

    
759
static void pxa2xx_ssp_save(QEMUFile *f, void *opaque)
760
{
761
    PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
762
    int i;
763

    
764
    qemu_put_be32(f, s->enable);
765

    
766
    qemu_put_be32s(f, &s->sscr[0]);
767
    qemu_put_be32s(f, &s->sscr[1]);
768
    qemu_put_be32s(f, &s->sspsp);
769
    qemu_put_be32s(f, &s->ssto);
770
    qemu_put_be32s(f, &s->ssitr);
771
    qemu_put_be32s(f, &s->sssr);
772
    qemu_put_8s(f, &s->sstsa);
773
    qemu_put_8s(f, &s->ssrsa);
774
    qemu_put_8s(f, &s->ssacd);
775

    
776
    qemu_put_byte(f, s->rx_level);
777
    for (i = 0; i < s->rx_level; i ++)
778
        qemu_put_byte(f, s->rx_fifo[(s->rx_start + i) & 0xf]);
779
}
780

    
781
static int pxa2xx_ssp_load(QEMUFile *f, void *opaque, int version_id)
782
{
783
    PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
784
    int i;
785

    
786
    s->enable = qemu_get_be32(f);
787

    
788
    qemu_get_be32s(f, &s->sscr[0]);
789
    qemu_get_be32s(f, &s->sscr[1]);
790
    qemu_get_be32s(f, &s->sspsp);
791
    qemu_get_be32s(f, &s->ssto);
792
    qemu_get_be32s(f, &s->ssitr);
793
    qemu_get_be32s(f, &s->sssr);
794
    qemu_get_8s(f, &s->sstsa);
795
    qemu_get_8s(f, &s->ssrsa);
796
    qemu_get_8s(f, &s->ssacd);
797

    
798
    s->rx_level = qemu_get_byte(f);
799
    s->rx_start = 0;
800
    for (i = 0; i < s->rx_level; i ++)
801
        s->rx_fifo[i] = qemu_get_byte(f);
802

    
803
    return 0;
804
}
805

    
806
static int pxa2xx_ssp_init(SysBusDevice *dev)
807
{
808
    PXA2xxSSPState *s = FROM_SYSBUS(PXA2xxSSPState, dev);
809

    
810
    sysbus_init_irq(dev, &s->irq);
811

    
812
    memory_region_init_io(&s->iomem, &pxa2xx_ssp_ops, s, "pxa2xx-ssp", 0x1000);
813
    sysbus_init_mmio_region(dev, &s->iomem);
814
    register_savevm(&dev->qdev, "pxa2xx_ssp", -1, 0,
815
                    pxa2xx_ssp_save, pxa2xx_ssp_load, s);
816

    
817
    s->bus = ssi_create_bus(&dev->qdev, "ssi");
818
    return 0;
819
}
820

    
821
/* Real-Time Clock */
822
#define RCNR                0x00        /* RTC Counter register */
823
#define RTAR                0x04        /* RTC Alarm register */
824
#define RTSR                0x08        /* RTC Status register */
825
#define RTTR                0x0c        /* RTC Timer Trim register */
826
#define RDCR                0x10        /* RTC Day Counter register */
827
#define RYCR                0x14        /* RTC Year Counter register */
828
#define RDAR1                0x18        /* RTC Wristwatch Day Alarm register 1 */
829
#define RYAR1                0x1c        /* RTC Wristwatch Year Alarm register 1 */
830
#define RDAR2                0x20        /* RTC Wristwatch Day Alarm register 2 */
831
#define RYAR2                0x24        /* RTC Wristwatch Year Alarm register 2 */
832
#define SWCR                0x28        /* RTC Stopwatch Counter register */
833
#define SWAR1                0x2c        /* RTC Stopwatch Alarm register 1 */
834
#define SWAR2                0x30        /* RTC Stopwatch Alarm register 2 */
835
#define RTCPICR                0x34        /* RTC Periodic Interrupt Counter register */
836
#define PIAR                0x38        /* RTC Periodic Interrupt Alarm register */
837

    
838
typedef struct {
839
    SysBusDevice busdev;
840
    MemoryRegion iomem;
841
    uint32_t rttr;
842
    uint32_t rtsr;
843
    uint32_t rtar;
844
    uint32_t rdar1;
845
    uint32_t rdar2;
846
    uint32_t ryar1;
847
    uint32_t ryar2;
848
    uint32_t swar1;
849
    uint32_t swar2;
850
    uint32_t piar;
851
    uint32_t last_rcnr;
852
    uint32_t last_rdcr;
853
    uint32_t last_rycr;
854
    uint32_t last_swcr;
855
    uint32_t last_rtcpicr;
856
    int64_t last_hz;
857
    int64_t last_sw;
858
    int64_t last_pi;
859
    QEMUTimer *rtc_hz;
860
    QEMUTimer *rtc_rdal1;
861
    QEMUTimer *rtc_rdal2;
862
    QEMUTimer *rtc_swal1;
863
    QEMUTimer *rtc_swal2;
864
    QEMUTimer *rtc_pi;
865
    qemu_irq rtc_irq;
866
} PXA2xxRTCState;
867

    
868
static inline void pxa2xx_rtc_int_update(PXA2xxRTCState *s)
869
{
870
    qemu_set_irq(s->rtc_irq, !!(s->rtsr & 0x2553));
871
}
872

    
873
static void pxa2xx_rtc_hzupdate(PXA2xxRTCState *s)
874
{
875
    int64_t rt = qemu_get_clock_ms(rt_clock);
876
    s->last_rcnr += ((rt - s->last_hz) << 15) /
877
            (1000 * ((s->rttr & 0xffff) + 1));
878
    s->last_rdcr += ((rt - s->last_hz) << 15) /
879
            (1000 * ((s->rttr & 0xffff) + 1));
880
    s->last_hz = rt;
881
}
882

    
883
static void pxa2xx_rtc_swupdate(PXA2xxRTCState *s)
884
{
885
    int64_t rt = qemu_get_clock_ms(rt_clock);
886
    if (s->rtsr & (1 << 12))
887
        s->last_swcr += (rt - s->last_sw) / 10;
888
    s->last_sw = rt;
889
}
890

    
891
static void pxa2xx_rtc_piupdate(PXA2xxRTCState *s)
892
{
893
    int64_t rt = qemu_get_clock_ms(rt_clock);
894
    if (s->rtsr & (1 << 15))
895
        s->last_swcr += rt - s->last_pi;
896
    s->last_pi = rt;
897
}
898

    
899
static inline void pxa2xx_rtc_alarm_update(PXA2xxRTCState *s,
900
                uint32_t rtsr)
901
{
902
    if ((rtsr & (1 << 2)) && !(rtsr & (1 << 0)))
903
        qemu_mod_timer(s->rtc_hz, s->last_hz +
904
                (((s->rtar - s->last_rcnr) * 1000 *
905
                  ((s->rttr & 0xffff) + 1)) >> 15));
906
    else
907
        qemu_del_timer(s->rtc_hz);
908

    
909
    if ((rtsr & (1 << 5)) && !(rtsr & (1 << 4)))
910
        qemu_mod_timer(s->rtc_rdal1, s->last_hz +
911
                (((s->rdar1 - s->last_rdcr) * 1000 *
912
                  ((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */
913
    else
914
        qemu_del_timer(s->rtc_rdal1);
915

    
916
    if ((rtsr & (1 << 7)) && !(rtsr & (1 << 6)))
917
        qemu_mod_timer(s->rtc_rdal2, s->last_hz +
918
                (((s->rdar2 - s->last_rdcr) * 1000 *
919
                  ((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */
920
    else
921
        qemu_del_timer(s->rtc_rdal2);
922

    
923
    if ((rtsr & 0x1200) == 0x1200 && !(rtsr & (1 << 8)))
924
        qemu_mod_timer(s->rtc_swal1, s->last_sw +
925
                        (s->swar1 - s->last_swcr) * 10); /* TODO: fixup */
926
    else
927
        qemu_del_timer(s->rtc_swal1);
928

    
929
    if ((rtsr & 0x1800) == 0x1800 && !(rtsr & (1 << 10)))
930
        qemu_mod_timer(s->rtc_swal2, s->last_sw +
931
                        (s->swar2 - s->last_swcr) * 10); /* TODO: fixup */
932
    else
933
        qemu_del_timer(s->rtc_swal2);
934

    
935
    if ((rtsr & 0xc000) == 0xc000 && !(rtsr & (1 << 13)))
936
        qemu_mod_timer(s->rtc_pi, s->last_pi +
937
                        (s->piar & 0xffff) - s->last_rtcpicr);
938
    else
939
        qemu_del_timer(s->rtc_pi);
940
}
941

