Statistics
| Branch: | Revision:

root / vl.c @ b0f3b8fa

History | View | Annotate | Download (147.5 kB)

1
/*
2
 * QEMU System Emulator
3
 *
4
 * Copyright (c) 2003-2008 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw/hw.h"
25
#include "hw/boards.h"
26
#include "hw/usb.h"
27
#include "hw/pcmcia.h"
28
#include "hw/pc.h"
29
#include "hw/audiodev.h"
30
#include "hw/isa.h"
31
#include "hw/baum.h"
32
#include "hw/bt.h"
33
#include "net.h"
34
#include "console.h"
35
#include "sysemu.h"
36
#include "gdbstub.h"
37
#include "qemu-timer.h"
38
#include "qemu-char.h"
39
#include "cache-utils.h"
40
#include "block.h"
41
#include "audio/audio.h"
42
#include "migration.h"
43
#include "kvm.h"
44
#include "balloon.h"
45

    
46
#include <unistd.h>
47
#include <fcntl.h>
48
#include <signal.h>
49
#include <time.h>
50
#include <errno.h>
51
#include <sys/time.h>
52
#include <zlib.h>
53

    
54
#ifndef _WIN32
55
#include <sys/times.h>
56
#include <sys/wait.h>
57
#include <termios.h>
58
#include <sys/mman.h>
59
#include <sys/ioctl.h>
60
#include <sys/resource.h>
61
#include <sys/socket.h>
62
#include <netinet/in.h>
63
#include <net/if.h>
64
#if defined(__NetBSD__)
65
#include <net/if_tap.h>
66
#endif
67
#ifdef __linux__
68
#include <linux/if_tun.h>
69
#endif
70
#include <arpa/inet.h>
71
#include <dirent.h>
72
#include <netdb.h>
73
#include <sys/select.h>
74
#ifdef _BSD
75
#include <sys/stat.h>
76
#ifdef __FreeBSD__
77
#include <libutil.h>
78
#else
79
#include <util.h>
80
#endif
81
#elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
82
#include <freebsd/stdlib.h>
83
#else
84
#ifdef __linux__
85
#include <pty.h>
86
#include <malloc.h>
87
#include <linux/rtc.h>
88

    
89
/* For the benefit of older linux systems which don't supply it,
90
   we use a local copy of hpet.h. */
91
/* #include <linux/hpet.h> */
92
#include "hpet.h"
93

    
94
#include <linux/ppdev.h>
95
#include <linux/parport.h>
96
#endif
97
#ifdef __sun__
98
#include <sys/stat.h>
99
#include <sys/ethernet.h>
100
#include <sys/sockio.h>
101
#include <netinet/arp.h>
102
#include <netinet/in.h>
103
#include <netinet/in_systm.h>
104
#include <netinet/ip.h>
105
#include <netinet/ip_icmp.h> // must come after ip.h
106
#include <netinet/udp.h>
107
#include <netinet/tcp.h>
108
#include <net/if.h>
109
#include <syslog.h>
110
#include <stropts.h>
111
#endif
112
#endif
113
#endif
114

    
115
#include "qemu_socket.h"
116

    
117
#if defined(CONFIG_SLIRP)
118
#include "libslirp.h"
119
#endif
120

    
121
#if defined(__OpenBSD__)
122
#include <util.h>
123
#endif
124

    
125
#if defined(CONFIG_VDE)
126
#include <libvdeplug.h>
127
#endif
128

    
129
#ifdef _WIN32
130
#include <malloc.h>
131
#include <sys/timeb.h>
132
#include <mmsystem.h>
133
#define getopt_long_only getopt_long
134
#define memalign(align, size) malloc(size)
135
#endif
136

    
137
#ifdef CONFIG_SDL
138
#ifdef __APPLE__
139
#include <SDL/SDL.h>
140
#endif
141
#endif /* CONFIG_SDL */
142

    
143
#ifdef CONFIG_COCOA
144
#undef main
145
#define main qemu_main
146
#endif /* CONFIG_COCOA */
147

    
148
#include "disas.h"
149

    
150
#include "exec-all.h"
151

    
152
//#define DEBUG_UNUSED_IOPORT
153
//#define DEBUG_IOPORT
154
//#define DEBUG_NET
155
//#define DEBUG_SLIRP
156

    
157
#ifdef TARGET_PPC
158
#define DEFAULT_RAM_SIZE 144
159
#else
160
#define DEFAULT_RAM_SIZE 128
161
#endif
162

    
163
/* Max number of USB devices that can be specified on the commandline.  */
164
#define MAX_USB_CMDLINE 8
165

    
166
/* Max number of bluetooth switches on the commandline.  */
167
#define MAX_BT_CMDLINE 10
168

    
169
/* XXX: use a two level table to limit memory usage */
170
#define MAX_IOPORTS 65536
171

    
172
const char *bios_dir = CONFIG_QEMU_SHAREDIR;
173
const char *bios_name = NULL;
174
static void *ioport_opaque[MAX_IOPORTS];
175
static IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
176
static IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
177
/* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
178
   to store the VM snapshots */
179
DriveInfo drives_table[MAX_DRIVES+1];
180
int nb_drives;
181
static int vga_ram_size;
182
enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
183
DisplayState display_state;
184
int nographic;
185
static int curses;
186
const char* keyboard_layout = NULL;
187
int64_t ticks_per_sec;
188
ram_addr_t ram_size;
189
int nb_nics;
190
NICInfo nd_table[MAX_NICS];
191
int vm_running;
192
static int rtc_utc = 1;
193
static int rtc_date_offset = -1; /* -1 means no change */
194
int cirrus_vga_enabled = 1;
195
int vmsvga_enabled = 0;
196
#ifdef TARGET_SPARC
197
int graphic_width = 1024;
198
int graphic_height = 768;
199
int graphic_depth = 8;
200
#else
201
int graphic_width = 800;
202
int graphic_height = 600;
203
int graphic_depth = 15;
204
#endif
205
static int full_screen = 0;
206
#ifdef CONFIG_SDL
207
static int no_frame = 0;
208
#endif
209
int no_quit = 0;
210
CharDriverState *serial_hds[MAX_SERIAL_PORTS];
211
CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
212
#ifdef TARGET_I386
213
int win2k_install_hack = 0;
214
#endif
215
int usb_enabled = 0;
216
int smp_cpus = 1;
217
const char *vnc_display;
218
int acpi_enabled = 1;
219
int no_hpet = 0;
220
int fd_bootchk = 1;
221
int no_reboot = 0;
222
int no_shutdown = 0;
223
int cursor_hide = 1;
224
int graphic_rotate = 0;
225
int daemonize = 0;
226
const char *option_rom[MAX_OPTION_ROMS];
227
int nb_option_roms;
228
int semihosting_enabled = 0;
229
#ifdef TARGET_ARM
230
int old_param = 0;
231
#endif
232
const char *qemu_name;
233
int alt_grab = 0;
234
#if defined(TARGET_SPARC) || defined(TARGET_PPC)
235
unsigned int nb_prom_envs = 0;
236
const char *prom_envs[MAX_PROM_ENVS];
237
#endif
238
static int nb_drives_opt;
239
static struct drive_opt {
240
    const char *file;
241
    char opt[1024];
242
} drives_opt[MAX_DRIVES];
243

    
244
static CPUState *cur_cpu;
245
static CPUState *next_cpu;
246
static int event_pending = 1;
247
/* Conversion factor from emulated instructions to virtual clock ticks.  */
248
static int icount_time_shift;
249
/* Arbitrarily pick 1MIPS as the minimum allowable speed.  */
250
#define MAX_ICOUNT_SHIFT 10
251
/* Compensate for varying guest execution speed.  */
252
static int64_t qemu_icount_bias;
253
static QEMUTimer *icount_rt_timer;
254
static QEMUTimer *icount_vm_timer;
255

    
256
uint8_t qemu_uuid[16];
257

    
258
/***********************************************************/
259
/* x86 ISA bus support */
260

    
261
target_phys_addr_t isa_mem_base = 0;
262
PicState2 *isa_pic;
263

    
264
static IOPortReadFunc default_ioport_readb, default_ioport_readw, default_ioport_readl;
265
static IOPortWriteFunc default_ioport_writeb, default_ioport_writew, default_ioport_writel;
266

    
267
static uint32_t ioport_read(int index, uint32_t address)
268
{
269
    static IOPortReadFunc *default_func[3] = {
270
        default_ioport_readb,
271
        default_ioport_readw,
272
        default_ioport_readl
273
    };
274
    IOPortReadFunc *func = ioport_read_table[index][address];
275
    if (!func)
276
        func = default_func[index];
277
    return func(ioport_opaque[address], address);
278
}
279

    
280
static void ioport_write(int index, uint32_t address, uint32_t data)
281
{
282
    static IOPortWriteFunc *default_func[3] = {
283
        default_ioport_writeb,
284
        default_ioport_writew,
285
        default_ioport_writel
286
    };
287
    IOPortWriteFunc *func = ioport_write_table[index][address];
288
    if (!func)
289
        func = default_func[index];
290
    func(ioport_opaque[address], address, data);
291
}
292

    
293
static uint32_t default_ioport_readb(void *opaque, uint32_t address)
294
{
295
#ifdef DEBUG_UNUSED_IOPORT
296
    fprintf(stderr, "unused inb: port=0x%04x\n", address);
297
#endif
298
    return 0xff;
299
}
300

    
301
static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
302
{
303
#ifdef DEBUG_UNUSED_IOPORT
304
    fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
305
#endif
306
}
307

    
308
/* default is to make two byte accesses */
309
static uint32_t default_ioport_readw(void *opaque, uint32_t address)
310
{
311
    uint32_t data;
312
    data = ioport_read(0, address);
313
    address = (address + 1) & (MAX_IOPORTS - 1);
314
    data |= ioport_read(0, address) << 8;
315
    return data;
316
}
317

    
318
static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
319
{
320
    ioport_write(0, address, data & 0xff);
321
    address = (address + 1) & (MAX_IOPORTS - 1);
322
    ioport_write(0, address, (data >> 8) & 0xff);
323
}
324

    
325
static uint32_t default_ioport_readl(void *opaque, uint32_t address)
326
{
327
#ifdef DEBUG_UNUSED_IOPORT
328
    fprintf(stderr, "unused inl: port=0x%04x\n", address);
329
#endif
330
    return 0xffffffff;
331
}
332

    
333
static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
334
{
335
#ifdef DEBUG_UNUSED_IOPORT
336
    fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
337
#endif
338
}
339

    
340
/* size is the word size in byte */
341
int register_ioport_read(int start, int length, int size,
342
                         IOPortReadFunc *func, void *opaque)
343
{
344
    int i, bsize;
345

    
346
    if (size == 1) {
347
        bsize = 0;
348
    } else if (size == 2) {
349
        bsize = 1;
350
    } else if (size == 4) {
351
        bsize = 2;
352
    } else {
353
        hw_error("register_ioport_read: invalid size");
354
        return -1;
355
    }
356
    for(i = start; i < start + length; i += size) {
357
        ioport_read_table[bsize][i] = func;
358
        if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
359
            hw_error("register_ioport_read: invalid opaque");
360
        ioport_opaque[i] = opaque;
361
    }
362
    return 0;
363
}
364

    
365
/* size is the word size in byte */
366
int register_ioport_write(int start, int length, int size,
367
                          IOPortWriteFunc *func, void *opaque)
368
{
369
    int i, bsize;
370

    
371
    if (size == 1) {
372
        bsize = 0;
373
    } else if (size == 2) {
374
        bsize = 1;
375
    } else if (size == 4) {
376
        bsize = 2;
377
    } else {
378
        hw_error("register_ioport_write: invalid size");
379
        return -1;
380
    }
381
    for(i = start; i < start + length; i += size) {
382
        ioport_write_table[bsize][i] = func;
383
        if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
384
            hw_error("register_ioport_write: invalid opaque");
385
        ioport_opaque[i] = opaque;
386
    }
387
    return 0;
388
}
389

    
390
void isa_unassign_ioport(int start, int length)
391
{
392
    int i;
393

    
394
    for(i = start; i < start + length; i++) {
395
        ioport_read_table[0][i] = default_ioport_readb;
396
        ioport_read_table[1][i] = default_ioport_readw;
397
        ioport_read_table[2][i] = default_ioport_readl;
398

    
399
        ioport_write_table[0][i] = default_ioport_writeb;
400
        ioport_write_table[1][i] = default_ioport_writew;
401
        ioport_write_table[2][i] = default_ioport_writel;
402
    }
403
}
404

    
405
/***********************************************************/
406

    
407
void cpu_outb(CPUState *env, int addr, int val)
408
{
409
#ifdef DEBUG_IOPORT
410
    if (loglevel & CPU_LOG_IOPORT)
411
        fprintf(logfile, "outb: %04x %02x\n", addr, val);
412
#endif
413
    ioport_write(0, addr, val);
414
#ifdef USE_KQEMU
415
    if (env)
416
        env->last_io_time = cpu_get_time_fast();
417
#endif
418
}
419

    
420
void cpu_outw(CPUState *env, int addr, int val)
421
{
422
#ifdef DEBUG_IOPORT
423
    if (loglevel & CPU_LOG_IOPORT)
424
        fprintf(logfile, "outw: %04x %04x\n", addr, val);
425
#endif
426
    ioport_write(1, addr, val);
427
#ifdef USE_KQEMU
428
    if (env)
429
        env->last_io_time = cpu_get_time_fast();
430
#endif
431
}
432

    
433
void cpu_outl(CPUState *env, int addr, int val)
434
{
435
#ifdef DEBUG_IOPORT
436
    if (loglevel & CPU_LOG_IOPORT)
437
        fprintf(logfile, "outl: %04x %08x\n", addr, val);
438
#endif
439
    ioport_write(2, addr, val);
440
#ifdef USE_KQEMU
441
    if (env)
442
        env->last_io_time = cpu_get_time_fast();
443
#endif
444
}
445

    
446
int cpu_inb(CPUState *env, int addr)
447
{
448
    int val;
449
    val = ioport_read(0, addr);
450
#ifdef DEBUG_IOPORT
451
    if (loglevel & CPU_LOG_IOPORT)
452
        fprintf(logfile, "inb : %04x %02x\n", addr, val);
453
#endif
454
#ifdef USE_KQEMU
455
    if (env)
456
        env->last_io_time = cpu_get_time_fast();
457
#endif
458
    return val;
459
}
460

    
461
int cpu_inw(CPUState *env, int addr)
462
{
463
    int val;
464
    val = ioport_read(1, addr);
465
#ifdef DEBUG_IOPORT
466
    if (loglevel & CPU_LOG_IOPORT)
467
        fprintf(logfile, "inw : %04x %04x\n", addr, val);
468
#endif
469
#ifdef USE_KQEMU
470
    if (env)
471
        env->last_io_time = cpu_get_time_fast();
472
#endif
473
    return val;
474
}
475

    
476
int cpu_inl(CPUState *env, int addr)
477
{
478
    int val;
479
    val = ioport_read(2, addr);
480
#ifdef DEBUG_IOPORT
481
    if (loglevel & CPU_LOG_IOPORT)
482
        fprintf(logfile, "inl : %04x %08x\n", addr, val);
483
#endif
484
#ifdef USE_KQEMU
485
    if (env)
486
        env->last_io_time = cpu_get_time_fast();
487
#endif
488
    return val;
489
}
490

    
491
/***********************************************************/
492
void hw_error(const char *fmt, ...)
493
{
494
    va_list ap;
495
    CPUState *env;
496

    
497
    va_start(ap, fmt);
498
    fprintf(stderr, "qemu: hardware error: ");
499
    vfprintf(stderr, fmt, ap);
500
    fprintf(stderr, "\n");
501
    for(env = first_cpu; env != NULL; env = env->next_cpu) {
502
        fprintf(stderr, "CPU #%d:\n", env->cpu_index);
503
#ifdef TARGET_I386
504
        cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
505
#else
506
        cpu_dump_state(env, stderr, fprintf, 0);
507
#endif
508
    }
509
    va_end(ap);
510
    abort();
511
}
512
 
513
/***************/
514
/* ballooning */
515

    
516
static QEMUBalloonEvent *qemu_balloon_event;
517
void *qemu_balloon_event_opaque;
518

    
519
void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
520
{
521
    qemu_balloon_event = func;
522
    qemu_balloon_event_opaque = opaque;
523
}
524