    
942
static inline void pxa2xx_rtc_hz_tick(void *opaque)
943
{
944
    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
945
    s->rtsr |= (1 << 0);
946
    pxa2xx_rtc_alarm_update(s, s->rtsr);
947
    pxa2xx_rtc_int_update(s);
948
}
949

    
950
static inline void pxa2xx_rtc_rdal1_tick(void *opaque)
951
{
952
    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
953
    s->rtsr |= (1 << 4);
954
    pxa2xx_rtc_alarm_update(s, s->rtsr);
955
    pxa2xx_rtc_int_update(s);
956
}
957

    
958
static inline void pxa2xx_rtc_rdal2_tick(void *opaque)
959
{
960
    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
961
    s->rtsr |= (1 << 6);
962
    pxa2xx_rtc_alarm_update(s, s->rtsr);
963
    pxa2xx_rtc_int_update(s);
964
}
965

    
966
static inline void pxa2xx_rtc_swal1_tick(void *opaque)
967
{
968
    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
969
    s->rtsr |= (1 << 8);
970
    pxa2xx_rtc_alarm_update(s, s->rtsr);
971
    pxa2xx_rtc_int_update(s);
972
}
973

    
974
static inline void pxa2xx_rtc_swal2_tick(void *opaque)
975
{
976
    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
977
    s->rtsr |= (1 << 10);
978
    pxa2xx_rtc_alarm_update(s, s->rtsr);
979
    pxa2xx_rtc_int_update(s);
980
}
981

    
982
static inline void pxa2xx_rtc_pi_tick(void *opaque)
983
{
984
    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
985
    s->rtsr |= (1 << 13);
986
    pxa2xx_rtc_piupdate(s);
987
    s->last_rtcpicr = 0;
988
    pxa2xx_rtc_alarm_update(s, s->rtsr);
989
    pxa2xx_rtc_int_update(s);
990
}
991

    
992
static uint64_t pxa2xx_rtc_read(void *opaque, target_phys_addr_t addr,
993
                                unsigned size)
994
{
995
    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
996

    
997
    switch (addr) {
998
    case RTTR:
999
        return s->rttr;
1000
    case RTSR:
1001
        return s->rtsr;
1002
    case RTAR:
1003
        return s->rtar;
1004
    case RDAR1:
1005
        return s->rdar1;
1006
    case RDAR2:
1007
        return s->rdar2;
1008
    case RYAR1:
1009
        return s->ryar1;
1010
    case RYAR2:
1011
        return s->ryar2;
1012
    case SWAR1:
1013
        return s->swar1;
1014
    case SWAR2:
1015
        return s->swar2;
1016
    case PIAR:
1017
        return s->piar;
1018
    case RCNR:
1019
        return s->last_rcnr + ((qemu_get_clock_ms(rt_clock) - s->last_hz) << 15) /
1020
                (1000 * ((s->rttr & 0xffff) + 1));
1021
    case RDCR:
1022
        return s->last_rdcr + ((qemu_get_clock_ms(rt_clock) - s->last_hz) << 15) /
1023
                (1000 * ((s->rttr & 0xffff) + 1));
1024
    case RYCR:
1025
        return s->last_rycr;
1026
    case SWCR:
1027
        if (s->rtsr & (1 << 12))
1028
            return s->last_swcr + (qemu_get_clock_ms(rt_clock) - s->last_sw) / 10;
1029
        else
1030
            return s->last_swcr;
1031
    default:
1032
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1033
        break;
1034
    }
1035
    return 0;
1036
}
1037

    
1038
static void pxa2xx_rtc_write(void *opaque, target_phys_addr_t addr,
1039
                             uint64_t value64, unsigned size)
1040
{
1041
    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
1042
    uint32_t value = value64;
1043

    
1044
    switch (addr) {
1045
    case RTTR:
1046
        if (!(s->rttr & (1 << 31))) {
1047
            pxa2xx_rtc_hzupdate(s);
1048
            s->rttr = value;
1049
            pxa2xx_rtc_alarm_update(s, s->rtsr);
1050
        }
1051
        break;
1052

    
1053
    case RTSR:
1054
        if ((s->rtsr ^ value) & (1 << 15))
1055
            pxa2xx_rtc_piupdate(s);
1056

    
1057
        if ((s->rtsr ^ value) & (1 << 12))
1058
            pxa2xx_rtc_swupdate(s);
1059

    
1060
        if (((s->rtsr ^ value) & 0x4aac) | (value & ~0xdaac))
1061
            pxa2xx_rtc_alarm_update(s, value);
1062

    
1063
        s->rtsr = (value & 0xdaac) | (s->rtsr & ~(value & ~0xdaac));
1064
        pxa2xx_rtc_int_update(s);
1065
        break;
1066

    
1067
    case RTAR:
1068
        s->rtar = value;
1069
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1070
        break;
1071

    
1072
    case RDAR1:
1073
        s->rdar1 = value;
1074
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1075
        break;
1076

    
1077
    case RDAR2:
1078
        s->rdar2 = value;
1079
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1080
        break;
1081

    
1082
    case RYAR1:
1083
        s->ryar1 = value;
1084
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1085
        break;
1086

    
1087
    case RYAR2:
1088
        s->ryar2 = value;
1089
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1090
        break;
1091

    
1092
    case SWAR1:
1093
        pxa2xx_rtc_swupdate(s);
1094
        s->swar1 = value;
1095
        s->last_swcr = 0;
1096
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1097
        break;
1098

    
1099
    case SWAR2:
1100
        s->swar2 = value;
1101
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1102
        break;
1103

    
1104
    case PIAR:
1105
        s->piar = value;
1106
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1107
        break;
1108

    
1109
    case RCNR:
1110
        pxa2xx_rtc_hzupdate(s);
1111
        s->last_rcnr = value;
1112
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1113
        break;
1114

    
1115
    case RDCR:
1116
        pxa2xx_rtc_hzupdate(s);
1117
        s->last_rdcr = value;
1118
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1119
        break;
1120

    
1121
    case RYCR:
1122
        s->last_rycr = value;
1123
        break;
1124

    
1125
    case SWCR:
1126
        pxa2xx_rtc_swupdate(s);
1127
        s->last_swcr = value;
1128
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1129
        break;
1130

    
1131
    case RTCPICR:
1132
        pxa2xx_rtc_piupdate(s);
1133
        s->last_rtcpicr = value & 0xffff;
1134
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1135
        break;
1136

    
1137
    default:
1138
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1139
    }
1140
}
1141

    
1142
static const MemoryRegionOps pxa2xx_rtc_ops = {
1143
    .read = pxa2xx_rtc_read,
1144
    .write = pxa2xx_rtc_write,
1145
    .endianness = DEVICE_NATIVE_ENDIAN,
1146
};
1147

    
1148
static int pxa2xx_rtc_init(SysBusDevice *dev)
1149
{
1150
    PXA2xxRTCState *s = FROM_SYSBUS(PXA2xxRTCState, dev);
1151
    struct tm tm;
1152
    int wom;
1153

    
1154
    s->rttr = 0x7fff;
1155
    s->rtsr = 0;
1156

    
1157
    qemu_get_timedate(&tm, 0);
1158
    wom = ((tm.tm_mday - 1) / 7) + 1;
1159

    
1160
    s->last_rcnr = (uint32_t) mktimegm(&tm);
1161
    s->last_rdcr = (wom << 20) | ((tm.tm_wday + 1) << 17) |
1162
            (tm.tm_hour << 12) | (tm.tm_min << 6) | tm.tm_sec;
1163
    s->last_rycr = ((tm.tm_year + 1900) << 9) |
1164
            ((tm.tm_mon + 1) << 5) | tm.tm_mday;
1165
    s->last_swcr = (tm.tm_hour << 19) |
1166
            (tm.tm_min << 13) | (tm.tm_sec << 7);
1167
    s->last_rtcpicr = 0;
1168
    s->last_hz = s->last_sw = s->last_pi = qemu_get_clock_ms(rt_clock);
1169

    
1170
    s->rtc_hz    = qemu_new_timer_ms(rt_clock, pxa2xx_rtc_hz_tick,    s);
1171
    s->rtc_rdal1 = qemu_new_timer_ms(rt_clock, pxa2xx_rtc_rdal1_tick, s);
1172
    s->rtc_rdal2 = qemu_new_timer_ms(rt_clock, pxa2xx_rtc_rdal2_tick, s);
1173
    s->rtc_swal1 = qemu_new_timer_ms(rt_clock, pxa2xx_rtc_swal1_tick, s);
1174
    s->rtc_swal2 = qemu_new_timer_ms(rt_clock, pxa2xx_rtc_swal2_tick, s);
1175
    s->rtc_pi    = qemu_new_timer_ms(rt_clock, pxa2xx_rtc_pi_tick,    s);
1176

    
1177
    sysbus_init_irq(dev, &s->rtc_irq);
1178

    
1179
    memory_region_init_io(&s->iomem, &pxa2xx_rtc_ops, s, "pxa2xx-rtc", 0x10000);
1180
    sysbus_init_mmio_region(dev, &s->iomem);
1181

    
1182
    return 0;
1183
}
1184

    
1185
static void pxa2xx_rtc_pre_save(void *opaque)
1186
{
1187
    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
1188

    
1189
    pxa2xx_rtc_hzupdate(s);
1190
    pxa2xx_rtc_piupdate(s);
1191
    pxa2xx_rtc_swupdate(s);
1192
}
1193

    
1194
static int pxa2xx_rtc_post_load(void *opaque, int version_id)
1195
{
1196
    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
1197

    
1198
    pxa2xx_rtc_alarm_update(s, s->rtsr);
1199

    
1200
    return 0;
1201
}
1202

    
1203
static const VMStateDescription vmstate_pxa2xx_rtc_regs = {
1204
    .name = "pxa2xx_rtc",
1205
    .version_id = 0,
1206
    .minimum_version_id = 0,
1207
    .minimum_version_id_old = 0,
1208
    .pre_save = pxa2xx_rtc_pre_save,
1209
    .post_load = pxa2xx_rtc_post_load,
1210
    .fields = (VMStateField[]) {
1211
        VMSTATE_UINT32(rttr, PXA2xxRTCState),
1212
        VMSTATE_UINT32(rtsr, PXA2xxRTCState),
1213
        VMSTATE_UINT32(rtar, PXA2xxRTCState),
1214
        VMSTATE_UINT32(rdar1, PXA2xxRTCState),
1215
        VMSTATE_UINT32(rdar2, PXA2xxRTCState),
1216
        VMSTATE_UINT32(ryar1, PXA2xxRTCState),
1217
        VMSTATE_UINT32(ryar2, PXA2xxRTCState),
1218
        VMSTATE_UINT32(swar1, PXA2xxRTCState),
1219
        VMSTATE_UINT32(swar2, PXA2xxRTCState),
1220
        VMSTATE_UINT32(piar, PXA2xxRTCState),
1221
        VMSTATE_UINT32(last_rcnr, PXA2xxRTCState),
1222
        VMSTATE_UINT32(last_rdcr, PXA2xxRTCState),
1223
        VMSTATE_UINT32(last_rycr, PXA2xxRTCState),
1224
        VMSTATE_UINT32(last_swcr, PXA2xxRTCState),
1225
        VMSTATE_UINT32(last_rtcpicr, PXA2xxRTCState),
1226
        VMSTATE_INT64(last_hz, PXA2xxRTCState),
1227
        VMSTATE_INT64(last_sw, PXA2xxRTCState),
1228
        VMSTATE_INT64(last_pi, PXA2xxRTCState),
1229
        VMSTATE_END_OF_LIST(),
1230
    },
1231
};
1232

    
1233
static SysBusDeviceInfo pxa2xx_rtc_sysbus_info = {
1234
    .init       = pxa2xx_rtc_init,
1235
    .qdev.name  = "pxa2xx_rtc",
1236
    .qdev.desc  = "PXA2xx RTC Controller",
1237
    .qdev.size  = sizeof(PXA2xxRTCState),
1238
    .qdev.vmsd  = &vmstate_pxa2xx_rtc_regs,
1239
};
1240

    
1241
/* I2C Interface */
1242
typedef struct {
1243
    i2c_slave i2c;
1244
    PXA2xxI2CState *host;
1245
} PXA2xxI2CSlaveState;
1246

    
1247
struct PXA2xxI2CState {
1248
    SysBusDevice busdev;
1249
    MemoryRegion iomem;
1250
    PXA2xxI2CSlaveState *slave;
1251
    i2c_bus *bus;
1252
    qemu_irq irq;
1253
    uint32_t offset;
1254
    uint32_t region_size;
1255

    
1256
    uint16_t control;
1257
    uint16_t status;
1258
    uint8_t ibmr;
1259
    uint8_t data;
1260
};
1261

    
1262
#define IBMR        0x80        /* I2C Bus Monitor register */
1263
#define IDBR        0x88        /* I2C Data Buffer register */
1264
#define ICR        0x90        /* I2C Control register */
1265
#define ISR        0x98        /* I2C Status register */
1266
#define ISAR        0xa0        /* I2C Slave Address register */
1267

    
1268
static void pxa2xx_i2c_update(PXA2xxI2CState *s)
1269
{
1270
    uint16_t level = 0;
1271
    level |= s->status & s->control & (1 << 10);                /* BED */
1272
    level |= (s->status & (1 << 7)) && (s->control & (1 << 9));        /* IRF */
1273
    level |= (s->status & (1 << 6)) && (s->control & (1 << 8));        /* ITE */
1274
    level |= s->status & (1 << 9);                                /* SAD */
1275
    qemu_set_irq(s->irq, !!level);
1276
}
1277

    
1278
/* These are only stubs now.  */
1279
static void pxa2xx_i2c_event(i2c_slave *i2c, enum i2c_event event)
1280
{
1281
    PXA2xxI2CSlaveState *slave = FROM_I2C_SLAVE(PXA2xxI2CSlaveState, i2c);
1282
    PXA2xxI2CState *s = slave->host;
1283

    
1284
    switch (event) {
1285
    case I2C_START_SEND:
1286
        s->status |= (1 << 9);                                /* set SAD */
1287
        s->status &= ~(1 << 0);                                /* clear RWM */
1288
        break;
1289
    case I2C_START_RECV:
1290
        s->status |= (1 << 9);                                /* set SAD */
1291
        s->status |= 1 << 0;                                /* set RWM */
1292
        break;
1293
    case I2C_FINISH:
1294
        s->status |= (1 << 4);                                /* set SSD */
1295
        break;
1296
    case I2C_NACK:
1297
        s->status |= 1 << 1;                                /* set ACKNAK */
1298
        break;
1299
    }
1300
    pxa2xx_i2c_update(s);
1301
}
1302

    
1303
static int pxa2xx_i2c_rx(i2c_slave *i2c)
1304
{
1305
    PXA2xxI2CSlaveState *slave = FROM_I2C_SLAVE(PXA2xxI2CSlaveState, i2c);
1306
    PXA2xxI2CState *s = slave->host;
1307
    if ((s->control & (1 << 14)) || !(s->control & (1 << 6)))
1308
        return 0;
1309

    
1310
    if (s->status & (1 << 0)) {                        /* RWM */
1311
        s->status |= 1 << 6;                        /* set ITE */
1312
    }
1313
    pxa2xx_i2c_update(s);
1314

    
1315
    return s->data;
1316
}
1317

    
1318
static int pxa2xx_i2c_tx(i2c_slave *i2c, uint8_t data)
1319
{
1320
    PXA2xxI2CSlaveState *slave = FROM_I2C_SLAVE(PXA2xxI2CSlaveState, i2c);
1321
    PXA2xxI2CState *s = slave->host;
1322
    if ((s->control & (1 << 14)) || !(s->control & (1 << 6)))
1323
        return 1;
1324

    
1325
    if (!(s->status & (1 << 0))) {                /* RWM */
1326
        s->status |= 1 << 7;                        /* set IRF */
1327
        s->data = data;
1328
    }
1329
    pxa2xx_i2c_update(s);
1330

    
1331
    return 1;
1332
}
1333

    
1334
static uint64_t pxa2xx_i2c_read(void *opaque, target_phys_addr_t addr,
1335
                                unsigned size)
1336
{
1337
    PXA2xxI2CState *s = (PXA2xxI2CState *) opaque;
1338

    
1339
    addr -= s->offset;
1340
    switch (addr) {
1341
    case ICR:
1342
        return s->control;
1343
    case ISR:
1344
        return s->status | (i2c_bus_busy(s->bus) << 2);
1345
    case ISAR:
1346
        return s->slave->i2c.address;
1347
    case IDBR:
1348
        return s->data;
1349
    case IBMR:
1350
        if (s->status & (1 << 2))
1351
            s->ibmr ^= 3;        /* Fake SCL and SDA pin changes */
1352
        else
1353
            s->ibmr = 0;
1354
        return s->ibmr;
1355
    default:
1356
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1357
        break;
1358
    }
1359
    return 0;
1360
}
1361