    
525
void qemu_balloon(ram_addr_t target)
526
{
527
    if (qemu_balloon_event)
528
        qemu_balloon_event(qemu_balloon_event_opaque, target);
529
}
530

    
531
ram_addr_t qemu_balloon_status(void)
532
{
533
    if (qemu_balloon_event)
534
        return qemu_balloon_event(qemu_balloon_event_opaque, 0);
535
    return 0;
536
}
537

    
538
/***********************************************************/
539
/* keyboard/mouse */
540

    
541
static QEMUPutKBDEvent *qemu_put_kbd_event;
542
static void *qemu_put_kbd_event_opaque;
543
static QEMUPutMouseEntry *qemu_put_mouse_event_head;
544
static QEMUPutMouseEntry *qemu_put_mouse_event_current;
545

    
546
void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
547
{
548
    qemu_put_kbd_event_opaque = opaque;
549
    qemu_put_kbd_event = func;
550
}
551

    
552
QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
553
                                                void *opaque, int absolute,
554
                                                const char *name)
555
{
556
    QEMUPutMouseEntry *s, *cursor;
557

    
558
    s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
559
    if (!s)
560
        return NULL;
561

    
562
    s->qemu_put_mouse_event = func;
563
    s->qemu_put_mouse_event_opaque = opaque;
564
    s->qemu_put_mouse_event_absolute = absolute;
565
    s->qemu_put_mouse_event_name = qemu_strdup(name);
566
    s->next = NULL;
567

    
568
    if (!qemu_put_mouse_event_head) {
569
        qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
570
        return s;
571
    }
572

    
573
    cursor = qemu_put_mouse_event_head;
574
    while (cursor->next != NULL)
575
        cursor = cursor->next;
576

    
577
    cursor->next = s;
578
    qemu_put_mouse_event_current = s;
579

    
580
    return s;
581
}
582

    
583
void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
584
{
585
    QEMUPutMouseEntry *prev = NULL, *cursor;
586

    
587
    if (!qemu_put_mouse_event_head || entry == NULL)
588
        return;
589

    
590
    cursor = qemu_put_mouse_event_head;
591
    while (cursor != NULL && cursor != entry) {
592
        prev = cursor;
593
        cursor = cursor->next;
594
    }
595

    
596
    if (cursor == NULL) // does not exist or list empty
597
        return;
598
    else if (prev == NULL) { // entry is head
599
        qemu_put_mouse_event_head = cursor->next;
600
        if (qemu_put_mouse_event_current == entry)
601
            qemu_put_mouse_event_current = cursor->next;
602
        qemu_free(entry->qemu_put_mouse_event_name);
603
        qemu_free(entry);
604
        return;
605
    }
606

    
607
    prev->next = entry->next;
608

    
609
    if (qemu_put_mouse_event_current == entry)
610
        qemu_put_mouse_event_current = prev;
611

    
612
    qemu_free(entry->qemu_put_mouse_event_name);
613
    qemu_free(entry);
614
}
615

    
616
void kbd_put_keycode(int keycode)
617
{
618
    if (qemu_put_kbd_event) {
619
        qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
620
    }
621
}
622

    
623
void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
624
{
625
    QEMUPutMouseEvent *mouse_event;
626
    void *mouse_event_opaque;
627
    int width;
628

    
629
    if (!qemu_put_mouse_event_current) {
630
        return;
631
    }
632

    
633
    mouse_event =
634
        qemu_put_mouse_event_current->qemu_put_mouse_event;
635
    mouse_event_opaque =
636
        qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
637

    
638
    if (mouse_event) {
639
        if (graphic_rotate) {
640
            if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
641
                width = 0x7fff;
642
            else
643
                width = graphic_width - 1;
644
            mouse_event(mouse_event_opaque,
645
                                 width - dy, dx, dz, buttons_state);
646
        } else
647
            mouse_event(mouse_event_opaque,
648
                                 dx, dy, dz, buttons_state);
649
    }
650
}
651

    
652
int kbd_mouse_is_absolute(void)
653
{
654
    if (!qemu_put_mouse_event_current)
655
        return 0;
656

    
657
    return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
658
}
659

    
660
void do_info_mice(void)
661
{
662
    QEMUPutMouseEntry *cursor;
663
    int index = 0;
664

    
665
    if (!qemu_put_mouse_event_head) {
666
        term_printf("No mouse devices connected\n");
667
        return;
668
    }
669

    
670
    term_printf("Mouse devices available:\n");
671
    cursor = qemu_put_mouse_event_head;
672
    while (cursor != NULL) {
673
        term_printf("%c Mouse #%d: %s\n",
674
                    (cursor == qemu_put_mouse_event_current ? '*' : ' '),
675
                    index, cursor->qemu_put_mouse_event_name);
676
        index++;
677
        cursor = cursor->next;
678
    }
679
}
680

    
681
void do_mouse_set(int index)
682
{
683
    QEMUPutMouseEntry *cursor;
684
    int i = 0;
685

    
686
    if (!qemu_put_mouse_event_head) {
687
        term_printf("No mouse devices connected\n");
688
        return;
689
    }
690

    
691
    cursor = qemu_put_mouse_event_head;
692
    while (cursor != NULL && index != i) {
693
        i++;
694
        cursor = cursor->next;
695
    }
696

    
697
    if (cursor != NULL)
698
        qemu_put_mouse_event_current = cursor;
699
    else
700
        term_printf("Mouse at given index not found\n");
701
}
702

    
703
/* compute with 96 bit intermediate result: (a*b)/c */
704
uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
705
{
706
    union {
707
        uint64_t ll;
708
        struct {
709
#ifdef WORDS_BIGENDIAN
710
            uint32_t high, low;
711
#else
712
            uint32_t low, high;
713
#endif
714
        } l;
715
    } u, res;
716
    uint64_t rl, rh;
717

    
718
    u.ll = a;
719
    rl = (uint64_t)u.l.low * (uint64_t)b;
720
    rh = (uint64_t)u.l.high * (uint64_t)b;
721
    rh += (rl >> 32);
722
    res.l.high = rh / c;
723
    res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
724
    return res.ll;
725
}
726

    
727
/***********************************************************/
728
/* real time host monotonic timer */
729

    
730
#define QEMU_TIMER_BASE 1000000000LL
731

    
732
#ifdef WIN32
733

    
734
static int64_t clock_freq;
735

    
736
static void init_get_clock(void)
737
{
738
    LARGE_INTEGER freq;
739
    int ret;
740
    ret = QueryPerformanceFrequency(&freq);
741
    if (ret == 0) {
742
        fprintf(stderr, "Could not calibrate ticks\n");
743
        exit(1);
744
    }
745
    clock_freq = freq.QuadPart;
746
}
747

    
748
static int64_t get_clock(void)
749
{
750
    LARGE_INTEGER ti;
751
    QueryPerformanceCounter(&ti);
752
    return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
753
}
754

    
755
#else
756

    
757
static int use_rt_clock;
758

    
759
static void init_get_clock(void)
760
{
761
    use_rt_clock = 0;
762
#if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000)
763
    {
764
        struct timespec ts;
765
        if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
766
            use_rt_clock = 1;
767
        }
768
    }
769
#endif
770
}
771

    
772
static int64_t get_clock(void)
773
{
774
#if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000)
775
    if (use_rt_clock) {
776
        struct timespec ts;
777
        clock_gettime(CLOCK_MONOTONIC, &ts);
778
        return ts.tv_sec * 1000000000LL + ts.tv_nsec;
779
    } else
780
#endif
781
    {
782
        /* XXX: using gettimeofday leads to problems if the date
783
           changes, so it should be avoided. */
784
        struct timeval tv;
785
        gettimeofday(&tv, NULL);
786
        return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
787
    }
788
}
789
#endif
790

    
791
/* Return the virtual CPU time, based on the instruction counter.  */
792
static int64_t cpu_get_icount(void)
793
{
794
    int64_t icount;
795
    CPUState *env = cpu_single_env;;
796
    icount = qemu_icount;
797
    if (env) {
798
        if (!can_do_io(env))
799
            fprintf(stderr, "Bad clock read\n");
800
        icount -= (env->icount_decr.u16.low + env->icount_extra);
801
    }
802
    return qemu_icount_bias + (icount << icount_time_shift);
803
}
804

    
805
/***********************************************************/
806
/* guest cycle counter */
807

    
808
static int64_t cpu_ticks_prev;
809
static int64_t cpu_ticks_offset;
810
static int64_t cpu_clock_offset;
811
static int cpu_ticks_enabled;
812

    
813
/* return the host CPU cycle counter and handle stop/restart */
814
int64_t cpu_get_ticks(void)
815
{
816
    if (use_icount) {
817
        return cpu_get_icount();
818
    }
819
    if (!cpu_ticks_enabled) {
820
        return cpu_ticks_offset;
821
    } else {
822
        int64_t ticks;
823
        ticks = cpu_get_real_ticks();
824
        if (cpu_ticks_prev > ticks) {
825
            /* Note: non increasing ticks may happen if the host uses
826
               software suspend */
827
            cpu_ticks_offset += cpu_ticks_prev - ticks;
828
        }
829
        cpu_ticks_prev = ticks;
830
        return ticks + cpu_ticks_offset;
831
    }
832
}
833

    
834
/* return the host CPU monotonic timer and handle stop/restart */
835
static int64_t cpu_get_clock(void)
836
{
837
    int64_t ti;
838
    if (!cpu_ticks_enabled) {
839
        return cpu_clock_offset;
840
    } else {
841
        ti = get_clock();
842
        return ti + cpu_clock_offset;
843
    }
844
}
845

    
846
/* enable cpu_get_ticks() */
847
void cpu_enable_ticks(void)
848
{
849
    if (!cpu_ticks_enabled) {
850
        cpu_ticks_offset -= cpu_get_real_ticks();
851
        cpu_clock_offset -= get_clock();
852
        cpu_ticks_enabled = 1;
853
    }
854
}
855

    
856
/* disable cpu_get_ticks() : the clock is stopped. You must not call
857
   cpu_get_ticks() after that.  */
858
void cpu_disable_ticks(void)
859
{
860
    if (cpu_ticks_enabled) {
861
        cpu_ticks_offset = cpu_get_ticks();
862
        cpu_clock_offset = cpu_get_clock();
863
        cpu_ticks_enabled = 0;
864
    }
865
}
866

    
867
/***********************************************************/
868
/* timers */
869

    
870
#define QEMU_TIMER_REALTIME 0
871
#define QEMU_TIMER_VIRTUAL  1
872

    
873
struct QEMUClock {
874
    int type;
875
    /* XXX: add frequency */
876
};
877

    
878
struct QEMUTimer {
879
    QEMUClock *clock;
880
    int64_t expire_time;
881
    QEMUTimerCB *cb;
882
    void *opaque;
883
    struct QEMUTimer *next;
884
};
885

    
886
struct qemu_alarm_timer {
887
    char const *name;
888
    unsigned int flags;
889

    
890
    int (*start)(struct qemu_alarm_timer *t);
891
    void (*stop)(struct qemu_alarm_timer *t);
892
    void (*rearm)(struct qemu_alarm_timer *t);
893
    void *priv;
894
};
895

    
896
#define ALARM_FLAG_DYNTICKS  0x1
897
#define ALARM_FLAG_EXPIRED   0x2
898

    
899
static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
900
{
901
    return t->flags & ALARM_FLAG_DYNTICKS;
902
}
903

    
904
static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
905
{
906
    if (!alarm_has_dynticks(t))
907
        return;
908

    
909
    t->rearm(t);
910
}
911

    
912
/* TODO: MIN_TIMER_REARM_US should be optimized */
913
#define MIN_TIMER_REARM_US 250
914

    
915
static struct qemu_alarm_timer *alarm_timer;
916
#ifndef _WIN32
917
static int alarm_timer_rfd, alarm_timer_wfd;
918
#endif
919

    
920
#ifdef _WIN32
921

    
922
struct qemu_alarm_win32 {
923
    MMRESULT timerId;
924
    HANDLE host_alarm;
925
    unsigned int period;
926
} alarm_win32_data = {0, NULL, -1};
927

    
928
static int win32_start_timer(struct qemu_alarm_timer *t);
929
static void win32_stop_timer(struct qemu_alarm_timer *t);
930
static void win32_rearm_timer(struct qemu_alarm_timer *t);
931

    
932
#else
933

    
934
static int unix_start_timer(struct qemu_alarm_timer *t);
935
static void unix_stop_timer(struct qemu_alarm_timer *t);
936

    
937
#ifdef __linux__
938

    
939
static int dynticks_start_timer(struct qemu_alarm_timer *t);
940
static void dynticks_stop_timer(struct qemu_alarm_timer *t);
941
static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
942

    
943
static int hpet_start_timer(struct qemu_alarm_timer *t);
944
static void hpet_stop_timer(struct qemu_alarm_timer *t);
945

    
946
static int rtc_start_timer(struct qemu_alarm_timer *t);
947
static void rtc_stop_timer(struct qemu_alarm_timer *t);
948

    
949
#endif /* __linux__ */
950

    
951
#endif /* _WIN32 */
952

    
953
/* Correlation between real and virtual time is always going to be
954
   fairly approximate, so ignore small variation.
955
   When the guest is idle real and virtual time will be aligned in
956
   the IO wait loop.  */
957
#define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
958

    
959
static void icount_adjust(void)
960
{
961
    int64_t cur_time;
962
    int64_t cur_icount;
963
    int64_t delta;
964
    static int64_t last_delta;
965
    /* If the VM is not running, then do nothing.  */
966
    if (!vm_running)
967
        return;
968

    
969
    cur_time = cpu_get_clock();
970
    cur_icount = qemu_get_clock(vm_clock);
971
    delta = cur_icount - cur_time;
972
    /* FIXME: This is a very crude algorithm, somewhat prone to oscillation.  */
973
    if (delta > 0
974
        && last_delta + ICOUNT_WOBBLE < delta * 2
975
        && icount_time_shift > 0) {
976
        /* The guest is getting too far ahead.  Slow time down.  */
977
        icount_time_shift--;
978
    }
979
    if (delta < 0
980
        && last_delta - ICOUNT_WOBBLE > delta * 2
981
        && icount_time_shift < MAX_ICOUNT_SHIFT) {
982
        /* The guest is getting too far behind.  Speed time up.  */
983
        icount_time_shift++;
984
    }
985
    last_delta = delta;
986
    qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
987
}
988

    
989
static void icount_adjust_rt(void * opaque)
990
{
991
    qemu_mod_timer(icount_rt_timer,
992
                   qemu_get_clock(rt_clock) + 1000);
993
    icount_adjust();
994
}
995

    
996
static void icount_adjust_vm(void * opaque)
997
{
998
    qemu_mod_timer(icount_vm_timer,
999
                   qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1000
    icount_adjust();
1001
}
1002

    
1003
static void init_icount_adjust(void)
1004
{
1005
    /* Have both realtime and virtual time triggers for speed adjustment.
1006
       The realtime trigger catches emulated time passing too slowly,
1007
       the virtual time trigger catches emulated time passing too fast.
1008
       Realtime triggers occur even when idle, so use them less frequently
1009
       than VM triggers.  */
1010
    icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
1011
    qemu_mod_timer(icount_rt_timer,
1012
                   qemu_get_clock(rt_clock) + 1000);
1013
    icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
1014
    qemu_mod_timer(icount_vm_timer,
1015
                   qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1016
}
1017

    
1018
static struct qemu_alarm_timer alarm_timers[] = {
1019
#ifndef _WIN32
1020
#ifdef __linux__
1021
    {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
1022
     dynticks_stop_timer, dynticks_rearm_timer, NULL},
1023
    /* HPET - if available - is preferred */
1024
    {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
1025
    /* ...otherwise try RTC */
1026
    {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
1027
#endif
1028
    {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
1029
#else
1030
    {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
1031
     win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
1032
    {"win32", 0, win32_start_timer,
1033
     win32_stop_timer, NULL, &alarm_win32_data},
1034
#endif
1035
    {NULL, }
1036
};
1037

    
1038
static void show_available_alarms(void)
1039
{
1040
    int i;
1041

    
1042
    printf("Available alarm timers, in order of precedence:\n");
1043
    for (i = 0; alarm_timers[i].name; i++)
1044
        printf("%s\n", alarm_timers[i].name);
1045
}
1046

    
1047
static void configure_alarms(char const *opt)
1048
{
1049
    int i;
1050
    int cur = 0;
1051
    int count = ARRAY_SIZE(alarm_timers) - 1;
1052
    char *arg;
1053
    char *name;
1054
    struct qemu_alarm_timer tmp;
1055

    
1056
    if (!strcmp(opt, "?")) {
1057
        show_available_alarms();
1058
        exit(0);
1059
    }
1060

    
1061
    arg = strdup(opt);
1062

    
1063
    /* Reorder the array */
1064
    name = strtok(arg, ",");
1065
    while (name) {
1066
        for (i = 0; i < count && alarm_timers[i].name; i++) {
1067
            if (!strcmp(alarm_timers[i].name, name))
1068
                break;
1069
        }
1070

    
1071
        if (i == count) {
1072
            fprintf(stderr, "Unknown clock %s\n", name);
1073
            goto next;
1074
        }
1075

    
1076
        if (i < cur)
1077
            /* Ignore */
1078
            goto next;
1079

    
1080
        /* Swap */
1081
        tmp = alarm_timers[i];
1082
        alarm_timers[i] = alarm_timers[cur];
1083
        alarm_timers[cur] = tmp;
1084

    
1085
        cur++;
1086
next:
1087
        name = strtok(NULL, ",");
1088
    }
1089

    
1090
    free(arg);
1091

    
1092
    if (cur) {
1093
        /* Disable remaining timers */
1094
        for (i = cur; i < count; i++)
1095
            alarm_timers[i].name = NULL;
1096
    } else {
1097
        show_available_alarms();
1098
        exit(1);
1099
    }
1100
}
1101

    
1102
QEMUClock *rt_clock;
1103
QEMUClock *vm_clock;
1104

    
1105
static QEMUTimer *active_timers[2];
1106

    
1107
static QEMUClock *qemu_new_clock(int type)
1108
{
1109
    QEMUClock *clock;
1110
    clock = qemu_mallocz(sizeof(QEMUClock));
1111
    if (!clock)
1112
        return NULL;
1113
    clock->type = type;
1114
    return clock;
1115
}
1116

    
1117
QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
1118
{
1119
    QEMUTimer *ts;
1120

    
1121
    ts = qemu_mallocz(sizeof(QEMUTimer));
1122
    ts->clock = clock;
1123
    ts->cb = cb;
1124
    ts->opaque = opaque;
1125
    return ts;
1126
}
1127

    
1128
void qemu_free_timer(QEMUTimer *ts)
1129
{
1130
    qemu_free(ts);
1131
}
1132

    
1133
/* stop a timer, but do not dealloc it */
1134
void qemu_del_timer(QEMUTimer *ts)
1135
{
1136
    QEMUTimer **pt, *t;
1137

    
1138
    /* NOTE: this code must be signal safe because
1139
       qemu_timer_expired() can be called from a signal. */
1140
    pt = &active_timers[ts->clock->type];
1141
    for(;;) {
1142
        t = *pt;
1143
        if (!t)
1144
            break;
1145
        if (t == ts) {
1146
            *pt = t->next;
1147
            break;
1148
        }
1149
        pt = &t->next;
1150
    }
1151
}
1152

    
1153
/* modify the current timer so that it will be fired when current_time
1154
   >= expire_time. The corresponding callback will be called. */
1155
void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1156
{
1157
    QEMUTimer **pt, *t;
1158

    
1159
    qemu_del_timer(ts);
1160

    
1161
    /* add the timer in the sorted list */
1162
    /* NOTE: this code must be signal safe because
1163
       qemu_timer_expired() can be called from a signal. */
1164
    pt = &active_timers[ts->clock->type];
1165
    for(;;) {
1166
        t = *pt;
1167
        if (!t)
1168
            break;
1169
        if (t->expire_time > expire_time)
1170
            break;
1171
        pt = &t->next;
1172
    }
1173
    ts->expire_time = expire_time;
1174
    ts->next = *pt;
1175
    *pt = ts;
1176

    
1177
    /* Rearm if necessary  */
1178
    if (pt == &active_timers[ts->clock->type]) {
1179
        if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
1180
            qemu_rearm_alarm_timer(alarm_timer);
1181
        }
1182
        /* Interrupt execution to force deadline recalculation.  */
1183
        if (use_icount && cpu_single_env) {
1184
            cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
1185
        }
1186
    }
1187
}
1188

    
1189
int qemu_timer_pending(QEMUTimer *ts)
1190
{
1191
    QEMUTimer *t;
1192
    for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1193
        if (t == ts)
1194
            return 1;
1195
    }
1196
    return 0;
1197
}
1198

    
1199
static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1200
{
1201
    if (!timer_head)
1202
        return 0;
1203
    return (timer_head->expire_time <= current_time);
1204
}
1205

    
1206
static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1207
{
1208
    QEMUTimer *ts;
1209

    
1210
    for(;;) {
1211
        ts = *ptimer_head;
1212
        if (!ts || ts->expire_time > current_time)
1213
            break;
1214
        /* remove timer from the list before calling the callback */
1215
        *ptimer_head = ts->next;
1216
        ts->next = NULL;
1217

    
1218
        /* run the callback (the timer list can be modified) */
1219
        ts->cb(ts->opaque);
1220
    }
1221
}
1222

    
1223
int64_t qemu_get_clock(QEMUClock *clock)
1224
{
1225
    switch(clock->type) {
1226
    case QEMU_TIMER_REALTIME:
1227
        return get_clock() / 1000000;
1228
    default:
1229
    case QEMU_TIMER_VIRTUAL:
1230
        if (use_icount) {
1231
            return cpu_get_icount();
1232
        } else {
1233
            return cpu_get_clock();
1234
        }
1235
    }
1236
}
1237

    
1238
static void init_timers(void)
1239
{
1240
    init_get_clock();
1241
    ticks_per_sec = QEMU_TIMER_BASE;
1242
    rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1243
    vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1244
}
1245

    
1246
/* save a timer */
1247
void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1248
{
1249
    uint64_t expire_time;
1250

    
1251
    if (qemu_timer_pending(ts)) {
1252
        expire_time = ts->expire_time;
1253
    } else {
1254
        expire_time = -1;
1255
    }
1256
    qemu_put_be64(f, expire_time);
1257
}
1258

    
1259
void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1260
{
1261
    uint64_t expire_time;
1262

    
1263
    expire_time = qemu_get_be64(f);
1264
    if (expire_time != -1) {
1265
        qemu_mod_timer(ts, expire_time);
1266
    } else {
1267
        qemu_del_timer(ts);
1268
    }
1269
}
1270

    
1271
static void timer_save(QEMUFile *f, void *opaque)
1272
{
1273
    if (cpu_ticks_enabled) {
1274
        hw_error("cannot save state if virtual timers are running");
1275
    }
1276
    qemu_put_be64(f, cpu_ticks_offset);
1277
    qemu_put_be64(f, ticks_per_sec);
1278
    qemu_put_be64(f, cpu_clock_offset);
1279
}
1280

    
1281
static int timer_load(QEMUFile *f, void *opaque, int version_id)
1282
{
1283
    if (version_id != 1 && version_id != 2)
1284
        return -EINVAL;
1285
    if (cpu_ticks_enabled) {
1286
        return -EINVAL;
1287
    }
1288
    cpu_ticks_offset=qemu_get_be64(f);
1289
    ticks_per_sec=qemu_get_be64(f);
1290
    if (version_id == 2) {
1291
        cpu_clock_offset=qemu_get_be64(f);
1292
    }
1293
    return 0;
1294
}
1295

    
1296
#ifdef _WIN32
1297
void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1298
                                 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
1299
#else
1300
static void host_alarm_handler(int host_signum)
1301
#endif
1302
{
1303
#if 0
1304
#define DISP_FREQ 1000
1305
    {
1306
        static int64_t delta_min = INT64_MAX;
1307
        static int64_t delta_max, delta_cum, last_clock, delta, ti;
1308
        static int count;
1309
        ti = qemu_get_clock(vm_clock);
1310
        if (last_clock != 0) {
1311
            delta = ti - last_clock;
1312
            if (delta < delta_min)
1313
                delta_min = delta;
1314
            if (delta > delta_max)
1315
                delta_max = delta;
1316
            delta_cum += delta;
1317
            if (++count == DISP_FREQ) {
1318
                printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1319
                       muldiv64(delta_min, 1000000, ticks_per_sec),
1320
                       muldiv64(delta_max, 1000000, ticks_per_sec),
1321
                       muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1322
                       (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1323
                count = 0;
1324
                delta_min = INT64_MAX;
1325
                delta_max = 0;
1326
                delta_cum = 0;
1327
            }
1328
        }
1329
        last_clock = ti;
1330
    }
1331
#endif
1332
    if (alarm_has_dynticks(alarm_timer) ||
1333
        (!use_icount &&
1334
            qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1335
                               qemu_get_clock(vm_clock))) ||
1336
        qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1337
                           qemu_get_clock(rt_clock))) {
1338
        CPUState *env = next_cpu;
1339

    
1340
#ifdef _WIN32
1341
        struct qemu_alarm_win32 *data = ((struct qemu_alarm_timer*)dwUser)->priv;
1342
        SetEvent(data->host_alarm);
1343
#else
1344
        static const char byte = 0;
1345
        write(alarm_timer_wfd, &byte, sizeof(byte));
1346
#endif
1347
        alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1348

    
1349
        if (env) {
1350
            /* stop the currently executing cpu because a timer occured */
1351
            cpu_interrupt(env, CPU_INTERRUPT_EXIT);
1352
#ifdef USE_KQEMU
1353
            if (env->kqemu_enabled) {
1354
                kqemu_cpu_interrupt(env);
1355
            }
1356
#endif
1357
        }
1358
        event_pending = 1;
1359
    }
1360
}
1361

    
1362
static int64_t qemu_next_deadline(void)
1363
{
1364
    int64_t delta;
1365

    
1366
    if (active_timers[QEMU_TIMER_VIRTUAL]) {
1367
        delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1368
                     qemu_get_clock(vm_clock);
1369
    } else {
1370
        /* To avoid problems with overflow limit this to 2^32.  */
1371
        delta = INT32_MAX;
1372
    }
1373

    
1374
    if (delta < 0)
1375
        delta = 0;
1376

    
1377
    return delta;
1378
}
1379

    
1380
#if defined(__linux__) || defined(_WIN32)
1381
static uint64_t qemu_next_deadline_dyntick(void)
1382
{
1383
    int64_t delta;
1384
    int64_t rtdelta;
1385

    
1386
    if (use_icount)
1387
        delta = INT32_MAX;
1388
    else
1389
        delta = (qemu_next_deadline() + 999) / 1000;
1390

    
1391
    if (active_timers[QEMU_TIMER_REALTIME]) {
1392
        rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1393
                 qemu_get_clock(rt_clock))*1000;
1394
        if (rtdelta < delta)
1395
            delta = rtdelta;
1396
    }
1397

    
1398
    if (delta < MIN_TIMER_REARM_US)
1399
        delta = MIN_TIMER_REARM_US;
1400

    
1401
    return delta;
1402
}
1403
#endif
1404

    
1405
#ifndef _WIN32
1406

    
1407
/* Sets a specific flag */
1408
static int fcntl_setfl(int fd, int flag)
1409
{
1410
    int flags;
1411

    
1412
    flags = fcntl(fd, F_GETFL);
1413
    if (flags == -1)
1414
        return -errno;
1415

    
1416
    if (fcntl(fd, F_SETFL, flags | flag) == -1)
1417
        return -errno;
1418

    
1419
    return 0;
1420
}
1421

    
1422
#if defined(__linux__)
1423

    
1424
#define RTC_FREQ 1024
1425

    
1426
static void enable_sigio_timer(int fd)
1427
{
1428
    struct sigaction act;
1429

    
1430
    /* timer signal */
1431
    sigfillset(&act.sa_mask);
1432
    act.sa_flags = 0;
1433
    act.sa_handler = host_alarm_handler;
1434

    
1435
    sigaction(SIGIO, &act, NULL);
1436
    fcntl_setfl(fd, O_ASYNC);
1437
    fcntl(fd, F_SETOWN, getpid());
1438
}
1439

    
1440
static int hpet_start_timer(struct qemu_alarm_timer *t)
1441
{
1442
    struct hpet_info info;
1443
    int r, fd;
1444

    
1445
    fd = open("/dev/hpet", O_RDONLY);
1446
    if (fd < 0)
1447
        return -1;
1448

    
1449
    /* Set frequency */
1450
    r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1451
    if (r < 0) {
1452
        fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1453
                "error, but for better emulation accuracy type:\n"
1454
                "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1455
        goto fail;
1456
    }
1457

    
1458
    /* Check capabilities */
1459
    r = ioctl(fd, HPET_INFO, &info);
1460
    if (r < 0)
1461
        goto fail;
1462

    
1463
    /* Enable periodic mode */
1464
    r = ioctl(fd, HPET_EPI, 0);
1465
    if (info.hi_flags && (r < 0))
1466
        goto fail;
1467

    
1468
    /* Enable interrupt */
1469
    r = ioctl(fd, HPET_IE_ON, 0);
1470
    if (r < 0)
1471
        goto fail;
1472

    
1473
    enable_sigio_timer(fd);
1474
    t->priv = (void *)(long)fd;
1475

    
1476
    return 0;
1477
fail:
1478
    close(fd);
1479
    return -1;
1480
}
1481

    
1482
static void hpet_stop_timer(struct qemu_alarm_timer *t)
1483
{
1484
    int fd = (long)t->priv;
1485

    
1486
    close(fd);
1487
}
1488

    
1489
static int rtc_start_timer(struct qemu_alarm_timer *t)
1490
{
1491
    int rtc_fd;
1492
    unsigned long current_rtc_freq = 0;
1493

    
1494
    TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1495
    if (rtc_fd < 0)
1496
        return -1;
1497
    ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1498
    if (current_rtc_freq != RTC_FREQ &&
1499
        ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1500
        fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1501
                "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1502
                "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1503
        goto fail;
1504
    }
1505
    if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1506
    fail:
1507
        close(rtc_fd);
1508
        return -1;
1509
    }
1510

    
1511
    enable_sigio_timer(rtc_fd);
1512

    
1513
    t->priv = (void *)(long)rtc_fd;
1514

    
1515
    return 0;
1516
}
1517

    
1518
static void rtc_stop_timer(struct qemu_alarm_timer *t)
1519
{
1520
    int rtc_fd = (long)t->priv;
1521

    
1522
    close(rtc_fd);
1523
}
1524

    
1525
static int dynticks_start_timer(struct qemu_alarm_timer *t)
1526
{
1527
    struct sigevent ev;
1528
    timer_t host_timer;
1529
    struct sigaction act;
1530

    
1531
    sigfillset(&act.sa_mask);
1532
    act.sa_flags = 0;
1533
    act.sa_handler = host_alarm_handler;
1534

    
1535
    sigaction(SIGALRM, &act, NULL);
1536

    
1537
    ev.sigev_value.sival_int = 0;
1538
    ev.sigev_notify = SIGEV_SIGNAL;
1539
    ev.sigev_signo = SIGALRM;
1540

    
1541
    if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1542
        perror("timer_create");
1543

    
1544
        /* disable dynticks */
1545
        fprintf(stderr, "Dynamic Ticks disabled\n");
1546

    
1547
        return -1;
1548
    }
1549

    
1550
    t->priv = (void *)(long)host_timer;
1551

    
1552
    return 0;
1553
}
1554

    
1555
static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1556
{
1557
    timer_t host_timer = (timer_t)(long)t->priv;
1558

    
1559
    timer_delete(host_timer);
1560
}
1561

    
1562
static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1563
{
1564
    timer_t host_timer = (timer_t)(long)t->priv;
1565
    struct itimerspec timeout;
1566
    int64_t nearest_delta_us = INT64_MAX;
1567
    int64_t current_us;
1568

    
1569
    if (!active_timers[QEMU_TIMER_REALTIME] &&
1570
                !active_timers[QEMU_TIMER_VIRTUAL])
1571
        return;
1572

    
1573
    nearest_delta_us = qemu_next_deadline_dyntick();
1574

    
1575
    /* check whether a timer is already running */
1576
    if (timer_gettime(host_timer, &timeout)) {
1577
        perror("gettime");
1578
        fprintf(stderr, "Internal timer error: aborting\n");
1579
        exit(1);
1580
    }
1581
    current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1582
    if (current_us && current_us <= nearest_delta_us)
1583
        return;
1584

    
1585
    timeout.it_interval.tv_sec = 0;
1586
    timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1587
    timeout.it_value.tv_sec =  nearest_delta_us / 1000000;
1588
    timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1589
    if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1590
        perror("settime");
1591
        fprintf(stderr, "Internal timer error: aborting\n");
1592
        exit(1);
1593
    }
1594
}
1595