    
1362
static void pxa2xx_i2c_write(void *opaque, target_phys_addr_t addr,
1363
                             uint64_t value64, unsigned size)
1364
{
1365
    PXA2xxI2CState *s = (PXA2xxI2CState *) opaque;
1366
    uint32_t value = value64;
1367
    int ack;
1368

    
1369
    addr -= s->offset;
1370
    switch (addr) {
1371
    case ICR:
1372
        s->control = value & 0xfff7;
1373
        if ((value & (1 << 3)) && (value & (1 << 6))) {        /* TB and IUE */
1374
            /* TODO: slave mode */
1375
            if (value & (1 << 0)) {                        /* START condition */
1376
                if (s->data & 1)
1377
                    s->status |= 1 << 0;                /* set RWM */
1378
                else
1379
                    s->status &= ~(1 << 0);                /* clear RWM */
1380
                ack = !i2c_start_transfer(s->bus, s->data >> 1, s->data & 1);
1381
            } else {
1382
                if (s->status & (1 << 0)) {                /* RWM */
1383
                    s->data = i2c_recv(s->bus);
1384
                    if (value & (1 << 2))                /* ACKNAK */
1385
                        i2c_nack(s->bus);
1386
                    ack = 1;
1387
                } else
1388
                    ack = !i2c_send(s->bus, s->data);
1389
            }
1390

    
1391
            if (value & (1 << 1))                        /* STOP condition */
1392
                i2c_end_transfer(s->bus);
1393

    
1394
            if (ack) {
1395
                if (value & (1 << 0))                        /* START condition */
1396
                    s->status |= 1 << 6;                /* set ITE */
1397
                else
1398
                    if (s->status & (1 << 0))                /* RWM */
1399
                        s->status |= 1 << 7;                /* set IRF */
1400
                    else
1401
                        s->status |= 1 << 6;                /* set ITE */
1402
                s->status &= ~(1 << 1);                        /* clear ACKNAK */
1403
            } else {
1404
                s->status |= 1 << 6;                        /* set ITE */
1405
                s->status |= 1 << 10;                        /* set BED */
1406
                s->status |= 1 << 1;                        /* set ACKNAK */
1407
            }
1408
        }
1409
        if (!(value & (1 << 3)) && (value & (1 << 6)))        /* !TB and IUE */
1410
            if (value & (1 << 4))                        /* MA */
1411
                i2c_end_transfer(s->bus);
1412
        pxa2xx_i2c_update(s);
1413
        break;
1414

    
1415
    case ISR:
1416
        s->status &= ~(value & 0x07f0);
1417
        pxa2xx_i2c_update(s);
1418
        break;
1419

    
1420
    case ISAR:
1421
        i2c_set_slave_address(&s->slave->i2c, value & 0x7f);
1422
        break;
1423

    
1424
    case IDBR:
1425
        s->data = value & 0xff;
1426
        break;
1427

    
1428
    default:
1429
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1430
    }
1431
}
1432

    
1433
static const MemoryRegionOps pxa2xx_i2c_ops = {
1434
    .read = pxa2xx_i2c_read,
1435
    .write = pxa2xx_i2c_write,
1436
    .endianness = DEVICE_NATIVE_ENDIAN,
1437
};
1438

    
1439
static const VMStateDescription vmstate_pxa2xx_i2c_slave = {
1440
    .name = "pxa2xx_i2c_slave",
1441
    .version_id = 1,
1442
    .minimum_version_id = 1,
1443
    .minimum_version_id_old = 1,
1444
    .fields      = (VMStateField []) {
1445
        VMSTATE_I2C_SLAVE(i2c, PXA2xxI2CSlaveState),
1446
        VMSTATE_END_OF_LIST()
1447
    }
1448
};
1449

    
1450
static const VMStateDescription vmstate_pxa2xx_i2c = {
1451
    .name = "pxa2xx_i2c",
1452
    .version_id = 1,
1453
    .minimum_version_id = 1,
1454
    .minimum_version_id_old = 1,
1455
    .fields      = (VMStateField []) {
1456
        VMSTATE_UINT16(control, PXA2xxI2CState),
1457
        VMSTATE_UINT16(status, PXA2xxI2CState),
1458
        VMSTATE_UINT8(ibmr, PXA2xxI2CState),
1459
        VMSTATE_UINT8(data, PXA2xxI2CState),
1460
        VMSTATE_STRUCT_POINTER(slave, PXA2xxI2CState,
1461
                               vmstate_pxa2xx_i2c_slave, PXA2xxI2CSlaveState *),
1462
        VMSTATE_END_OF_LIST()
1463
    }
1464
};
1465

    
1466
static int pxa2xx_i2c_slave_init(i2c_slave *i2c)
1467
{
1468
    /* Nothing to do.  */
1469
    return 0;
1470
}
1471

    
1472
static I2CSlaveInfo pxa2xx_i2c_slave_info = {
1473
    .qdev.name = "pxa2xx-i2c-slave",
1474
    .qdev.size = sizeof(PXA2xxI2CSlaveState),
1475
    .init = pxa2xx_i2c_slave_init,
1476
    .event = pxa2xx_i2c_event,
1477
    .recv = pxa2xx_i2c_rx,
1478
    .send = pxa2xx_i2c_tx
1479
};
1480

    
1481
PXA2xxI2CState *pxa2xx_i2c_init(target_phys_addr_t base,
1482
                qemu_irq irq, uint32_t region_size)
1483
{
1484
    DeviceState *dev;
1485
    SysBusDevice *i2c_dev;
1486
    PXA2xxI2CState *s;
1487

    
1488
    i2c_dev = sysbus_from_qdev(qdev_create(NULL, "pxa2xx_i2c"));
1489
    qdev_prop_set_uint32(&i2c_dev->qdev, "size", region_size + 1);
1490
    qdev_prop_set_uint32(&i2c_dev->qdev, "offset",
1491
            base - (base & (~region_size) & TARGET_PAGE_MASK));
1492

    
1493
    qdev_init_nofail(&i2c_dev->qdev);
1494

    
1495
    sysbus_mmio_map(i2c_dev, 0, base & ~region_size);
1496
    sysbus_connect_irq(i2c_dev, 0, irq);
1497

    
1498
    s = FROM_SYSBUS(PXA2xxI2CState, i2c_dev);
1499
    /* FIXME: Should the slave device really be on a separate bus?  */
1500
    dev = i2c_create_slave(i2c_init_bus(NULL, "dummy"), "pxa2xx-i2c-slave", 0);
1501
    s->slave = FROM_I2C_SLAVE(PXA2xxI2CSlaveState, I2C_SLAVE_FROM_QDEV(dev));
1502
    s->slave->host = s;
1503

    
1504
    return s;
1505
}
1506

    
1507
static int pxa2xx_i2c_initfn(SysBusDevice *dev)
1508
{
1509
    PXA2xxI2CState *s = FROM_SYSBUS(PXA2xxI2CState, dev);
1510

    
1511
    s->bus = i2c_init_bus(&dev->qdev, "i2c");
1512

    
1513
    memory_region_init_io(&s->iomem, &pxa2xx_i2c_ops, s,
1514
                          "pxa2xx-i2x", s->region_size);
1515
    sysbus_init_mmio_region(dev, &s->iomem);
1516
    sysbus_init_irq(dev, &s->irq);
1517

    
1518
    return 0;
1519
}
1520

    
1521
i2c_bus *pxa2xx_i2c_bus(PXA2xxI2CState *s)
1522
{
1523
    return s->bus;
1524
}
1525

    
1526
static SysBusDeviceInfo pxa2xx_i2c_info = {
1527
    .init       = pxa2xx_i2c_initfn,
1528
    .qdev.name  = "pxa2xx_i2c",
1529
    .qdev.desc  = "PXA2xx I2C Bus Controller",
1530
    .qdev.size  = sizeof(PXA2xxI2CState),
1531
    .qdev.vmsd  = &vmstate_pxa2xx_i2c,
1532
    .qdev.props = (Property[]) {
1533
        DEFINE_PROP_UINT32("size", PXA2xxI2CState, region_size, 0x10000),
1534
        DEFINE_PROP_UINT32("offset", PXA2xxI2CState, offset, 0),
1535
        DEFINE_PROP_END_OF_LIST(),
1536
    },
1537
};
1538

    
1539
/* PXA Inter-IC Sound Controller */
1540
static void pxa2xx_i2s_reset(PXA2xxI2SState *i2s)
1541
{
1542
    i2s->rx_len = 0;
1543
    i2s->tx_len = 0;
1544
    i2s->fifo_len = 0;
1545
    i2s->clk = 0x1a;
1546
    i2s->control[0] = 0x00;
1547
    i2s->control[1] = 0x00;
1548
    i2s->status = 0x00;
1549
    i2s->mask = 0x00;
1550
}
1551

    
1552
#define SACR_TFTH(val)        ((val >> 8) & 0xf)
1553
#define SACR_RFTH(val)        ((val >> 12) & 0xf)
1554
#define SACR_DREC(val)        (val & (1 << 3))
1555
#define SACR_DPRL(val)        (val & (1 << 4))
1556

    
1557
static inline void pxa2xx_i2s_update(PXA2xxI2SState *i2s)
1558
{
1559
    int rfs, tfs;
1560
    rfs = SACR_RFTH(i2s->control[0]) < i2s->rx_len &&
1561
            !SACR_DREC(i2s->control[1]);
1562
    tfs = (i2s->tx_len || i2s->fifo_len < SACR_TFTH(i2s->control[0])) &&
1563
            i2s->enable && !SACR_DPRL(i2s->control[1]);
1564

    
1565
    qemu_set_irq(i2s->rx_dma, rfs);
1566
    qemu_set_irq(i2s->tx_dma, tfs);
1567

    
1568
    i2s->status &= 0xe0;
1569
    if (i2s->fifo_len < 16 || !i2s->enable)
1570
        i2s->status |= 1 << 0;                        /* TNF */
1571
    if (i2s->rx_len)
1572
        i2s->status |= 1 << 1;                        /* RNE */
1573
    if (i2s->enable)
1574
        i2s->status |= 1 << 2;                        /* BSY */
1575
    if (tfs)
1576
        i2s->status |= 1 << 3;                        /* TFS */
1577
    if (rfs)
1578
        i2s->status |= 1 << 4;                        /* RFS */
1579
    if (!(i2s->tx_len && i2s->enable))
1580
        i2s->status |= i2s->fifo_len << 8;        /* TFL */
1581
    i2s->status |= MAX(i2s->rx_len, 0xf) << 12;        /* RFL */
1582

    
1583
    qemu_set_irq(i2s->irq, i2s->status & i2s->mask);
1584
}
1585

    
1586
#define SACR0        0x00        /* Serial Audio Global Control register */
1587
#define SACR1        0x04        /* Serial Audio I2S/MSB-Justified Control register */
1588
#define SASR0        0x0c        /* Serial Audio Interface and FIFO Status register */
1589
#define SAIMR        0x14        /* Serial Audio Interrupt Mask register */
1590
#define SAICR        0x18        /* Serial Audio Interrupt Clear register */
1591
#define SADIV        0x60        /* Serial Audio Clock Divider register */
1592
#define SADR        0x80        /* Serial Audio Data register */
1593

    
1594
static uint64_t pxa2xx_i2s_read(void *opaque, target_phys_addr_t addr,
1595
                                unsigned size)
1596
{
1597
    PXA2xxI2SState *s = (PXA2xxI2SState *) opaque;
1598

    
1599
    switch (addr) {
1600
    case SACR0:
1601
        return s->control[0];
1602
    case SACR1:
1603
        return s->control[1];
1604
    case SASR0:
1605
        return s->status;
1606
    case SAIMR:
1607
        return s->mask;
1608
    case SAICR:
1609
        return 0;
1610
    case SADIV:
1611
        return s->clk;
1612
    case SADR:
1613
        if (s->rx_len > 0) {
1614
            s->rx_len --;
1615
            pxa2xx_i2s_update(s);
1616
            return s->codec_in(s->opaque);
1617
        }
1618
        return 0;
1619
    default:
1620
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1621
        break;
1622
    }
1623
    return 0;
1624
}
1625

    
1626
static void pxa2xx_i2s_write(void *opaque, target_phys_addr_t addr,
1627
                             uint64_t value, unsigned size)
1628
{
1629
    PXA2xxI2SState *s = (PXA2xxI2SState *) opaque;
1630
    uint32_t *sample;
1631

    
1632
    switch (addr) {
1633
    case SACR0:
1634
        if (value & (1 << 3))                                /* RST */
1635
            pxa2xx_i2s_reset(s);
1636
        s->control[0] = value & 0xff3d;
1637
        if (!s->enable && (value & 1) && s->tx_len) {        /* ENB */
1638
            for (sample = s->fifo; s->fifo_len > 0; s->fifo_len --, sample ++)
1639
                s->codec_out(s->opaque, *sample);
1640
            s->status &= ~(1 << 7);                        /* I2SOFF */
1641
        }
1642
        if (value & (1 << 4))                                /* EFWR */
1643
            printf("%s: Attempt to use special function\n", __FUNCTION__);
1644
        s->enable = (value & 9) == 1;                        /* ENB && !RST*/
1645
        pxa2xx_i2s_update(s);
1646
        break;
1647
    case SACR1:
1648
        s->control[1] = value & 0x0039;
1649
        if (value & (1 << 5))                                /* ENLBF */
1650
            printf("%s: Attempt to use loopback function\n", __FUNCTION__);
1651
        if (value & (1 << 4))                                /* DPRL */
1652
            s->fifo_len = 0;
1653
        pxa2xx_i2s_update(s);
1654
        break;
1655
    case SAIMR:
1656
        s->mask = value & 0x0078;
1657
        pxa2xx_i2s_update(s);
1658
        break;
1659
    case SAICR:
1660
        s->status &= ~(value & (3 << 5));
1661
        pxa2xx_i2s_update(s);
1662
        break;
1663
    case SADIV:
1664
        s->clk = value & 0x007f;
1665
        break;
1666
    case SADR:
1667
        if (s->tx_len && s->enable) {
1668
            s->tx_len --;
1669
            pxa2xx_i2s_update(s);
1670
            s->codec_out(s->opaque, value);
1671
        } else if (s->fifo_len < 16) {
1672
            s->fifo[s->fifo_len ++] = value;
1673
            pxa2xx_i2s_update(s);
1674
        }
1675
        break;
1676
    default:
1677
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1678
    }
1679
}
1680

    
1681
static const MemoryRegionOps pxa2xx_i2s_ops = {
1682
    .read = pxa2xx_i2s_read,
1683
    .write = pxa2xx_i2s_write,
1684
    .endianness = DEVICE_NATIVE_ENDIAN,
1685
};
1686

    
1687
static const VMStateDescription vmstate_pxa2xx_i2s = {
1688
    .name = "pxa2xx_i2s",
1689
    .version_id = 0,
1690
    .minimum_version_id = 0,
1691
    .minimum_version_id_old = 0,
1692
    .fields      = (VMStateField[]) {
1693
        VMSTATE_UINT32_ARRAY(control, PXA2xxI2SState, 2),
1694
        VMSTATE_UINT32(status, PXA2xxI2SState),
1695
        VMSTATE_UINT32(mask, PXA2xxI2SState),
1696
        VMSTATE_UINT32(clk, PXA2xxI2SState),
1697
        VMSTATE_INT32(enable, PXA2xxI2SState),
1698
        VMSTATE_INT32(rx_len, PXA2xxI2SState),
1699
        VMSTATE_INT32(tx_len, PXA2xxI2SState),
1700
        VMSTATE_INT32(fifo_len, PXA2xxI2SState),
1701
        VMSTATE_END_OF_LIST()
1702
    }
1703
};
1704

    
1705
static void pxa2xx_i2s_data_req(void *opaque, int tx, int rx)
1706
{
1707
    PXA2xxI2SState *s = (PXA2xxI2SState *) opaque;
1708
    uint32_t *sample;
1709

    
1710
    /* Signal FIFO errors */
1711
    if (s->enable && s->tx_len)
1712
        s->status |= 1 << 5;                /* TUR */
1713
    if (s->enable && s->rx_len)
1714
        s->status |= 1 << 6;                /* ROR */
1715

    
1716
    /* Should be tx - MIN(tx, s->fifo_len) but we don't really need to
1717
     * handle the cases where it makes a difference.  */
1718
    s->tx_len = tx - s->fifo_len;
1719
    s->rx_len = rx;
1720
    /* Note that is s->codec_out wasn't set, we wouldn't get called.  */
1721
    if (s->enable)
1722
        for (sample = s->fifo; s->fifo_len; s->fifo_len --, sample ++)
1723
            s->codec_out(s->opaque, *sample);
1724
    pxa2xx_i2s_update(s);
1725
}
1726

    
1727
static PXA2xxI2SState *pxa2xx_i2s_init(MemoryRegion *sysmem,
1728
                target_phys_addr_t base,
1729
                qemu_irq irq, qemu_irq rx_dma, qemu_irq tx_dma)
1730
{
1731
    PXA2xxI2SState *s = (PXA2xxI2SState *)
1732
            g_malloc0(sizeof(PXA2xxI2SState));
1733