    
1596
#endif /* defined(__linux__) */
1597

    
1598
static int unix_start_timer(struct qemu_alarm_timer *t)
1599
{
1600
    struct sigaction act;
1601
    struct itimerval itv;
1602
    int err;
1603

    
1604
    /* timer signal */
1605
    sigfillset(&act.sa_mask);
1606
    act.sa_flags = 0;
1607
    act.sa_handler = host_alarm_handler;
1608

    
1609
    sigaction(SIGALRM, &act, NULL);
1610

    
1611
    itv.it_interval.tv_sec = 0;
1612
    /* for i386 kernel 2.6 to get 1 ms */
1613
    itv.it_interval.tv_usec = 999;
1614
    itv.it_value.tv_sec = 0;
1615
    itv.it_value.tv_usec = 10 * 1000;
1616

    
1617
    err = setitimer(ITIMER_REAL, &itv, NULL);
1618
    if (err)
1619
        return -1;
1620

    
1621
    return 0;
1622
}
1623

    
1624
static void unix_stop_timer(struct qemu_alarm_timer *t)
1625
{
1626
    struct itimerval itv;
1627

    
1628
    memset(&itv, 0, sizeof(itv));
1629
    setitimer(ITIMER_REAL, &itv, NULL);
1630
}
1631

    
1632
#endif /* !defined(_WIN32) */
1633

    
1634
static void try_to_rearm_timer(void *opaque)
1635
{
1636
    struct qemu_alarm_timer *t = opaque;
1637
#ifndef _WIN32
1638
    ssize_t len;
1639

    
1640
    /* Drain the notify pipe */
1641
    do {
1642
        char buffer[512];
1643
        len = read(alarm_timer_rfd, buffer, sizeof(buffer));
1644
    } while ((len == -1 && errno == EINTR) || len > 0);
1645
#endif
1646

    
1647
    if (t->flags & ALARM_FLAG_EXPIRED) {
1648
        alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
1649
        qemu_rearm_alarm_timer(alarm_timer);
1650
    }
1651
}
1652

    
1653
#ifdef _WIN32
1654

    
1655
static int win32_start_timer(struct qemu_alarm_timer *t)
1656
{
1657
    TIMECAPS tc;
1658
    struct qemu_alarm_win32 *data = t->priv;
1659
    UINT flags;
1660

    
1661
    data->host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
1662
    if (!data->host_alarm) {
1663
        perror("Failed CreateEvent");
1664
        return -1;
1665
    }
1666

    
1667
    memset(&tc, 0, sizeof(tc));
1668
    timeGetDevCaps(&tc, sizeof(tc));
1669

    
1670
    if (data->period < tc.wPeriodMin)
1671
        data->period = tc.wPeriodMin;
1672

    
1673
    timeBeginPeriod(data->period);
1674

    
1675
    flags = TIME_CALLBACK_FUNCTION;
1676
    if (alarm_has_dynticks(t))
1677
        flags |= TIME_ONESHOT;
1678
    else
1679
        flags |= TIME_PERIODIC;
1680

    
1681
    data->timerId = timeSetEvent(1,         // interval (ms)
1682
                        data->period,       // resolution
1683
                        host_alarm_handler, // function
1684
                        (DWORD)t,           // parameter
1685
                        flags);
1686

    
1687
    if (!data->timerId) {
1688
        perror("Failed to initialize win32 alarm timer");
1689

    
1690
        timeEndPeriod(data->period);
1691
        CloseHandle(data->host_alarm);
1692
        return -1;
1693
    }
1694

    
1695
    qemu_add_wait_object(data->host_alarm, try_to_rearm_timer, t);
1696

    
1697
    return 0;
1698
}
1699

    
1700
static void win32_stop_timer(struct qemu_alarm_timer *t)
1701
{
1702
    struct qemu_alarm_win32 *data = t->priv;
1703

    
1704
    timeKillEvent(data->timerId);
1705
    timeEndPeriod(data->period);
1706

    
1707
    CloseHandle(data->host_alarm);
1708
}
1709

    
1710
static void win32_rearm_timer(struct qemu_alarm_timer *t)
1711
{
1712
    struct qemu_alarm_win32 *data = t->priv;
1713
    uint64_t nearest_delta_us;
1714

    
1715
    if (!active_timers[QEMU_TIMER_REALTIME] &&
1716
                !active_timers[QEMU_TIMER_VIRTUAL])
1717
        return;
1718

    
1719
    nearest_delta_us = qemu_next_deadline_dyntick();
1720
    nearest_delta_us /= 1000;
1721

    
1722
    timeKillEvent(data->timerId);
1723

    
1724
    data->timerId = timeSetEvent(1,
1725
                        data->period,
1726
                        host_alarm_handler,
1727
                        (DWORD)t,
1728
                        TIME_ONESHOT | TIME_PERIODIC);
1729

    
1730
    if (!data->timerId) {
1731
        perror("Failed to re-arm win32 alarm timer");
1732

    
1733
        timeEndPeriod(data->period);
1734
        CloseHandle(data->host_alarm);
1735
        exit(1);
1736
    }
1737
}
1738

    
1739
#endif /* _WIN32 */
1740

    
1741
static int init_timer_alarm(void)
1742
{
1743
    struct qemu_alarm_timer *t = NULL;
1744
    int i, err = -1;
1745

    
1746
#ifndef _WIN32
1747
    int fds[2];
1748

    
1749
    err = pipe(fds);
1750
    if (err == -1)
1751
        return -errno;
1752

    
1753
    err = fcntl_setfl(fds[0], O_NONBLOCK);
1754
    if (err < 0)
1755
        goto fail;
1756

    
1757
    err = fcntl_setfl(fds[1], O_NONBLOCK);
1758
    if (err < 0)
1759
        goto fail;
1760

    
1761
    alarm_timer_rfd = fds[0];
1762
    alarm_timer_wfd = fds[1];
1763
#endif
1764

    
1765
    for (i = 0; alarm_timers[i].name; i++) {
1766
        t = &alarm_timers[i];
1767

    
1768
        err = t->start(t);
1769
        if (!err)
1770
            break;
1771
    }
1772

    
1773
    if (err) {
1774
        err = -ENOENT;
1775
        goto fail;
1776
    }
1777

    
1778
#ifndef _WIN32
1779
    qemu_set_fd_handler2(alarm_timer_rfd, NULL,
1780
                         try_to_rearm_timer, NULL, t);
1781
#endif
1782

    
1783
    alarm_timer = t;
1784

    
1785
    return 0;
1786

    
1787
fail:
1788
#ifndef _WIN32
1789
    close(fds[0]);
1790
    close(fds[1]);
1791
#endif
1792
    return err;
1793
}
1794

    
1795
static void quit_timers(void)
1796
{
1797
    alarm_timer->stop(alarm_timer);
1798
    alarm_timer = NULL;
1799
}
1800

    
1801
/***********************************************************/
1802
/* host time/date access */
1803
void qemu_get_timedate(struct tm *tm, int offset)
1804
{
1805
    time_t ti;
1806
    struct tm *ret;
1807

    
1808
    time(&ti);
1809
    ti += offset;
1810
    if (rtc_date_offset == -1) {
1811
        if (rtc_utc)
1812
            ret = gmtime(&ti);
1813
        else
1814
            ret = localtime(&ti);
1815
    } else {
1816
        ti -= rtc_date_offset;
1817
        ret = gmtime(&ti);
1818
    }
1819

    
1820
    memcpy(tm, ret, sizeof(struct tm));
1821
}
1822

    
1823
int qemu_timedate_diff(struct tm *tm)
1824
{
1825
    time_t seconds;
1826

    
1827
    if (rtc_date_offset == -1)
1828
        if (rtc_utc)
1829
            seconds = mktimegm(tm);
1830
        else
1831
            seconds = mktime(tm);
1832
    else
1833
        seconds = mktimegm(tm) + rtc_date_offset;
1834

    
1835
    return seconds - time(NULL);
1836
}
1837

    
1838
#ifdef _WIN32
1839
static void socket_cleanup(void)
1840
{
1841
    WSACleanup();
1842
}
1843

    
1844
static int socket_init(void)
1845
{
1846
    WSADATA Data;
1847
    int ret, err;
1848

    
1849
    ret = WSAStartup(MAKEWORD(2,2), &Data);
1850
    if (ret != 0) {
1851
        err = WSAGetLastError();
1852
        fprintf(stderr, "WSAStartup: %d\n", err);
1853
        return -1;
1854
    }
1855
    atexit(socket_cleanup);
1856
    return 0;
1857
}
1858
#endif
1859

    
1860
const char *get_opt_name(char *buf, int buf_size, const char *p)
1861
{
1862
    char *q;
1863

    
1864
    q = buf;
1865
    while (*p != '\0' && *p != '=') {
1866
        if (q && (q - buf) < buf_size - 1)
1867
            *q++ = *p;
1868
        p++;
1869
    }
1870
    if (q)
1871
        *q = '\0';
1872

    
1873
    return p;
1874
}
1875

    
1876
const char *get_opt_value(char *buf, int buf_size, const char *p)
1877
{
1878
    char *q;
1879

    
1880
    q = buf;
1881
    while (*p != '\0') {
1882
        if (*p == ',') {
1883
            if (*(p + 1) != ',')
1884
                break;
1885
            p++;
1886
        }
1887
        if (q && (q - buf) < buf_size - 1)
1888
            *q++ = *p;
1889
        p++;
1890
    }
1891
    if (q)
1892
        *q = '\0';
1893

    
1894
    return p;
1895
}
1896

    
1897
int get_param_value(char *buf, int buf_size,
1898
                    const char *tag, const char *str)
1899
{
1900
    const char *p;
1901
    char option[128];
1902

    
1903
    p = str;
1904
    for(;;) {
1905
        p = get_opt_name(option, sizeof(option), p);
1906
        if (*p != '=')
1907
            break;
1908
        p++;
1909
        if (!strcmp(tag, option)) {
1910
            (void)get_opt_value(buf, buf_size, p);
1911
            return strlen(buf);
1912
        } else {
1913
            p = get_opt_value(NULL, 0, p);
1914
        }
1915
        if (*p != ',')
1916
            break;
1917
        p++;
1918
    }
1919
    return 0;
1920
}
1921

    
1922
int check_params(char *buf, int buf_size,
1923
                 const char * const *params, const char *str)
1924
{
1925
    const char *p;
1926
    int i;
1927

    
1928
    p = str;
1929
    for(;;) {
1930
        p = get_opt_name(buf, buf_size, p);
1931
        if (*p != '=')
1932
            return -1;
1933
        p++;
1934
        for(i = 0; params[i] != NULL; i++)
1935
            if (!strcmp(params[i], buf))
1936
                break;
1937
        if (params[i] == NULL)
1938
            return -1;
1939
        p = get_opt_value(NULL, 0, p);
1940
        if (*p != ',')
1941
            break;
1942
        p++;
1943
    }
1944
    return 0;
1945
}
1946

    
1947
/***********************************************************/
1948
/* Bluetooth support */
1949
static int nb_hcis;
1950
static int cur_hci;
1951
static struct HCIInfo *hci_table[MAX_NICS];
1952

    
1953
static struct bt_vlan_s {
1954
    struct bt_scatternet_s net;
1955
    int id;
1956
    struct bt_vlan_s *next;
1957
} *first_bt_vlan;
1958

    
1959
/* find or alloc a new bluetooth "VLAN" */
1960
static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1961
{
1962
    struct bt_vlan_s **pvlan, *vlan;
1963
    for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1964
        if (vlan->id == id)
1965
            return &vlan->net;
1966
    }
1967
    vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1968
    vlan->id = id;
1969
    pvlan = &first_bt_vlan;
1970
    while (*pvlan != NULL)
1971
        pvlan = &(*pvlan)->next;
1972
    *pvlan = vlan;
1973
    return &vlan->net;
1974
}
1975

    
1976
static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1977
{
1978
}
1979

    
1980
static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1981
{
1982
    return -ENOTSUP;
1983
}
1984

    
1985
static struct HCIInfo null_hci = {
1986
    .cmd_send = null_hci_send,
1987
    .sco_send = null_hci_send,
1988
    .acl_send = null_hci_send,
1989
    .bdaddr_set = null_hci_addr_set,
1990
};
1991

    
1992
struct HCIInfo *qemu_next_hci(void)
1993
{
1994
    if (cur_hci == nb_hcis)
1995
        return &null_hci;
1996

    
1997
    return hci_table[cur_hci++];
1998
}
1999

    
2000
static struct HCIInfo *hci_init(const char *str)
2001
{
2002
    char *endp;
2003
    struct bt_scatternet_s *vlan = 0;
2004

    
2005
    if (!strcmp(str, "null"))
2006
        /* null */
2007
        return &null_hci;
2008
    else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
2009
        /* host[:hciN] */
2010
        return bt_host_hci(str[4] ? str + 5 : "hci0");
2011
    else if (!strncmp(str, "hci", 3)) {
2012
        /* hci[,vlan=n] */
2013
        if (str[3]) {
2014
            if (!strncmp(str + 3, ",vlan=", 6)) {
2015
                vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
2016
                if (*endp)
2017
                    vlan = 0;
2018
            }
2019
        } else
2020
            vlan = qemu_find_bt_vlan(0);
2021
        if (vlan)
2022
           return bt_new_hci(vlan);
2023
    }
2024

    
2025
    fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
2026

    
2027
    return 0;
2028
}
2029

    
2030
static int bt_hci_parse(const char *str)
2031
{
2032
    struct HCIInfo *hci;
2033
    bdaddr_t bdaddr;
2034

    
2035
    if (nb_hcis >= MAX_NICS) {
2036
        fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
2037
        return -1;
2038
    }
2039

    
2040
    hci = hci_init(str);
2041
    if (!hci)
2042
        return -1;
2043

    
2044
    bdaddr.b[0] = 0x52;
2045
    bdaddr.b[1] = 0x54;
2046
    bdaddr.b[2] = 0x00;
2047
    bdaddr.b[3] = 0x12;
2048
    bdaddr.b[4] = 0x34;
2049
    bdaddr.b[5] = 0x56 + nb_hcis;
2050
    hci->bdaddr_set(hci, bdaddr.b);
2051

    
2052
    hci_table[nb_hcis++] = hci;
2053

    
2054
    return 0;
2055
}
2056

    
2057
static void bt_vhci_add(int vlan_id)
2058
{
2059
    struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
2060

    
2061
    if (!vlan->slave)
2062
        fprintf(stderr, "qemu: warning: adding a VHCI to "
2063
                        "an empty scatternet %i\n", vlan_id);
2064

    
2065
    bt_vhci_init(bt_new_hci(vlan));
2066
}
2067

    
2068
static struct bt_device_s *bt_device_add(const char *opt)
2069
{
2070
    struct bt_scatternet_s *vlan;
2071
    int vlan_id = 0;
2072
    char *endp = strstr(opt, ",vlan=");
2073
    int len = (endp ? endp - opt : strlen(opt)) + 1;
2074
    char devname[10];
2075

    
2076
    pstrcpy(devname, MIN(sizeof(devname), len), opt);
2077

    
2078
    if (endp) {
2079
        vlan_id = strtol(endp + 6, &endp, 0);
2080
        if (*endp) {
2081
            fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
2082
            return 0;
2083
        }
2084
    }
2085

    
2086
    vlan = qemu_find_bt_vlan(vlan_id);
2087

    
2088
    if (!vlan->slave)
2089
        fprintf(stderr, "qemu: warning: adding a slave device to "
2090
                        "an empty scatternet %i\n", vlan_id);
2091

    
2092
    if (!strcmp(devname, "keyboard"))
2093
        return bt_keyboard_init(vlan);
2094

    
2095
    fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
2096
    return 0;
2097
}
2098

    
2099
static int bt_parse(const char *opt)
2100
{
2101
    const char *endp, *p;
2102
    int vlan;
2103

    
2104
    if (strstart(opt, "hci", &endp)) {
2105
        if (!*endp || *endp == ',') {
2106
            if (*endp)
2107
                if (!strstart(endp, ",vlan=", 0))
2108
                    opt = endp + 1;
2109