    
1734
    s->irq = irq;
1735
    s->rx_dma = rx_dma;
1736
    s->tx_dma = tx_dma;
1737
    s->data_req = pxa2xx_i2s_data_req;
1738

    
1739
    pxa2xx_i2s_reset(s);
1740

    
1741
    memory_region_init_io(&s->iomem, &pxa2xx_i2s_ops, s,
1742
                          "pxa2xx-i2s", 0x100000);
1743
    memory_region_add_subregion(sysmem, base, &s->iomem);
1744

    
1745
    vmstate_register(NULL, base, &vmstate_pxa2xx_i2s, s);
1746

    
1747
    return s;
1748
}
1749

    
1750
/* PXA Fast Infra-red Communications Port */
1751
struct PXA2xxFIrState {
1752
    MemoryRegion iomem;
1753
    qemu_irq irq;
1754
    qemu_irq rx_dma;
1755
    qemu_irq tx_dma;
1756
    int enable;
1757
    CharDriverState *chr;
1758

    
1759
    uint8_t control[3];
1760
    uint8_t status[2];
1761

    
1762
    int rx_len;
1763
    int rx_start;
1764
    uint8_t rx_fifo[64];
1765
};
1766

    
1767
static void pxa2xx_fir_reset(PXA2xxFIrState *s)
1768
{
1769
    s->control[0] = 0x00;
1770
    s->control[1] = 0x00;
1771
    s->control[2] = 0x00;
1772
    s->status[0] = 0x00;
1773
    s->status[1] = 0x00;
1774
    s->enable = 0;
1775
}
1776

    
1777
static inline void pxa2xx_fir_update(PXA2xxFIrState *s)
1778
{
1779
    static const int tresh[4] = { 8, 16, 32, 0 };
1780
    int intr = 0;
1781
    if ((s->control[0] & (1 << 4)) &&                        /* RXE */
1782
                    s->rx_len >= tresh[s->control[2] & 3])        /* TRIG */
1783
        s->status[0] |= 1 << 4;                                /* RFS */
1784
    else
1785
        s->status[0] &= ~(1 << 4);                        /* RFS */
1786
    if (s->control[0] & (1 << 3))                        /* TXE */
1787
        s->status[0] |= 1 << 3;                                /* TFS */
1788
    else
1789
        s->status[0] &= ~(1 << 3);                        /* TFS */
1790
    if (s->rx_len)
1791
        s->status[1] |= 1 << 2;                                /* RNE */
1792
    else
1793
        s->status[1] &= ~(1 << 2);                        /* RNE */
1794
    if (s->control[0] & (1 << 4))                        /* RXE */
1795
        s->status[1] |= 1 << 0;                                /* RSY */
1796
    else
1797
        s->status[1] &= ~(1 << 0);                        /* RSY */
1798

    
1799
    intr |= (s->control[0] & (1 << 5)) &&                /* RIE */
1800
            (s->status[0] & (1 << 4));                        /* RFS */
1801
    intr |= (s->control[0] & (1 << 6)) &&                /* TIE */
1802
            (s->status[0] & (1 << 3));                        /* TFS */
1803
    intr |= (s->control[2] & (1 << 4)) &&                /* TRAIL */
1804
            (s->status[0] & (1 << 6));                        /* EOC */
1805
    intr |= (s->control[0] & (1 << 2)) &&                /* TUS */
1806
            (s->status[0] & (1 << 1));                        /* TUR */
1807
    intr |= s->status[0] & 0x25;                        /* FRE, RAB, EIF */
1808

    
1809
    qemu_set_irq(s->rx_dma, (s->status[0] >> 4) & 1);
1810
    qemu_set_irq(s->tx_dma, (s->status[0] >> 3) & 1);
1811

    
1812
    qemu_set_irq(s->irq, intr && s->enable);
1813
}
1814

    
1815
#define ICCR0        0x00        /* FICP Control register 0 */
1816
#define ICCR1        0x04        /* FICP Control register 1 */
1817
#define ICCR2        0x08        /* FICP Control register 2 */
1818
#define ICDR        0x0c        /* FICP Data register */
1819
#define ICSR0        0x14        /* FICP Status register 0 */
1820
#define ICSR1        0x18        /* FICP Status register 1 */
1821
#define ICFOR        0x1c        /* FICP FIFO Occupancy Status register */
1822

    
1823
static uint64_t pxa2xx_fir_read(void *opaque, target_phys_addr_t addr,
1824
                                unsigned size)
1825
{
1826
    PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1827
    uint8_t ret;
1828

    
1829
    switch (addr) {
1830
    case ICCR0:
1831
        return s->control[0];
1832
    case ICCR1:
1833
        return s->control[1];
1834
    case ICCR2:
1835
        return s->control[2];
1836
    case ICDR:
1837
        s->status[0] &= ~0x01;
1838
        s->status[1] &= ~0x72;
1839
        if (s->rx_len) {
1840
            s->rx_len --;
1841
            ret = s->rx_fifo[s->rx_start ++];
1842
            s->rx_start &= 63;
1843
            pxa2xx_fir_update(s);
1844
            return ret;
1845
        }
1846
        printf("%s: Rx FIFO underrun.\n", __FUNCTION__);
1847
        break;
1848
    case ICSR0:
1849
        return s->status[0];
1850
    case ICSR1:
1851
        return s->status[1] | (1 << 3);                        /* TNF */
1852
    case ICFOR:
1853
        return s->rx_len;
1854
    default:
1855
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1856
        break;
1857
    }
1858
    return 0;
1859
}
1860

    
1861
static void pxa2xx_fir_write(void *opaque, target_phys_addr_t addr,
1862
                             uint64_t value64, unsigned size)
1863
{
1864
    PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1865
    uint32_t value = value64;
1866
    uint8_t ch;
1867

    
1868
    switch (addr) {
1869
    case ICCR0:
1870
        s->control[0] = value;
1871
        if (!(value & (1 << 4)))                        /* RXE */
1872
            s->rx_len = s->rx_start = 0;
1873
        if (!(value & (1 << 3))) {                      /* TXE */
1874
            /* Nop */
1875
        }
1876
        s->enable = value & 1;                                /* ITR */
1877
        if (!s->enable)
1878
            s->status[0] = 0;
1879
        pxa2xx_fir_update(s);
1880
        break;
1881
    case ICCR1:
1882
        s->control[1] = value;
1883
        break;
1884
    case ICCR2:
1885
        s->control[2] = value & 0x3f;
1886
        pxa2xx_fir_update(s);
1887
        break;
1888
    case ICDR:
1889
        if (s->control[2] & (1 << 2))                        /* TXP */
1890
            ch = value;
1891
        else
1892
            ch = ~value;
1893
        if (s->chr && s->enable && (s->control[0] & (1 << 3)))        /* TXE */
1894
            qemu_chr_fe_write(s->chr, &ch, 1);
1895
        break;
1896
    case ICSR0:
1897
        s->status[0] &= ~(value & 0x66);
1898
        pxa2xx_fir_update(s);
1899
        break;
1900
    case ICFOR:
1901
        break;
1902
    default:
1903
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1904
    }
1905
}
1906

    
1907
static const MemoryRegionOps pxa2xx_fir_ops = {
1908
    .read = pxa2xx_fir_read,
1909
    .write = pxa2xx_fir_write,
1910
    .endianness = DEVICE_NATIVE_ENDIAN,
1911
};
1912

    
1913
static int pxa2xx_fir_is_empty(void *opaque)
1914
{
1915
    PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1916
    return (s->rx_len < 64);
1917
}
1918

    
1919
static void pxa2xx_fir_rx(void *opaque, const uint8_t *buf, int size)
1920
{
1921
    PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1922
    if (!(s->control[0] & (1 << 4)))                        /* RXE */
1923
        return;
1924

    
1925
    while (size --) {
1926
        s->status[1] |= 1 << 4;                                /* EOF */
1927
        if (s->rx_len >= 64) {
1928
            s->status[1] |= 1 << 6;                        /* ROR */
1929
            break;
1930
        }
1931

    
1932
        if (s->control[2] & (1 << 3))                        /* RXP */
1933
            s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = *(buf ++);
1934
        else
1935
            s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = ~*(buf ++);
1936
    }
1937

    
1938
    pxa2xx_fir_update(s);
1939
}
1940

    
1941
static void pxa2xx_fir_event(void *opaque, int event)
1942
{
1943
}
1944

    
1945
static void pxa2xx_fir_save(QEMUFile *f, void *opaque)
1946
{
1947
    PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1948
    int i;
1949

    
1950
    qemu_put_be32(f, s->enable);
1951

    
1952
    qemu_put_8s(f, &s->control[0]);
1953
    qemu_put_8s(f, &s->control[1]);
1954
    qemu_put_8s(f, &s->control[2]);
1955
    qemu_put_8s(f, &s->status[0]);
1956
    qemu_put_8s(f, &s->status[1]);
1957

    
1958
    qemu_put_byte(f, s->rx_len);
1959
    for (i = 0; i < s->rx_len; i ++)
1960
        qemu_put_byte(f, s->rx_fifo[(s->rx_start + i) & 63]);
1961
}
1962

    
1963
static int pxa2xx_fir_load(QEMUFile *f, void *opaque, int version_id)
1964
{
1965
    PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1966
    int i;
1967

    
1968
    s->enable = qemu_get_be32(f);
1969

    
1970
    qemu_get_8s(f, &s->control[0]);
1971
    qemu_get_8s(f, &s->control[1]);
1972
    qemu_get_8s(f, &s->control[2]);
1973
    qemu_get_8s(f, &s->status[0]);
1974
    qemu_get_8s(f, &s->status[1]);
1975

    
1976
    s->rx_len = qemu_get_byte(f);
1977
    s->rx_start = 0;
1978
    for (i = 0; i < s->rx_len; i ++)
1979
        s->rx_fifo[i] = qemu_get_byte(f);
1980

    
1981
    return 0;
1982
}
1983

    
1984
static PXA2xxFIrState *pxa2xx_fir_init(MemoryRegion *sysmem,
1985
                target_phys_addr_t base,
1986
                qemu_irq irq, qemu_irq rx_dma, qemu_irq tx_dma,
1987
                CharDriverState *chr)
1988
{
1989
    PXA2xxFIrState *s = (PXA2xxFIrState *)
1990
            g_malloc0(sizeof(PXA2xxFIrState));
1991

    
1992
    s->irq = irq;
1993
    s->rx_dma = rx_dma;
1994
    s->tx_dma = tx_dma;
1995
    s->chr = chr;
1996

    
1997
    pxa2xx_fir_reset(s);
1998

    
1999
    memory_region_init_io(&s->iomem, &pxa2xx_fir_ops, s, "pxa2xx-fir", 0x1000);
2000
    memory_region_add_subregion(sysmem, base, &s->iomem);
2001

    
2002
    if (chr)
2003
        qemu_chr_add_handlers(chr, pxa2xx_fir_is_empty,
2004
                        pxa2xx_fir_rx, pxa2xx_fir_event, s);
2005

    
2006
    register_savevm(NULL, "pxa2xx_fir", 0, 0, pxa2xx_fir_save,
2007
                    pxa2xx_fir_load, s);
2008

    
2009
    return s;
2010
}
2011

    
2012
static void pxa2xx_reset(void *opaque, int line, int level)
2013
{
2014
    PXA2xxState *s = (PXA2xxState *) opaque;
2015

    
2016
    if (level && (s->pm_regs[PCFR >> 2] & 0x10)) {        /* GPR_EN */
2017
        cpu_reset(s->env);
2018
        /* TODO: reset peripherals */
2019
    }
2020
}
2021

    
2022
/* Initialise a PXA270 integrated chip (ARM based core).  */
2023
PXA2xxState *pxa270_init(MemoryRegion *address_space,
2024
                         unsigned int sdram_size, const char *revision)
2025
{
2026
    PXA2xxState *s;
2027
    int i;
2028
    DriveInfo *dinfo;
2029
    s = (PXA2xxState *) g_malloc0(sizeof(PXA2xxState));
2030

    
2031
    if (revision && strncmp(revision, "pxa27", 5)) {
2032
        fprintf(stderr, "Machine requires a PXA27x processor.\n");
2033
        exit(1);
2034
    }
2035
    if (!revision)
2036
        revision = "pxa270";
2037
    
2038
    s->env = cpu_init(revision);
2039
    if (!s->env) {
2040
        fprintf(stderr, "Unable to find CPU definition\n");
2041
        exit(1);
2042
    }
2043
    s->reset = qemu_allocate_irqs(pxa2xx_reset, s, 1)[0];
2044

    
2045
    /* SDRAM & Internal Memory Storage */
2046
    memory_region_init_ram(&s->sdram, NULL, "pxa270.sdram", sdram_size);
2047
    memory_region_add_subregion(address_space, PXA2XX_SDRAM_BASE, &s->sdram);
2048
    memory_region_init_ram(&s->internal, NULL, "pxa270.internal", 0x40000);
2049
    memory_region_add_subregion(address_space, PXA2XX_INTERNAL_BASE,
2050
                                &s->internal);
2051

    
2052
    s->pic = pxa2xx_pic_init(0x40d00000, s->env);
2053

    
2054
    s->dma = pxa27x_dma_init(0x40000000,
2055
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_DMA));
2056

    
2057
    sysbus_create_varargs("pxa27x-timer", 0x40a00000,
2058
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 0),
2059
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 1),
2060
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 2),
2061
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 3),
2062
                    qdev_get_gpio_in(s->pic, PXA27X_PIC_OST_4_11),
2063
                    NULL);
2064

    
2065
    s->gpio = pxa2xx_gpio_init(0x40e00000, s->env, s->pic, 121);
2066

    
2067
    dinfo = drive_get(IF_SD, 0, 0);
2068
    if (!dinfo) {
2069
        fprintf(stderr, "qemu: missing SecureDigital device\n");
2070
        exit(1);
2071
    }
2072
    s->mmc = pxa2xx_mmci_init(0x41100000, dinfo->bdrv,
2073
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_MMC),
2074
                    qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_MMCI),
2075
                    qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_MMCI));
2076

    
2077
    for (i = 0; pxa270_serial[i].io_base; i++) {
2078
        if (serial_hds[i]) {
2079
            serial_mm_init(address_space, pxa270_serial[i].io_base, 2,
2080
                           qdev_get_gpio_in(s->pic, pxa270_serial[i].irqn),
2081
                           14857000 / 16, serial_hds[i],
2082
                           DEVICE_NATIVE_ENDIAN);
2083
        } else {
2084
            break;
2085
        }
2086
    }
2087
    if (serial_hds[i])
2088
        s->fir = pxa2xx_fir_init(address_space, 0x40800000,
2089
                        qdev_get_gpio_in(s->pic, PXA2XX_PIC_ICP),
2090
                        qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_ICP),
2091
                        qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_ICP),
2092
                        serial_hds[i]);
2093

    
2094
    s->lcd = pxa2xx_lcdc_init(0x44000000,
2095
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_LCD));
2096

    
2097
    s->cm_base = 0x41300000;
2098
    s->cm_regs[CCCR >> 2] = 0x02000210;        /* 416.0 MHz */
2099
    s->clkcfg = 0x00000009;                /* Turbo mode active */
2100
    memory_region_init_io(&s->cm_iomem, &pxa2xx_cm_ops, s, "pxa2xx-cm", 0x1000);
2101
    memory_region_add_subregion(address_space, s->cm_base, &s->cm_iomem);
2102
    vmstate_register(NULL, 0, &vmstate_pxa2xx_cm, s);
2103

    
2104
    cpu_arm_set_cp_io(s->env, 14, pxa2xx_cp14_read, pxa2xx_cp14_write, s);
2105

    
2106
    s->mm_base = 0x48000000;
2107
    s->mm_regs[MDMRS >> 2] = 0x00020002;
2108
    s->mm_regs[MDREFR >> 2] = 0x03ca4000;
2109
    s->mm_regs[MECR >> 2] = 0x00000001;        /* Two PC Card sockets */
2110
    memory_region_init_io(&s->mm_iomem, &pxa2xx_mm_ops, s, "pxa2xx-mm", 0x1000);
2111
    memory_region_add_subregion(address_space, s->mm_base, &s->mm_iomem);
2112
    vmstate_register(NULL, 0, &vmstate_pxa2xx_mm, s);
2113

    
2114
    s->pm_base = 0x40f00000;
2115
    memory_region_init_io(&s->pm_iomem, &pxa2xx_pm_ops, s, "pxa2xx-pm", 0x100);
2116
    memory_region_add_subregion(address_space, s->pm_base, &s->pm_iomem);
2117
    vmstate_register(NULL, 0, &vmstate_pxa2xx_pm, s);
2118

    
2119
    for (i = 0; pxa27x_ssp[i].io_base; i ++);
2120
    s->ssp = (SSIBus **)g_malloc0(sizeof(SSIBus *) * i);
2121
    for (i = 0; pxa27x_ssp[i].io_base; i ++) {
2122
        DeviceState *dev;
2123
        dev = sysbus_create_simple("pxa2xx-ssp", pxa27x_ssp[i].io_base,
2124
                        qdev_get_gpio_in(s->pic, pxa27x_ssp[i].irqn));
2125
        s->ssp[i] = (SSIBus *)qdev_get_child_bus(dev, "ssi");
2126
    }
2127