    
2110
            return bt_hci_parse(opt);
2111
       }
2112
    } else if (strstart(opt, "vhci", &endp)) {
2113
        if (!*endp || *endp == ',') {
2114
            if (*endp) {
2115
                if (strstart(endp, ",vlan=", &p)) {
2116
                    vlan = strtol(p, (char **) &endp, 0);
2117
                    if (*endp) {
2118
                        fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
2119
                        return 1;
2120
                    }
2121
                } else {
2122
                    fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
2123
                    return 1;
2124
                }
2125
            } else
2126
                vlan = 0;
2127

    
2128
            bt_vhci_add(vlan);
2129
            return 0;
2130
        }
2131
    } else if (strstart(opt, "device:", &endp))
2132
        return !bt_device_add(endp);
2133

    
2134
    fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
2135
    return 1;
2136
}
2137

    
2138
/***********************************************************/
2139
/* QEMU Block devices */
2140

    
2141
#define HD_ALIAS "index=%d,media=disk"
2142
#ifdef TARGET_PPC
2143
#define CDROM_ALIAS "index=1,media=cdrom"
2144
#else
2145
#define CDROM_ALIAS "index=2,media=cdrom"
2146
#endif
2147
#define FD_ALIAS "index=%d,if=floppy"
2148
#define PFLASH_ALIAS "if=pflash"
2149
#define MTD_ALIAS "if=mtd"
2150
#define SD_ALIAS "index=0,if=sd"
2151

    
2152
static int drive_add(const char *file, const char *fmt, ...)
2153
{
2154
    va_list ap;
2155

    
2156
    if (nb_drives_opt >= MAX_DRIVES) {
2157
        fprintf(stderr, "qemu: too many drives\n");
2158
        exit(1);
2159
    }
2160

    
2161
    drives_opt[nb_drives_opt].file = file;
2162
    va_start(ap, fmt);
2163
    vsnprintf(drives_opt[nb_drives_opt].opt,
2164
              sizeof(drives_opt[0].opt), fmt, ap);
2165
    va_end(ap);
2166

    
2167
    return nb_drives_opt++;
2168
}
2169

    
2170
int drive_get_index(BlockInterfaceType type, int bus, int unit)
2171
{
2172
    int index;
2173

    
2174
    /* seek interface, bus and unit */
2175

    
2176
    for (index = 0; index < nb_drives; index++)
2177
        if (drives_table[index].type == type &&
2178
            drives_table[index].bus == bus &&
2179
            drives_table[index].unit == unit)
2180
        return index;
2181

    
2182
    return -1;
2183
}
2184

    
2185
int drive_get_max_bus(BlockInterfaceType type)
2186
{
2187
    int max_bus;
2188
    int index;
2189

    
2190
    max_bus = -1;
2191
    for (index = 0; index < nb_drives; index++) {
2192
        if(drives_table[index].type == type &&
2193
           drives_table[index].bus > max_bus)
2194
            max_bus = drives_table[index].bus;
2195
    }
2196
    return max_bus;
2197
}
2198

    
2199
const char *drive_get_serial(BlockDriverState *bdrv)
2200
{
2201
    int index;
2202

    
2203
    for (index = 0; index < nb_drives; index++)
2204
        if (drives_table[index].bdrv == bdrv)
2205
            return drives_table[index].serial;
2206

    
2207
    return "\0";
2208
}
2209

    
2210
static void bdrv_format_print(void *opaque, const char *name)
2211
{
2212
    fprintf(stderr, " %s", name);
2213
}
2214

    
2215
static int drive_init(struct drive_opt *arg, int snapshot,
2216
                      QEMUMachine *machine)
2217
{
2218
    char buf[128];
2219
    char file[1024];
2220
    char devname[128];
2221
    char serial[21];
2222
    const char *mediastr = "";
2223
    BlockInterfaceType type;
2224
    enum { MEDIA_DISK, MEDIA_CDROM } media;
2225
    int bus_id, unit_id;
2226
    int cyls, heads, secs, translation;
2227
    BlockDriverState *bdrv;
2228
    BlockDriver *drv = NULL;
2229
    int max_devs;
2230
    int index;
2231
    int cache;
2232
    int bdrv_flags;
2233
    char *str = arg->opt;
2234
    static const char * const params[] = { "bus", "unit", "if", "index",
2235
                                           "cyls", "heads", "secs", "trans",
2236
                                           "media", "snapshot", "file",
2237
                                           "cache", "format", "serial", NULL };
2238

    
2239
    if (check_params(buf, sizeof(buf), params, str) < 0) {
2240
         fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
2241
                         buf, str);
2242
         return -1;
2243
    }
2244

    
2245
    file[0] = 0;
2246
    cyls = heads = secs = 0;
2247
    bus_id = 0;
2248
    unit_id = -1;
2249
    translation = BIOS_ATA_TRANSLATION_AUTO;
2250
    index = -1;
2251
    cache = 3;
2252

    
2253
    if (machine->use_scsi) {
2254
        type = IF_SCSI;
2255
        max_devs = MAX_SCSI_DEVS;
2256
        pstrcpy(devname, sizeof(devname), "scsi");
2257
    } else {
2258
        type = IF_IDE;
2259
        max_devs = MAX_IDE_DEVS;
2260
        pstrcpy(devname, sizeof(devname), "ide");
2261
    }
2262
    media = MEDIA_DISK;
2263

    
2264
    /* extract parameters */
2265

    
2266
    if (get_param_value(buf, sizeof(buf), "bus", str)) {
2267
        bus_id = strtol(buf, NULL, 0);
2268
        if (bus_id < 0) {
2269
            fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
2270
            return -1;
2271
        }
2272
    }
2273

    
2274
    if (get_param_value(buf, sizeof(buf), "unit", str)) {
2275
        unit_id = strtol(buf, NULL, 0);
2276
        if (unit_id < 0) {
2277
            fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
2278
            return -1;
2279
        }
2280
    }
2281

    
2282
    if (get_param_value(buf, sizeof(buf), "if", str)) {
2283
        pstrcpy(devname, sizeof(devname), buf);
2284
        if (!strcmp(buf, "ide")) {
2285
            type = IF_IDE;
2286
            max_devs = MAX_IDE_DEVS;
2287
        } else if (!strcmp(buf, "scsi")) {
2288
            type = IF_SCSI;
2289
            max_devs = MAX_SCSI_DEVS;
2290
        } else if (!strcmp(buf, "floppy")) {
2291
            type = IF_FLOPPY;
2292
            max_devs = 0;
2293
        } else if (!strcmp(buf, "pflash")) {
2294
            type = IF_PFLASH;
2295
            max_devs = 0;
2296
        } else if (!strcmp(buf, "mtd")) {
2297
            type = IF_MTD;
2298
            max_devs = 0;
2299
        } else if (!strcmp(buf, "sd")) {
2300
            type = IF_SD;
2301
            max_devs = 0;
2302
        } else if (!strcmp(buf, "virtio")) {
2303
            type = IF_VIRTIO;
2304
            max_devs = 0;
2305
        } else {
2306
            fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
2307
            return -1;
2308
        }
2309
    }
2310

    
2311
    if (get_param_value(buf, sizeof(buf), "index", str)) {
2312
        index = strtol(buf, NULL, 0);
2313
        if (index < 0) {
2314
            fprintf(stderr, "qemu: '%s' invalid index\n", str);
2315
            return -1;
2316
        }
2317
    }
2318

    
2319
    if (get_param_value(buf, sizeof(buf), "cyls", str)) {
2320
        cyls = strtol(buf, NULL, 0);
2321
    }
2322

    
2323
    if (get_param_value(buf, sizeof(buf), "heads", str)) {
2324
        heads = strtol(buf, NULL, 0);
2325
    }
2326

    
2327
    if (get_param_value(buf, sizeof(buf), "secs", str)) {
2328
        secs = strtol(buf, NULL, 0);
2329
    }
2330

    
2331
    if (cyls || heads || secs) {
2332
        if (cyls < 1 || cyls > 16383) {
2333
            fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
2334
            return -1;
2335
        }
2336
        if (heads < 1 || heads > 16) {
2337
            fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
2338
            return -1;
2339
        }
2340
        if (secs < 1 || secs > 63) {
2341
            fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
2342
            return -1;
2343
        }
2344
    }
2345

    
2346
    if (get_param_value(buf, sizeof(buf), "trans", str)) {
2347
        if (!cyls) {
2348
            fprintf(stderr,
2349
                    "qemu: '%s' trans must be used with cyls,heads and secs\n",
2350
                    str);
2351
            return -1;
2352
        }
2353
        if (!strcmp(buf, "none"))
2354
            translation = BIOS_ATA_TRANSLATION_NONE;
2355
        else if (!strcmp(buf, "lba"))
2356
            translation = BIOS_ATA_TRANSLATION_LBA;
2357
        else if (!strcmp(buf, "auto"))
2358
            translation = BIOS_ATA_TRANSLATION_AUTO;
2359
        else {
2360
            fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
2361
            return -1;
2362
        }
2363
    }
2364

    
2365
    if (get_param_value(buf, sizeof(buf), "media", str)) {
2366
        if (!strcmp(buf, "disk")) {
2367
            media = MEDIA_DISK;
2368
        } else if (!strcmp(buf, "cdrom")) {
2369
            if (cyls || secs || heads) {
2370
                fprintf(stderr,
2371
                        "qemu: '%s' invalid physical CHS format\n", str);
2372
                return -1;
2373
            }
2374
            media = MEDIA_CDROM;
2375
        } else {
2376
            fprintf(stderr, "qemu: '%s' invalid media\n", str);
2377
            return -1;
2378
        }
2379
    }
2380

    
2381
    if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
2382
        if (!strcmp(buf, "on"))
2383
            snapshot = 1;
2384
        else if (!strcmp(buf, "off"))
2385
            snapshot = 0;
2386
        else {
2387
            fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
2388
            return -1;
2389
        }
2390
    }
2391

    
2392
    if (get_param_value(buf, sizeof(buf), "cache", str)) {
2393
        if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2394
            cache = 0;
2395
        else if (!strcmp(buf, "writethrough"))
2396
            cache = 1;
2397
        else if (!strcmp(buf, "writeback"))
2398
            cache = 2;
2399
        else {
2400
           fprintf(stderr, "qemu: invalid cache option\n");
2401
           return -1;
2402
        }
2403
    }
2404

    
2405
    if (get_param_value(buf, sizeof(buf), "format", str)) {
2406
       if (strcmp(buf, "?") == 0) {
2407
            fprintf(stderr, "qemu: Supported formats:");
2408
            bdrv_iterate_format(bdrv_format_print, NULL);
2409
            fprintf(stderr, "\n");
2410
            return -1;
2411
        }
2412
        drv = bdrv_find_format(buf);
2413
        if (!drv) {
2414
            fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2415
            return -1;
2416
        }
2417
    }
2418

    
2419
    if (arg->file == NULL)
2420
        get_param_value(file, sizeof(file), "file", str);
2421
    else
2422
        pstrcpy(file, sizeof(file), arg->file);
2423

    
2424
    if (!get_param_value(serial, sizeof(serial), "serial", str))
2425
            memset(serial, 0,  sizeof(serial));
2426

    
2427
    /* compute bus and unit according index */
2428

    
2429
    if (index != -1) {
2430
        if (bus_id != 0 || unit_id != -1) {
2431
            fprintf(stderr,
2432
                    "qemu: '%s' index cannot be used with bus and unit\n", str);
2433
            return -1;
2434
        }
2435
        if (max_devs == 0)
2436
        {
2437
            unit_id = index;
2438
            bus_id = 0;
2439
        } else {
2440
            unit_id = index % max_devs;
2441
            bus_id = index / max_devs;
2442
        }
2443
    }
2444

    
2445
    /* if user doesn't specify a unit_id,
2446
     * try to find the first free
2447
     */
2448

    
2449
    if (unit_id == -1) {
2450
       unit_id = 0;
2451
       while (drive_get_index(type, bus_id, unit_id) != -1) {
2452
           unit_id++;
2453
           if (max_devs && unit_id >= max_devs) {
2454
               unit_id -= max_devs;
2455
               bus_id++;
2456
           }
2457
       }
2458
    }
2459

    
2460
    /* check unit id */
2461

    
2462
    if (max_devs && unit_id >= max_devs) {
2463
        fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
2464
                        str, unit_id, max_devs - 1);
2465
        return -1;
2466
    }
2467

    
2468
    /*
2469
     * ignore multiple definitions
2470
     */
2471

    
2472
    if (drive_get_index(type, bus_id, unit_id) != -1)
2473
        return 0;
2474

    
2475
    /* init */
2476

    
2477
    if (type == IF_IDE || type == IF_SCSI)
2478
        mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2479
    if (max_devs)
2480
        snprintf(buf, sizeof(buf), "%s%i%s%i",
2481
                 devname, bus_id, mediastr, unit_id);
2482
    else
2483
        snprintf(buf, sizeof(buf), "%s%s%i",
2484
                 devname, mediastr, unit_id);
2485
    bdrv = bdrv_new(buf);
2486
    drives_table[nb_drives].bdrv = bdrv;
2487
    drives_table[nb_drives].type = type;
2488
    drives_table[nb_drives].bus = bus_id;
2489
    drives_table[nb_drives].unit = unit_id;
2490
    strncpy(drives_table[nb_drives].serial, serial, sizeof(serial));
2491
    nb_drives++;
2492

    
2493
    switch(type) {
2494
    case IF_IDE:
2495
    case IF_SCSI:
2496
        switch(media) {
2497
        case MEDIA_DISK:
2498
            if (cyls != 0) {
2499
                bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
2500
                bdrv_set_translation_hint(bdrv, translation);
2501
            }
2502
            break;
2503
        case MEDIA_CDROM:
2504
            bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
2505
            break;
2506
        }
2507
        break;
2508
    case IF_SD:
2509
        /* FIXME: This isn't really a floppy, but it's a reasonable
2510
           approximation.  */
2511
    case IF_FLOPPY:
2512
        bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
2513
        break;
2514
    case IF_PFLASH:
2515
    case IF_MTD:
2516
    case IF_VIRTIO:
2517
        break;
2518
    }
2519
    if (!file[0])
2520
        return 0;
2521
    bdrv_flags = 0;
2522
    if (snapshot) {
2523
        bdrv_flags |= BDRV_O_SNAPSHOT;
2524
        cache = 2; /* always use write-back with snapshot */
2525
    }
2526
    if (cache == 0) /* no caching */
2527
        bdrv_flags |= BDRV_O_NOCACHE;
2528
    else if (cache == 2) /* write-back */
2529
        bdrv_flags |= BDRV_O_CACHE_WB;
2530
    else if (cache == 3) /* not specified */
2531
        bdrv_flags |= BDRV_O_CACHE_DEF;
2532
    if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0 || qemu_key_check(bdrv, file)) {
2533
        fprintf(stderr, "qemu: could not open disk image %s\n",
2534
                        file);
2535
        return -1;
2536
    }
2537
    return 0;
2538
}
2539

    
2540
/***********************************************************/
2541
/* USB devices */
2542

    
2543
static USBPort *used_usb_ports;
2544
static USBPort *free_usb_ports;
2545

    
2546
/* ??? Maybe change this to register a hub to keep track of the topology.  */
2547
void qemu_register_usb_port(USBPort *port, void *opaque, int index,
2548
                            usb_attachfn attach)
2549
{
2550
    port->opaque = opaque;
2551
    port->index = index;
2552
    port->attach = attach;
2553
    port->next = free_usb_ports;
2554
    free_usb_ports = port;
2555
}
2556

    
2557
int usb_device_add_dev(USBDevice *dev)
2558
{
2559
    USBPort *port;
2560

    
2561
    /* Find a USB port to add the device to.  */
2562
    port = free_usb_ports;
2563
    if (!port->next) {
2564
        USBDevice *hub;
2565

    
2566
        /* Create a new hub and chain it on.  */
2567
        free_usb_ports = NULL;
2568
        port->next = used_usb_ports;
2569
        used_usb_ports = port;
2570

    
2571
        hub = usb_hub_init(VM_USB_HUB_SIZE);
2572
        usb_attach(port, hub);
2573
        port = free_usb_ports;
2574
    }
2575

    
2576
    free_usb_ports = port->next;
2577
    port->next = used_usb_ports;
2578
    used_usb_ports = port;
2579
    usb_attach(port, dev);
2580
    return 0;
2581
}
2582

    
2583
static int usb_device_add(const char *devname)
2584
{
2585
    const char *p;
2586
    USBDevice *dev;
2587