    
2128
    if (usb_enabled) {
2129
        sysbus_create_simple("sysbus-ohci", 0x4c000000,
2130
                        qdev_get_gpio_in(s->pic, PXA2XX_PIC_USBH1));
2131
    }
2132

    
2133
    s->pcmcia[0] = pxa2xx_pcmcia_init(0x20000000);
2134
    s->pcmcia[1] = pxa2xx_pcmcia_init(0x30000000);
2135

    
2136
    sysbus_create_simple("pxa2xx_rtc", 0x40900000,
2137
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_RTCALARM));
2138

    
2139
    s->i2c[0] = pxa2xx_i2c_init(0x40301600,
2140
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2C), 0xffff);
2141
    s->i2c[1] = pxa2xx_i2c_init(0x40f00100,
2142
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_PWRI2C), 0xff);
2143

    
2144
    s->i2s = pxa2xx_i2s_init(address_space, 0x40400000,
2145
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2S),
2146
                    qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_I2S),
2147
                    qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_I2S));
2148

    
2149
    s->kp = pxa27x_keypad_init(0x41500000,
2150
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_KEYPAD));
2151

    
2152
    /* GPIO1 resets the processor */
2153
    /* The handler can be overridden by board-specific code */
2154
    qdev_connect_gpio_out(s->gpio, 1, s->reset);
2155
    return s;
2156
}
2157

    
2158
/* Initialise a PXA255 integrated chip (ARM based core).  */
2159
PXA2xxState *pxa255_init(MemoryRegion *address_space, unsigned int sdram_size)
2160
{
2161
    PXA2xxState *s;
2162
    int i;
2163
    DriveInfo *dinfo;
2164

    
2165
    s = (PXA2xxState *) g_malloc0(sizeof(PXA2xxState));
2166

    
2167
    s->env = cpu_init("pxa255");
2168
    if (!s->env) {
2169
        fprintf(stderr, "Unable to find CPU definition\n");
2170
        exit(1);
2171
    }
2172
    s->reset = qemu_allocate_irqs(pxa2xx_reset, s, 1)[0];
2173

    
2174
    /* SDRAM & Internal Memory Storage */
2175
    memory_region_init_ram(&s->sdram, NULL, "pxa255.sdram", sdram_size);
2176
    memory_region_add_subregion(address_space, PXA2XX_SDRAM_BASE, &s->sdram);
2177
    memory_region_init_ram(&s->internal, NULL, "pxa255.internal",
2178
                           PXA2XX_INTERNAL_SIZE);
2179
    memory_region_add_subregion(address_space, PXA2XX_INTERNAL_BASE,
2180
                                &s->internal);
2181

    
2182
    s->pic = pxa2xx_pic_init(0x40d00000, s->env);
2183

    
2184
    s->dma = pxa255_dma_init(0x40000000,
2185
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_DMA));
2186

    
2187
    sysbus_create_varargs("pxa25x-timer", 0x40a00000,
2188
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 0),
2189
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 1),
2190
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 2),
2191
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 3),
2192
                    NULL);
2193

    
2194
    s->gpio = pxa2xx_gpio_init(0x40e00000, s->env, s->pic, 85);
2195

    
2196
    dinfo = drive_get(IF_SD, 0, 0);
2197
    if (!dinfo) {
2198
        fprintf(stderr, "qemu: missing SecureDigital device\n");
2199
        exit(1);
2200
    }
2201
    s->mmc = pxa2xx_mmci_init(0x41100000, dinfo->bdrv,
2202
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_MMC),
2203
                    qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_MMCI),
2204
                    qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_MMCI));
2205

    
2206
    for (i = 0; pxa255_serial[i].io_base; i++) {
2207
        if (serial_hds[i]) {
2208
            serial_mm_init(address_space, pxa255_serial[i].io_base, 2,
2209
                           qdev_get_gpio_in(s->pic, pxa255_serial[i].irqn),
2210
                           14745600 / 16, serial_hds[i],
2211
                           DEVICE_NATIVE_ENDIAN);
2212
        } else {
2213
            break;
2214
        }
2215
    }
2216
    if (serial_hds[i])
2217
        s->fir = pxa2xx_fir_init(address_space, 0x40800000,
2218
                        qdev_get_gpio_in(s->pic, PXA2XX_PIC_ICP),
2219
                        qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_ICP),
2220
                        qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_ICP),
2221
                        serial_hds[i]);
2222

    
2223
    s->lcd = pxa2xx_lcdc_init(0x44000000,
2224
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_LCD));
2225

    
2226
    s->cm_base = 0x41300000;
2227
    s->cm_regs[CCCR >> 2] = 0x02000210;        /* 416.0 MHz */
2228
    s->clkcfg = 0x00000009;                /* Turbo mode active */
2229
    memory_region_init_io(&s->cm_iomem, &pxa2xx_cm_ops, s, "pxa2xx-cm", 0x1000);
2230
    memory_region_add_subregion(address_space, s->cm_base, &s->cm_iomem);
2231
    vmstate_register(NULL, 0, &vmstate_pxa2xx_cm, s);
2232

    
2233
    cpu_arm_set_cp_io(s->env, 14, pxa2xx_cp14_read, pxa2xx_cp14_write, s);
2234

    
2235
    s->mm_base = 0x48000000;
2236
    s->mm_regs[MDMRS >> 2] = 0x00020002;
2237
    s->mm_regs[MDREFR >> 2] = 0x03ca4000;
2238
    s->mm_regs[MECR >> 2] = 0x00000001;        /* Two PC Card sockets */
2239
    memory_region_init_io(&s->mm_iomem, &pxa2xx_mm_ops, s, "pxa2xx-mm", 0x1000);
2240
    memory_region_add_subregion(address_space, s->mm_base, &s->mm_iomem);
2241
    vmstate_register(NULL, 0, &vmstate_pxa2xx_mm, s);
2242

    
2243
    s->pm_base = 0x40f00000;
2244
    memory_region_init_io(&s->pm_iomem, &pxa2xx_pm_ops, s, "pxa2xx-pm", 0x100);
2245
    memory_region_add_subregion(address_space, s->pm_base, &s->pm_iomem);
2246
    vmstate_register(NULL, 0, &vmstate_pxa2xx_pm, s);
2247

    
2248
    for (i = 0; pxa255_ssp[i].io_base; i ++);
2249
    s->ssp = (SSIBus **)g_malloc0(sizeof(SSIBus *) * i);
2250
    for (i = 0; pxa255_ssp[i].io_base; i ++) {
2251
        DeviceState *dev;
2252
        dev = sysbus_create_simple("pxa2xx-ssp", pxa255_ssp[i].io_base,
2253
                        qdev_get_gpio_in(s->pic, pxa255_ssp[i].irqn));
2254
        s->ssp[i] = (SSIBus *)qdev_get_child_bus(dev, "ssi");
2255
    }
2256

    
2257
    if (usb_enabled) {
2258
        sysbus_create_simple("sysbus-ohci", 0x4c000000,
2259
                        qdev_get_gpio_in(s->pic, PXA2XX_PIC_USBH1));
2260
    }
2261

    
2262
    s->pcmcia[0] = pxa2xx_pcmcia_init(0x20000000);
2263
    s->pcmcia[1] = pxa2xx_pcmcia_init(0x30000000);
2264

    
2265
    sysbus_create_simple("pxa2xx_rtc", 0x40900000,
2266
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_RTCALARM));
2267

    
2268
    s->i2c[0] = pxa2xx_i2c_init(0x40301600,
2269
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2C), 0xffff);
2270
    s->i2c[1] = pxa2xx_i2c_init(0x40f00100,
2271
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_PWRI2C), 0xff);
2272

    
2273
    s->i2s = pxa2xx_i2s_init(address_space, 0x40400000,
2274
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2S),
2275
                    qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_I2S),
2276
                    qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_I2S));
2277

    
2278
    /* GPIO1 resets the processor */
2279
    /* The handler can be overridden by board-specific code */
2280
    qdev_connect_gpio_out(s->gpio, 1, s->reset);
2281
    return s;
2282
}
2283

    
2284
static void pxa2xx_register_devices(void)
2285
{
2286
    i2c_register_slave(&pxa2xx_i2c_slave_info);
2287
    sysbus_register_dev("pxa2xx-ssp", sizeof(PXA2xxSSPState), pxa2xx_ssp_init);
2288
    sysbus_register_withprop(&pxa2xx_i2c_info);
2289
    sysbus_register_withprop(&pxa2xx_rtc_sysbus_info);
2290
}
2291

    
2292
device_init(pxa2xx_register_devices)