    
2588
    if (!free_usb_ports)
2589
        return -1;
2590

    
2591
    if (strstart(devname, "host:", &p)) {
2592
        dev = usb_host_device_open(p);
2593
    } else if (!strcmp(devname, "mouse")) {
2594
        dev = usb_mouse_init();
2595
    } else if (!strcmp(devname, "tablet")) {
2596
        dev = usb_tablet_init();
2597
    } else if (!strcmp(devname, "keyboard")) {
2598
        dev = usb_keyboard_init();
2599
    } else if (strstart(devname, "disk:", &p)) {
2600
        dev = usb_msd_init(p);
2601
    } else if (!strcmp(devname, "wacom-tablet")) {
2602
        dev = usb_wacom_init();
2603
    } else if (strstart(devname, "serial:", &p)) {
2604
        dev = usb_serial_init(p);
2605
#ifdef CONFIG_BRLAPI
2606
    } else if (!strcmp(devname, "braille")) {
2607
        dev = usb_baum_init();
2608
#endif
2609
    } else if (strstart(devname, "net:", &p)) {
2610
        int nic = nb_nics;
2611

    
2612
        if (net_client_init("nic", p) < 0)
2613
            return -1;
2614
        nd_table[nic].model = "usb";
2615
        dev = usb_net_init(&nd_table[nic]);
2616
    } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2617
        dev = usb_bt_init(devname[2] ? hci_init(p) :
2618
                        bt_new_hci(qemu_find_bt_vlan(0)));
2619
    } else {
2620
        return -1;
2621
    }
2622
    if (!dev)
2623
        return -1;
2624

    
2625
    return usb_device_add_dev(dev);
2626
}
2627

    
2628
int usb_device_del_addr(int bus_num, int addr)
2629
{
2630
    USBPort *port;
2631
    USBPort **lastp;
2632
    USBDevice *dev;
2633

    
2634
    if (!used_usb_ports)
2635
        return -1;
2636

    
2637
    if (bus_num != 0)
2638
        return -1;
2639

    
2640
    lastp = &used_usb_ports;
2641
    port = used_usb_ports;
2642
    while (port && port->dev->addr != addr) {
2643
        lastp = &port->next;
2644
        port = port->next;
2645
    }
2646

    
2647
    if (!port)
2648
        return -1;
2649

    
2650
    dev = port->dev;
2651
    *lastp = port->next;
2652
    usb_attach(port, NULL);
2653
    dev->handle_destroy(dev);
2654
    port->next = free_usb_ports;
2655
    free_usb_ports = port;
2656
    return 0;
2657
}
2658

    
2659
static int usb_device_del(const char *devname)
2660
{
2661
    int bus_num, addr;
2662
    const char *p;
2663

    
2664
    if (strstart(devname, "host:", &p))
2665
        return usb_host_device_close(p);
2666

    
2667
    if (!used_usb_ports)
2668
        return -1;
2669

    
2670
    p = strchr(devname, '.');
2671
    if (!p)
2672
        return -1;
2673
    bus_num = strtoul(devname, NULL, 0);
2674
    addr = strtoul(p + 1, NULL, 0);
2675

    
2676
    return usb_device_del_addr(bus_num, addr);
2677
}
2678

    
2679
void do_usb_add(const char *devname)
2680
{
2681
    usb_device_add(devname);
2682
}
2683

    
2684
void do_usb_del(const char *devname)
2685
{
2686
    usb_device_del(devname);
2687
}
2688

    
2689
void usb_info(void)
2690
{
2691
    USBDevice *dev;
2692
    USBPort *port;
2693
    const char *speed_str;
2694

    
2695
    if (!usb_enabled) {
2696
        term_printf("USB support not enabled\n");
2697
        return;
2698
    }
2699

    
2700
    for (port = used_usb_ports; port; port = port->next) {
2701
        dev = port->dev;
2702
        if (!dev)
2703
            continue;
2704
        switch(dev->speed) {
2705
        case USB_SPEED_LOW:
2706
            speed_str = "1.5";
2707
            break;
2708
        case USB_SPEED_FULL:
2709
            speed_str = "12";
2710
            break;
2711
        case USB_SPEED_HIGH:
2712
            speed_str = "480";
2713
            break;
2714
        default:
2715
            speed_str = "?";
2716
            break;
2717
        }
2718
        term_printf("  Device %d.%d, Speed %s Mb/s, Product %s\n",
2719
                    0, dev->addr, speed_str, dev->devname);
2720
    }
2721
}
2722

    
2723
/***********************************************************/
2724
/* PCMCIA/Cardbus */
2725

    
2726
static struct pcmcia_socket_entry_s {
2727
    struct pcmcia_socket_s *socket;
2728
    struct pcmcia_socket_entry_s *next;
2729
} *pcmcia_sockets = 0;
2730

    
2731
void pcmcia_socket_register(struct pcmcia_socket_s *socket)
2732
{
2733
    struct pcmcia_socket_entry_s *entry;
2734

    
2735
    entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2736
    entry->socket = socket;
2737
    entry->next = pcmcia_sockets;
2738
    pcmcia_sockets = entry;
2739
}
2740

    
2741
void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
2742
{
2743
    struct pcmcia_socket_entry_s *entry, **ptr;
2744

    
2745
    ptr = &pcmcia_sockets;
2746
    for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2747
        if (entry->socket == socket) {
2748
            *ptr = entry->next;
2749
            qemu_free(entry);
2750
        }
2751
}
2752

    
2753
void pcmcia_info(void)
2754
{
2755
    struct pcmcia_socket_entry_s *iter;
2756
    if (!pcmcia_sockets)
2757
        term_printf("No PCMCIA sockets\n");
2758

    
2759
    for (iter = pcmcia_sockets; iter; iter = iter->next)
2760
        term_printf("%s: %s\n", iter->socket->slot_string,
2761
                    iter->socket->attached ? iter->socket->card_string :
2762
                    "Empty");
2763
}
2764

    
2765
/***********************************************************/
2766
/* dumb display */
2767

    
2768
static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
2769
{
2770
}
2771

    
2772
static void dumb_resize(DisplayState *ds, int w, int h)
2773
{
2774
}
2775

    
2776
static void dumb_display_init(DisplayState *ds)
2777
{
2778
    ds->data = NULL;
2779
    ds->linesize = 0;
2780
    ds->depth = 0;
2781
    ds->dpy_update = dumb_update;
2782
    ds->dpy_resize = dumb_resize;
2783
    ds->dpy_refresh = NULL;
2784
    ds->gui_timer_interval = 0;
2785
    ds->idle = 1;
2786
}
2787

    
2788
/***********************************************************/
2789
/* I/O handling */
2790

    
2791
#define MAX_IO_HANDLERS 64
2792

    
2793
typedef struct IOHandlerRecord {
2794
    int fd;
2795
    IOCanRWHandler *fd_read_poll;
2796
    IOHandler *fd_read;
2797
    IOHandler *fd_write;
2798
    int deleted;
2799
    void *opaque;
2800
    /* temporary data */
2801
    struct pollfd *ufd;
2802
    struct IOHandlerRecord *next;
2803
} IOHandlerRecord;
2804

    
2805
static IOHandlerRecord *first_io_handler;
2806

    
2807
/* XXX: fd_read_poll should be suppressed, but an API change is
2808
   necessary in the character devices to suppress fd_can_read(). */
2809
int qemu_set_fd_handler2(int fd,
2810
                         IOCanRWHandler *fd_read_poll,
2811
                         IOHandler *fd_read,
2812
                         IOHandler *fd_write,
2813
                         void *opaque)
2814
{
2815
    IOHandlerRecord **pioh, *ioh;
2816

    
2817
    if (!fd_read && !fd_write) {
2818
        pioh = &first_io_handler;
2819
        for(;;) {
2820
            ioh = *pioh;
2821
            if (ioh == NULL)
2822
                break;
2823
            if (ioh->fd == fd) {
2824
                ioh->deleted = 1;
2825
                break;
2826
            }
2827
            pioh = &ioh->next;
2828
        }
2829
    } else {
2830
        for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2831
            if (ioh->fd == fd)
2832
                goto found;
2833
        }
2834
        ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2835
        if (!ioh)
2836
            return -1;
2837
        ioh->next = first_io_handler;
2838
        first_io_handler = ioh;
2839
    found:
2840
        ioh->fd = fd;
2841
        ioh->fd_read_poll = fd_read_poll;
2842
        ioh->fd_read = fd_read;
2843
        ioh->fd_write = fd_write;
2844
        ioh->opaque = opaque;
2845
        ioh->deleted = 0;
2846
    }
2847
    return 0;
2848
}
2849

    
2850
int qemu_set_fd_handler(int fd,
2851
                        IOHandler *fd_read,
2852
                        IOHandler *fd_write,
2853
                        void *opaque)
2854
{
2855
    return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2856
}
2857

    
2858
#ifdef _WIN32
2859
/***********************************************************/
2860
/* Polling handling */
2861

    
2862
typedef struct PollingEntry {
2863
    PollingFunc *func;
2864
    void *opaque;
2865
    struct PollingEntry *next;
2866
} PollingEntry;
2867

    
2868
static PollingEntry *first_polling_entry;
2869

    
2870
int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2871
{
2872
    PollingEntry **ppe, *pe;
2873
    pe = qemu_mallocz(sizeof(PollingEntry));
2874
    if (!pe)
2875
        return -1;
2876
    pe->func = func;
2877
    pe->opaque = opaque;
2878
    for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
2879
    *ppe = pe;
2880
    return 0;
2881
}
2882

    
2883
void qemu_del_polling_cb(PollingFunc *func, void *opaque)
2884
{
2885
    PollingEntry **ppe, *pe;
2886
    for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
2887
        pe = *ppe;
2888
        if (pe->func == func && pe->opaque == opaque) {
2889
            *ppe = pe->next;
2890
            qemu_free(pe);
2891
            break;
2892
        }
2893
    }
2894
}
2895

    
2896
/***********************************************************/
2897
/* Wait objects support */
2898
typedef struct WaitObjects {
2899
    int num;
2900
    HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
2901
    WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
2902
    void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
2903
} WaitObjects;
2904

    
2905
static WaitObjects wait_objects = {0};
2906

    
2907
int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2908
{
2909
    WaitObjects *w = &wait_objects;
2910

    
2911
    if (w->num >= MAXIMUM_WAIT_OBJECTS)
2912
        return -1;
2913
    w->events[w->num] = handle;
2914
    w->func[w->num] = func;
2915
    w->opaque[w->num] = opaque;
2916
    w->num++;
2917
    return 0;
2918
}
2919

    
2920
void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2921
{
2922
    int i, found;
2923
    WaitObjects *w = &wait_objects;
2924

    
2925
    found = 0;
2926
    for (i = 0; i < w->num; i++) {
2927
        if (w->events[i] == handle)
2928
            found = 1;
2929
        if (found) {
2930
            w->events[i] = w->events[i + 1];
2931
            w->func[i] = w->func[i + 1];
2932
            w->opaque[i] = w->opaque[i + 1];
2933
        }
2934
    }
2935
    if (found)
2936
        w->num--;
2937
}
2938
#endif
2939

    
2940
/***********************************************************/
2941
/* ram save/restore */
2942

    
2943
static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
2944
{
2945
    int v;
2946

    
2947
    v = qemu_get_byte(f);
2948
    switch(v) {
2949
    case 0:
2950
        if (qemu_get_buffer(f, buf, len) != len)
2951
            return -EIO;
2952
        break;
2953
    case 1:
2954
        v = qemu_get_byte(f);
2955
        memset(buf, v, len);
2956
        break;
2957
    default:
2958
        return -EINVAL;
2959
    }
2960

    
2961
    if (qemu_file_has_error(f))
2962
        return -EIO;
2963

    
2964
    return 0;
2965
}
2966

    
2967
static int ram_load_v1(QEMUFile *f, void *opaque)
2968
{
2969
    int ret;
2970
    ram_addr_t i;
2971

    
2972
    if (qemu_get_be32(f) != phys_ram_size)
2973
        return -EINVAL;
2974
    for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
2975
        ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
2976
        if (ret)
2977
            return ret;
2978
    }
2979
    return 0;
2980
}
2981

    
2982
#define BDRV_HASH_BLOCK_SIZE 1024
2983
#define IOBUF_SIZE 4096
2984
#define RAM_CBLOCK_MAGIC 0xfabe
2985

    
2986
typedef struct RamDecompressState {
2987
    z_stream zstream;
2988
    QEMUFile *f;
2989
    uint8_t buf[IOBUF_SIZE];
2990
} RamDecompressState;
2991

    
2992
static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
2993
{
2994
    int ret;
2995
    memset(s, 0, sizeof(*s));
2996
    s->f = f;
2997
    ret = inflateInit(&s->zstream);
2998
    if (ret != Z_OK)
2999
        return -1;
3000
    return 0;
3001
}
3002

    
3003
static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
3004
{
3005
    int ret, clen;
3006

    
3007
    s->zstream.avail_out = len;
3008
    s->zstream.next_out = buf;
3009
    while (s->zstream.avail_out > 0) {
3010
        if (s->zstream.avail_in == 0) {
3011
            if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
3012
                return -1;
3013
            clen = qemu_get_be16(s->f);
3014
            if (clen > IOBUF_SIZE)
3015
                return -1;
3016
            qemu_get_buffer(s->f, s->buf, clen);
3017
            s->zstream.avail_in = clen;
3018
            s->zstream.next_in = s->buf;
3019
        }
3020
        ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
3021
        if (ret != Z_OK && ret != Z_STREAM_END) {
3022
            return -1;
3023
        }
3024
    }
3025
    return 0;
3026
}
3027

    
3028
static void ram_decompress_close(RamDecompressState *s)
3029
{
3030
    inflateEnd(&s->zstream);
3031
}
3032

    
3033
#define RAM_SAVE_FLAG_FULL        0x01
3034
#define RAM_SAVE_FLAG_COMPRESS        0x02
3035
#define RAM_SAVE_FLAG_MEM_SIZE        0x04
3036
#define RAM_SAVE_FLAG_PAGE        0x08
3037
#define RAM_SAVE_FLAG_EOS        0x10
3038

    
3039
static int is_dup_page(uint8_t *page, uint8_t ch)
3040
{
3041
    uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
3042
    uint32_t *array = (uint32_t *)page;
3043
    int i;
3044

    
3045
    for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
3046
        if (array[i] != val)
3047
            return 0;
3048
    }
3049

    
3050
    return 1;
3051
}
3052

    
3053
static int ram_save_block(QEMUFile *f)
3054
{
3055
    static ram_addr_t current_addr = 0;
3056
    ram_addr_t saved_addr = current_addr;
3057
    ram_addr_t addr = 0;
3058
    int found = 0;
3059

    
3060
    while (addr < phys_ram_size) {
3061
        if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
3062
            uint8_t ch;
3063

    
3064
            cpu_physical_memory_reset_dirty(current_addr,
3065
                                            current_addr + TARGET_PAGE_SIZE,
3066
                                            MIGRATION_DIRTY_FLAG);
3067

    
3068
            ch = *(phys_ram_base + current_addr);
3069

    
3070
            if (is_dup_page(phys_ram_base + current_addr, ch)) {
3071
                qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
3072
                qemu_put_byte(f, ch);
3073
            } else {
3074
                qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
3075
                qemu_put_buffer(f, phys_ram_base + current_addr, TARGET_PAGE_SIZE);
3076
            }
3077

    
3078
            found = 1;
3079
            break;
3080
        }
3081
        addr += TARGET_PAGE_SIZE;
3082
        current_addr = (saved_addr + addr) % phys_ram_size;
3083
    }
3084

    
3085
    return found;
3086
}
3087

    
3088
static ram_addr_t ram_save_threshold = 10;
3089

    
3090
static ram_addr_t ram_save_remaining(void)
3091
{
3092
    ram_addr_t addr;
3093
    ram_addr_t count = 0;
3094

    
3095
    for (addr = 0; addr < phys_ram_size; addr += TARGET_PAGE_SIZE) {
3096
        if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3097
            count++;
3098
    }
3099

    
3100
    return count;
3101
}
3102

    
3103
static int ram_save_live(QEMUFile *f, int stage, void *opaque)
3104
{
3105
    ram_addr_t addr;
3106

    
3107
    if (stage == 1) {
3108
        /* Make sure all dirty bits are set */
3109
        for (addr = 0; addr < phys_ram_size; addr += TARGET_PAGE_SIZE) {
3110
            if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3111
                cpu_physical_memory_set_dirty(addr);
3112
        }
3113
        
3114
        /* Enable dirty memory tracking */
3115
        cpu_physical_memory_set_dirty_tracking(1);
3116

    
3117
        qemu_put_be64(f, phys_ram_size | RAM_SAVE_FLAG_MEM_SIZE);
3118
    }
3119

    
3120
    while (!qemu_file_rate_limit(f)) {
3121
        int ret;
3122

    
3123
        ret = ram_save_block(f);
3124
        if (ret == 0) /* no more blocks */
3125
            break;
3126
    }
3127

    
3128
    /* try transferring iterative blocks of memory */
3129

    
3130
    if (stage == 3) {
3131
        cpu_physical_memory_set_dirty_tracking(0);
3132

    
3133
        /* flush all remaining blocks regardless of rate limiting */
3134
        while (ram_save_block(f) != 0);
3135
    }
3136

    
3137
    qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3138

    
3139
    return (stage == 2) && (ram_save_remaining() < ram_save_threshold);
3140
}
3141

    
3142
static int ram_load_dead(QEMUFile *f, void *opaque)
3143
{
3144
    RamDecompressState s1, *s = &s1;
3145
    uint8_t buf[10];
3146
    ram_addr_t i;
3147

    
3148
    if (ram_decompress_open(s, f) < 0)
3149
        return -EINVAL;
3150
    for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
3151
        if (ram_decompress_buf(s, buf, 1) < 0) {
3152
            fprintf(stderr, "Error while reading ram block header\n");
3153
            goto error;
3154
        }
3155
        if (buf[0] == 0) {
3156
            if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
3157
                fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3158
                goto error;
3159
            }
3160
        } else {
3161
        error:
3162
            printf("Error block header\n");
3163
            return -EINVAL;
3164
        }
3165
    }
3166
    ram_decompress_close(s);
3167

    
3168
    return 0;
3169
}
3170

    
3171
static int ram_load(QEMUFile *f, void *opaque, int version_id)
3172
{
3173
    ram_addr_t addr;
3174
    int flags;
3175

    
3176
    if (version_id == 1)
3177
        return ram_load_v1(f, opaque);
3178

    
3179
    if (version_id == 2) {
3180
        if (qemu_get_be32(f) != phys_ram_size)
3181
            return -EINVAL;
3182
        return ram_load_dead(f, opaque);
3183
    }
3184

    
3185
    if (version_id != 3)
3186
        return -EINVAL;
3187

    
3188
    do {
3189
        addr = qemu_get_be64(f);
3190

    
3191
        flags = addr & ~TARGET_PAGE_MASK;
3192
        addr &= TARGET_PAGE_MASK;
3193

    
3194
        if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3195
            if (addr != phys_ram_size)
3196
                return -EINVAL;
3197
        }
3198

    
3199
        if (flags & RAM_SAVE_FLAG_FULL) {
3200
            if (ram_load_dead(f, opaque) < 0)
3201
                return -EINVAL;
3202
        }
3203
        
3204
        if (flags & RAM_SAVE_FLAG_COMPRESS) {
3205
            uint8_t ch = qemu_get_byte(f);
3206
            memset(phys_ram_base + addr, ch, TARGET_PAGE_SIZE);
3207
        } else if (flags & RAM_SAVE_FLAG_PAGE)
3208
            qemu_get_buffer(f, phys_ram_base + addr, TARGET_PAGE_SIZE);
3209
    } while (!(flags & RAM_SAVE_FLAG_EOS));
3210

    
3211
    return 0;
3212
}
3213

    
3214
void qemu_service_io(void)
3215
{
3216
    CPUState *env = cpu_single_env;
3217
    if (env) {
3218
        cpu_interrupt(env, CPU_INTERRUPT_EXIT);
3219
#ifdef USE_KQEMU
3220
        if (env->kqemu_enabled) {
3221
            kqemu_cpu_interrupt(env);
3222
        }
3223
#endif
3224
    }
3225
}
3226

    
3227
/***********************************************************/
3228
/* bottom halves (can be seen as timers which expire ASAP) */
3229

    
3230
struct QEMUBH {
3231
    QEMUBHFunc *cb;
3232
    void *opaque;
3233
    int scheduled;
3234
    int idle;
3235
    int deleted;
3236
    QEMUBH *next;
3237
};
3238

    
3239
static QEMUBH *first_bh = NULL;
3240

    
3241
QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3242
{
3243
    QEMUBH *bh;
3244
    bh = qemu_mallocz(sizeof(QEMUBH));
3245
    if (!bh)
3246
        return NULL;
3247
    bh->cb = cb;
3248
    bh->opaque = opaque;
3249
    bh->next = first_bh;
3250
    first_bh = bh;
3251
    return bh;
3252
}
3253

    
3254
int qemu_bh_poll(void)
3255
{
3256
    QEMUBH *bh, **bhp;
3257
    int ret;
3258

    
3259
    ret = 0;
3260
    for (bh = first_bh; bh; bh = bh->next) {
3261
        if (!bh->deleted && bh->scheduled) {
3262
            bh->scheduled = 0;
3263
            if (!bh->idle)
3264
                ret = 1;
3265
            bh->idle = 0;
3266
            bh->cb(bh->opaque);
3267
        }
3268
    }
3269

    
3270
    /* remove deleted bhs */
3271
    bhp = &first_bh;
3272
    while (*bhp) {
3273
        bh = *bhp;
3274
        if (bh->deleted) {
3275
            *bhp = bh->next;
3276
            qemu_free(bh);
3277
        } else
3278
            bhp = &bh->next;
3279
    }
3280

    
3281
    return ret;
3282
}
3283

    
3284
void qemu_bh_schedule_idle(QEMUBH *bh)
3285
{
3286
    if (bh->scheduled)
3287
        return;
3288
    bh->scheduled = 1;
3289
    bh->idle = 1;
3290
}
3291

    
3292
void qemu_bh_schedule(QEMUBH *bh)
3293
{
3294
    CPUState *env = cpu_single_env;
3295
    if (bh->scheduled)
3296
        return;
3297
    bh->scheduled = 1;
3298
    bh->idle = 0;
3299
    /* stop the currently executing CPU to execute the BH ASAP */
3300
    if (env) {
3301
        cpu_interrupt(env, CPU_INTERRUPT_EXIT);
3302
    }
3303
}
3304

    
3305
void qemu_bh_cancel(QEMUBH *bh)
3306
{
3307
    bh->scheduled = 0;
3308
}
3309

    
3310
void qemu_bh_delete(QEMUBH *bh)
3311
{
3312
    bh->scheduled = 0;
3313
    bh->deleted = 1;
3314
}
3315

    
3316
static void qemu_bh_update_timeout(int *timeout)
3317
{
3318
    QEMUBH *bh;
3319

    
3320
    for (bh = first_bh; bh; bh = bh->next) {
3321
        if (!bh->deleted && bh->scheduled) {
3322
            if (bh->idle) {
3323
                /* idle bottom halves will be polled at least
3324
                 * every 10ms */
3325
                *timeout = MIN(10, *timeout);
3326
            } else {
3327
                /* non-idle bottom halves will be executed
3328
                 * immediately */
3329
                *timeout = 0;
3330
                break;
3331
            }
3332
        }
3333
    }
3334
}
3335

    
3336
/***********************************************************/
3337
/* machine registration */
3338

    
3339
static QEMUMachine *first_machine = NULL;
3340

    
3341
int qemu_register_machine(QEMUMachine *m)
3342
{
3343
    QEMUMachine **pm;
3344
    pm = &first_machine;
3345
    while (*pm != NULL)
3346
        pm = &(*pm)->next;
3347
    m->next = NULL;
3348
    *pm = m;
3349
    return 0;
3350
}
3351

    
3352
static QEMUMachine *find_machine(const char *name)
3353
{
3354
    QEMUMachine *m;
3355

    
3356
    for(m = first_machine; m != NULL; m = m->next) {
3357
        if (!strcmp(m->name, name))
3358
            return m;
3359
    }
3360
    return NULL;
3361
}
3362

    
3363
/***********************************************************/
3364
/* main execution loop */
3365

    
3366
static void gui_update(void *opaque)
3367
{
3368
    DisplayState *ds = opaque;
3369
    ds->dpy_refresh(ds);
3370
    qemu_mod_timer(ds->gui_timer,
3371
        (ds->gui_timer_interval ?
3372
            ds->gui_timer_interval :
3373
            GUI_REFRESH_INTERVAL)
3374
        + qemu_get_clock(rt_clock));
3375
}
3376

    
3377
struct vm_change_state_entry {
3378
    VMChangeStateHandler *cb;
3379
    void *opaque;
3380
    LIST_ENTRY (vm_change_state_entry) entries;
3381
};
3382

    
3383
static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3384

    
3385
VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3386
                                                     void *opaque)
3387
{
3388
    VMChangeStateEntry *e;
3389

    
3390
    e = qemu_mallocz(sizeof (*e));
3391
    if (!e)
3392
        return NULL;
3393

    
3394
    e->cb = cb;
3395
    e->opaque = opaque;
3396
    LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3397
    return e;
3398
}
3399

    
3400
void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3401
{
3402
    LIST_REMOVE (e, entries);
3403
    qemu_free (e);
3404
}
3405

    
3406
static void vm_state_notify(int running)
3407
{
3408
    VMChangeStateEntry *e;
3409

    
3410
    for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3411
        e->cb(e->opaque, running);
3412
    }
3413
}
3414

    
3415
/* XXX: support several handlers */
3416
static VMStopHandler *vm_stop_cb;
3417
static void *vm_stop_opaque;
3418

    
3419
int qemu_add_vm_stop_handler(VMStopHandler *cb, void *opaque)
3420
{
3421
    vm_stop_cb = cb;
3422
    vm_stop_opaque = opaque;
3423
    return 0;
3424
}
3425

    
3426
void qemu_del_vm_stop_handler(VMStopHandler *cb, void *opaque)
3427
{
3428
    vm_stop_cb = NULL;
3429
}
3430

    
3431
void vm_start(void)
3432
{
3433
    if (!vm_running) {
3434
        cpu_enable_ticks();
3435
        vm_running = 1;
3436
        vm_state_notify(1);
3437
        qemu_rearm_alarm_timer(alarm_timer);
3438
    }
3439
}
3440

    
3441
void vm_stop(int reason)
3442
{
3443
    if (vm_running) {
3444
        cpu_disable_ticks();
3445
        vm_running = 0;
3446
        if (reason != 0) {
3447
            if (vm_stop_cb) {
3448
                vm_stop_cb(vm_stop_opaque, reason);
3449
            }
3450
        }
3451
        vm_state_notify(0);
3452
    }
3453
}
3454

    
3455
/* reset/shutdown handler */
3456

    
3457
typedef struct QEMUResetEntry {
3458
    QEMUResetHandler *func;
3459
    void *opaque;
3460
    struct QEMUResetEntry *next;
3461
} QEMUResetEntry;
3462

    
3463
static QEMUResetEntry *first_reset_entry;
3464
static int reset_requested;
3465
static int shutdown_requested;
3466
static int powerdown_requested;
3467

    
3468
int qemu_shutdown_requested(void)
3469
{
3470
    int r = shutdown_requested;
3471
    shutdown_requested = 0;
3472
    return r;
3473
}
3474

    
3475
int qemu_reset_requested(void)
3476
{
3477
    int r = reset_requested;
3478
    reset_requested = 0;
3479
    return r;
3480
}
3481

    
3482
int qemu_powerdown_requested(void)
3483
{
3484
    int r = powerdown_requested;
3485
    powerdown_requested = 0;
3486
    return r;
3487
}
3488

    
3489
void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3490
{
3491
    QEMUResetEntry **pre, *re;
3492

    
3493
    pre = &first_reset_entry;
3494
    while (*pre != NULL)
3495
        pre = &(*pre)->next;
3496
    re = qemu_mallocz(sizeof(QEMUResetEntry));
3497
    re->func = func;
3498
    re->opaque = opaque;
3499
    re->next = NULL;
3500
    *pre = re;
3501
}
3502

    
3503
void qemu_system_reset(void)
3504
{
3505
    QEMUResetEntry *re;
3506

    
3507
    /* reset all devices */
3508
    for(re = first_reset_entry; re != NULL; re = re->next) {
3509
        re->func(re->opaque);
3510
    }
3511
}
3512

    
3513
void qemu_system_reset_request(void)
3514
{
3515
    if (no_reboot) {
3516
        shutdown_requested = 1;
3517
    } else {
3518
        reset_requested = 1;
3519
    }
3520
    if (cpu_single_env)
3521
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3522
}
3523

    
3524
void qemu_system_shutdown_request(void)
3525
{
3526
    shutdown_requested = 1;
3527
    if (cpu_single_env)
3528
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3529
}
3530

    
3531
void qemu_system_powerdown_request(void)
3532
{
3533
    powerdown_requested = 1;
3534
    if (cpu_single_env)
3535
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3536
}
3537

    
3538
#ifdef _WIN32
3539
static void host_main_loop_wait(int *timeout)
3540
{
3541
    int ret, ret2, i;
3542
    PollingEntry *pe;
3543

    
3544

    
3545
    /* XXX: need to suppress polling by better using win32 events */
3546
    ret = 0;
3547
    for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
3548
        ret |= pe->func(pe->opaque);
3549
    }
3550
    if (ret == 0) {
3551
        int err;
3552
        WaitObjects *w = &wait_objects;
3553

    
3554
        ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
3555
        if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
3556
            if (w->func[ret - WAIT_OBJECT_0])
3557
                w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
3558

    
3559
            /* Check for additional signaled events */
3560
            for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
3561

    
3562
                /* Check if event is signaled */
3563
                ret2 = WaitForSingleObject(w->events[i], 0);
3564
                if(ret2 == WAIT_OBJECT_0) {
3565
                    if (w->func[i])
3566
                        w->func[i](w->opaque[i]);
3567
                } else if (ret2 == WAIT_TIMEOUT) {
3568
                } else {
3569
                    err = GetLastError();
3570
                    fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
3571
                }
3572
            }
3573
        } else if (ret == WAIT_TIMEOUT) {
3574
        } else {
3575
            err = GetLastError();
3576
            fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
3577
        }
3578
    }
3579

    
3580
    *timeout = 0;
3581
}
3582
#else
3583
static void host_main_loop_wait(int *timeout)
3584
{
3585
}
3586
#endif
3587

    
3588
void main_loop_wait(int timeout)
3589
{
3590
    IOHandlerRecord *ioh;
3591
    fd_set rfds, wfds, xfds;
3592
    int ret, nfds;
3593
    struct timeval tv;
3594

    
3595
    qemu_bh_update_timeout(&timeout);
3596

    
3597
    host_main_loop_wait(&timeout);
3598

    
3599
    /* poll any events */
3600
    /* XXX: separate device handlers from system ones */
3601
    nfds = -1;
3602
    FD_ZERO(&rfds);
3603
    FD_ZERO(&wfds);
3604
    FD_ZERO(&xfds);
3605
    for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3606
        if (ioh->deleted)
3607
            continue;
3608
        if (ioh->fd_read &&
3609
            (!ioh->fd_read_poll ||
3610
             ioh->fd_read_poll(ioh->opaque) != 0)) {
3611
            FD_SET(ioh->fd, &rfds);
3612
            if (ioh->fd > nfds)
3613
                nfds = ioh->fd;
3614
        }
3615
        if (ioh->fd_write) {
3616
            FD_SET(ioh->fd, &wfds);
3617
            if (ioh->fd > nfds)
3618
                nfds = ioh->fd;
3619
        }
3620
    }
3621

    
3622
    tv.tv_sec = timeout / 1000;
3623
    tv.tv_usec = (timeout % 1000) * 1000;
3624

    
3625
#if defined(CONFIG_SLIRP)
3626
    if (slirp_is_inited()) {
3627
        slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
3628
    }
3629
#endif
3630
    ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
3631
    if (ret > 0) {
3632
        IOHandlerRecord **pioh;
3633

    
3634
        for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3635
            if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
3636
                ioh->fd_read(ioh->opaque);
3637
            }
3638
            if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
3639
                ioh->fd_write(ioh->opaque);
3640
            }
3641
        }
3642

    
3643
        /* remove deleted IO handlers */
3644
        pioh = &first_io_handler;
3645
        while (*pioh) {
3646
            ioh = *pioh;
3647
            if (ioh->deleted) {
3648
                *pioh = ioh->next;
3649
                qemu_free(ioh);
3650
            } else
3651
                pioh = &ioh->next;
3652
        }
3653
    }
3654
#if defined(CONFIG_SLIRP)
3655
    if (slirp_is_inited()) {
3656
        if (ret < 0) {
3657
            FD_ZERO(&rfds);
3658
            FD_ZERO(&wfds);
3659
            FD_ZERO(&xfds);
3660
        }
3661
        slirp_select_poll(&rfds, &wfds, &xfds);
3662
    }
3663
#endif
3664

    
3665
    /* vm time timers */
3666
    if (vm_running && likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
3667
        qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
3668
                        qemu_get_clock(vm_clock));
3669

    
3670
    /* real time timers */
3671
    qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
3672
                    qemu_get_clock(rt_clock));
3673

    
3674
    /* Check bottom-halves last in case any of the earlier events triggered
3675
       them.  */
3676
    qemu_bh_poll();
3677

    
3678
}
3679

    
3680
static int main_loop(void)
3681
{
3682
    int ret, timeout;
3683
#ifdef CONFIG_PROFILER
3684
    int64_t ti;
3685
#endif
3686
    CPUState *env;
3687

    
3688
    cur_cpu = first_cpu;
3689
    next_cpu = cur_cpu->next_cpu ?: first_cpu;
3690
    for(;;) {
3691
        if (vm_running) {
3692

    
3693
            for(;;) {
3694
                /* get next cpu */
3695
                env = next_cpu;
3696
#ifdef CONFIG_PROFILER
3697
                ti = profile_getclock();
3698
#endif
3699
                if (use_icount) {
3700
                    int64_t count;
3701
                    int decr;
3702
                    qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
3703
                    env->icount_decr.u16.low = 0;
3704
                    env->icount_extra = 0;
3705
                    count = qemu_next_deadline();
3706
                    count = (count + (1 << icount_time_shift) - 1)
3707
                            >> icount_time_shift;
3708
                    qemu_icount += count;
3709
                    decr = (count > 0xffff) ? 0xffff : count;
3710
                    count -= decr;
3711
                    env->icount_decr.u16.low = decr;
3712
                    env->icount_extra = count;
3713
                }
3714
                ret = cpu_exec(env);
3715
#ifdef CONFIG_PROFILER
3716
                qemu_time += profile_getclock() - ti;
3717
#endif
3718
                if (use_icount) {
3719
                    /* Fold pending instructions back into the
3720
                       instruction counter, and clear the interrupt flag.  */
3721
                    qemu_icount -= (env->icount_decr.u16.low
3722
                                    + env->icount_extra);
3723
                    env->icount_decr.u32 = 0;
3724
                    env->icount_extra = 0;
3725
                }
3726
                next_cpu = env->next_cpu ?: first_cpu;
3727
                if (event_pending && likely(ret != EXCP_DEBUG)) {
3728
                    ret = EXCP_INTERRUPT;
3729
                    event_pending = 0;
3730
                    break;
3731
                }
3732
                if (ret == EXCP_HLT) {
3733
                    /* Give the next CPU a chance to run.  */
3734
                    cur_cpu = env;
3735
                    continue;
3736
                }
3737
                if (ret != EXCP_HALTED)
3738
                    break;
3739
                /* all CPUs are halted ? */
3740
                if (env == cur_cpu)
3741
                    break;
3742
            }
3743
            cur_cpu = env;
3744

    
3745
            if (shutdown_requested) {
3746
                ret = EXCP_INTERRUPT;
3747
                if (no_shutdown) {
3748
                    vm_stop(0);
3749
                    no_shutdown = 0;
3750
                }
3751
                else
3752
                    break;
3753
            }
3754
            if (reset_requested) {
3755
                reset_requested = 0;
3756
                qemu_system_reset();
3757
                ret = EXCP_INTERRUPT;
3758
            }
3759
            if (powerdown_requested) {
3760
                powerdown_requested = 0;
3761
                qemu_system_powerdown();
3762
                ret = EXCP_INTERRUPT;
3763
            }
3764
            if (unlikely(ret == EXCP_DEBUG)) {
3765
                gdb_set_stop_cpu(cur_cpu);
3766
                vm_stop(EXCP_DEBUG);
3767
            }
3768
            /* If all cpus are halted then wait until the next IRQ */
3769
            /* XXX: use timeout computed from timers */
3770
            if (ret == EXCP_HALTED) {
3771
                if (use_icount) {
3772
                    int64_t add;
3773
                    int64_t delta;
3774
                    /* Advance virtual time to the next event.  */
3775
                    if (use_icount == 1) {
3776
                        /* When not using an adaptive execution frequency
3777
                           we tend to get badly out of sync with real time,
3778
                           so just delay for a reasonable amount of time.  */
3779
                        delta = 0;
3780
                    } else {
3781
                        delta = cpu_get_icount() - cpu_get_clock();
3782
                    }
3783
                    if (delta > 0) {
3784
                        /* If virtual time is ahead of real time then just
3785
                           wait for IO.  */
3786
                        timeout = (delta / 1000000) + 1;
3787
                    } else {
3788
                        /* Wait for either IO to occur or the next
3789
                           timer event.  */
3790
                        add = qemu_next_deadline();
3791
                        /* We advance the timer before checking for IO.
3792
                           Limit the amount we advance so that early IO
3793
                           activity won't get the guest too far ahead.  */
3794
                        if (add > 10000000)
3795
                            add = 10000000;
3796
                        delta += add;
3797
                        add = (add + (1 << icount_time_shift) - 1)
3798
                              >> icount_time_shift;
3799
                        qemu_icount += add;
3800
                        timeout = delta / 1000000;
3801
                        if (timeout < 0)
3802
                            timeout = 0;
3803
                    }
3804
                } else {
3805
                    timeout = 5000;
3806
                }
3807
            } else {
3808
                timeout = 0;
3809
            }
3810
        } else {
3811
            if (shutdown_requested) {
3812
                ret = EXCP_INTERRUPT;
3813
                break;
3814
            }
3815
            timeout = 5000;
3816
        }
3817
#ifdef CONFIG_PROFILER
3818
        ti = profile_getclock();
3819
#endif
3820
        main_loop_wait(timeout);
3821
#ifdef CONFIG_PROFILER
3822
        dev_time += profile_getclock() - ti;
3823
#endif
3824
    }
3825
    cpu_disable_ticks();
3826
    return ret;
3827
}
3828

    
3829
static void help(int exitcode)
3830
{
3831
    printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n"
3832
           "usage: %s [options] [disk_image]\n"
3833
           "\n"
3834
           "'disk_image' is a raw hard image image for IDE hard disk 0\n"
3835
           "\n"
3836
           "Standard options:\n"
3837
           "-M machine      select emulated machine (-M ? for list)\n"
3838
           "-cpu cpu        select CPU (-cpu ? for list)\n"
3839
           "-fda/-fdb file  use 'file' as floppy disk 0/1 image\n"
3840
           "-hda/-hdb file  use 'file' as IDE hard disk 0/1 image\n"
3841
           "-hdc/-hdd file  use 'file' as IDE hard disk 2/3 image\n"
3842
           "-cdrom file     use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
3843
           "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n"
3844
           "       [,cyls=c,heads=h,secs=s[,trans=t]][,snapshot=on|off]\n"
3845
           "       [,cache=writethrough|writeback|none][,format=f][,serial=s]\n"
3846
           "                use 'file' as a drive image\n"
3847
           "-mtdblock file  use 'file' as on-board Flash memory image\n"
3848
           "-sd file        use 'file' as SecureDigital card image\n"
3849
           "-pflash file    use 'file' as a parallel flash image\n"
3850
           "-boot [a|c|d|n] boot on floppy (a), hard disk (c), CD-ROM (d), or network (n)\n"
3851
           "-snapshot       write to temporary files instead of disk image files\n"
3852
#ifdef CONFIG_SDL
3853
           "-no-frame       open SDL window without a frame and window decorations\n"
3854
           "-alt-grab       use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n"
3855
           "-no-quit        disable SDL window close capability\n"
3856
#endif
3857
#ifdef TARGET_I386
3858
           "-no-fd-bootchk  disable boot signature checking for floppy disks\n"
3859
#endif
3860
           "-m megs         set virtual RAM size to megs MB [default=%d]\n"
3861
           "-smp n          set the number of CPUs to 'n' [default=1]\n"
3862
           "-nographic      disable graphical output and redirect serial I/Os to console\n"
3863
           "-portrait       rotate graphical output 90 deg left (only PXA LCD)\n"
3864
#ifndef _WIN32
3865
           "-k language     use keyboard layout (for example \"fr\" for French)\n"
3866
#endif
3867
#ifdef HAS_AUDIO
3868
           "-audio-help     print list of audio drivers and their options\n"
3869
           "-soundhw c1,... enable audio support\n"
3870
           "                and only specified sound cards (comma separated list)\n"
3871
           "                use -soundhw ? to get the list of supported cards\n"
3872
           "                use -soundhw all to enable all of them\n"
3873
#endif
3874
           "-vga [std|cirrus|vmware]\n"
3875
           "                select video card type\n"
3876
           "-localtime      set the real time clock to local time [default=utc]\n"
3877
           "-full-screen    start in full screen\n"
3878
#ifdef TARGET_I386
3879
           "-win2k-hack     use it when installing Windows 2000 to avoid a disk full bug\n"
3880
#endif
3881
           "-usb            enable the USB driver (will be the default soon)\n"
3882
           "-usbdevice name add the host or guest USB device 'name'\n"
3883
#if defined(TARGET_PPC) || defined(TARGET_SPARC)
3884
           "-g WxH[xDEPTH]  Set the initial graphical resolution and depth\n"
3885
#endif
3886
           "-name string    set the name of the guest\n"
3887
           "-uuid %%08x-%%04x-%%04x-%%04x-%%012x specify machine UUID\n"
3888
           "\n"
3889
           "Network options:\n"
3890
           "-net nic[,vlan=n][,macaddr=addr][,model=type][,name=str]\n"
3891
           "                create a new Network Interface Card and connect it to VLAN 'n'\n"
3892
#ifdef CONFIG_SLIRP
3893
           "-net user[,vlan=n][,name=str][,hostname=host]\n"
3894
           "                connect the user mode network stack to VLAN 'n' and send\n"
3895
           "                hostname 'host' to DHCP clients\n"
3896
#endif
3897
#ifdef _WIN32
3898
           "-net tap[,vlan=n][,name=str],ifname=name\n"
3899
           "                connect the host TAP network interface to VLAN 'n'\n"
3900
#else
3901
           "-net tap[,vlan=n][,name=str][,fd=h][,ifname=name][,script=file][,downscript=dfile]\n"
3902
           "                connect the host TAP network interface to VLAN 'n' and use the\n"
3903
           "                network scripts 'file' (default=%s)\n"
3904
           "                and 'dfile' (default=%s);\n"
3905
           "                use '[down]script=no' to disable script execution;\n"
3906
           "                use 'fd=h' to connect to an already opened TAP interface\n"
3907
#endif
3908
           "-net socket[,vlan=n][,name=str][,fd=h][,listen=[host]:port][,connect=host:port]\n"
3909
           "                connect the vlan 'n' to another VLAN using a socket connection\n"
3910
           "-net socket[,vlan=n][,name=str][,fd=h][,mcast=maddr:port]\n"
3911
           "                connect the vlan 'n' to multicast maddr and port\n"
3912
#ifdef CONFIG_VDE
3913
           "-net vde[,vlan=n][,name=str][,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]\n"
3914
           "                connect the vlan 'n' to port 'n' of a vde switch running\n"
3915
           "                on host and listening for incoming connections on 'socketpath'.\n"
3916
           "                Use group 'groupname' and mode 'octalmode' to change default\n"
3917
           "                ownership and permissions for communication port.\n"
3918
#endif
3919
           "-net none       use it alone to have zero network devices; if no -net option\n"
3920
           "                is provided, the default is '-net nic -net user'\n"
3921
           "\n"
3922
           "-bt hci,null    Dumb bluetooth HCI - doesn't respond to commands\n"
3923
           "-bt hci,host[:id]\n"
3924
           "                Use host's HCI with the given name\n"
3925
           "-bt hci[,vlan=n]\n"
3926
           "                Emulate a standard HCI in virtual scatternet 'n'\n"
3927
           "-bt vhci[,vlan=n]\n"
3928
           "                Add host computer to virtual scatternet 'n' using VHCI\n"
3929
           "-bt device:dev[,vlan=n]\n"
3930
           "                Emulate a bluetooth device 'dev' in scatternet 'n'\n"
3931
           "\n"
3932
#ifdef CONFIG_SLIRP
3933
           "-tftp dir       allow tftp access to files in dir [-net user]\n"
3934
           "-bootp file     advertise file in BOOTP replies\n"
3935
#ifndef _WIN32
3936
           "-smb dir        allow SMB access to files in 'dir' [-net user]\n"
3937
#endif
3938
           "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
3939
           "                redirect TCP or UDP connections from host to guest [-net user]\n"
3940
#endif
3941
           "\n"
3942
           "Linux boot specific:\n"
3943
           "-kernel bzImage use 'bzImage' as kernel image\n"
3944
           "-append cmdline use 'cmdline' as kernel command line\n"
3945
           "-initrd file    use 'file' as initial ram disk\n"
3946
           "\n"
3947
           "Debug/Expert options:\n"
3948
           "-monitor dev    redirect the monitor to char device 'dev'\n"
3949
           "-serial dev     redirect the serial port to char device 'dev'\n"
3950
           "-parallel dev   redirect the parallel port to char device 'dev'\n"
3951
           "-pidfile file   Write PID to 'file'\n"
3952
           "-S              freeze CPU at startup (use 'c' to start execution)\n"
3953
           "-s              wait gdb connection to port\n"
3954
           "-p port         set gdb connection port [default=%s]\n"
3955
           "-d item1,...    output log to %s (use -d ? for a list of log items)\n"
3956
           "-hdachs c,h,s[,t]  force hard disk 0 physical geometry and the optional BIOS\n"
3957
           "                translation (t=none or lba) (usually qemu can guess them)\n"
3958
           "-L path         set the directory for the BIOS, VGA BIOS and keymaps\n"
3959
#ifdef USE_KQEMU
3960
           "-kernel-kqemu   enable KQEMU full virtualization (default is user mode only)\n"
3961
           "-no-kqemu       disable KQEMU kernel module usage\n"
3962
#endif
3963
#ifdef CONFIG_KVM
3964
           "-enable-kvm     enable KVM full virtualization support\n"
3965
#endif
3966
#ifdef TARGET_I386
3967
           "-no-acpi        disable ACPI\n"
3968
           "-no-hpet        disable HPET\n"
3969
#endif
3970
#ifdef CONFIG_CURSES
3971
           "-curses         use a curses/ncurses interface instead of SDL\n"
3972
#endif
3973
           "-no-reboot      exit instead of rebooting\n"
3974
           "-no-shutdown    stop before shutdown\n"
3975
           "-loadvm [tag|id]  start right away with a saved state (loadvm in monitor)\n"
3976
           "-vnc display    start a VNC server on display\n"
3977
#ifndef _WIN32
3978
           "-daemonize      daemonize QEMU after initializing\n"
3979
#endif
3980
           "-option-rom rom load a file, rom, into the option ROM space\n"
3981
#ifdef TARGET_SPARC
3982
           "-prom-env variable=value  set OpenBIOS nvram variables\n"
3983
#endif
3984
           "-clock          force the use of the given methods for timer alarm.\n"
3985
           "                To see what timers are available use -clock ?\n"
3986
           "-startdate      select initial date of the clock\n"
3987
           "-icount [N|auto]\n"
3988
           "                Enable virtual instruction counter with 2^N clock ticks per instruction\n"
3989
           "\n"
3990
           "During emulation, the following keys are useful:\n"
3991
           "ctrl-alt-f      toggle full screen\n"
3992
           "ctrl-alt-n      switch to virtual console 'n'\n"
3993
           "ctrl-alt        toggle mouse and keyboard grab\n"
3994
           "\n"
3995
           "When using -nographic, press 'ctrl-a h' to get some help.\n"
3996
           ,
3997
           "qemu",
3998
           DEFAULT_RAM_SIZE,
3999
#ifndef _WIN32
4000
           DEFAULT_NETWORK_SCRIPT,
4001
           DEFAULT_NETWORK_DOWN_SCRIPT,
4002
#endif
4003
           DEFAULT_GDBSTUB_PORT,
4004
           "/tmp/qemu.log");
4005
    exit(exitcode);
4006
}
4007

    
4008
#define HAS_ARG 0x0001
4009

    
4010
enum {
4011
    QEMU_OPTION_h,
4012

    
4013
    QEMU_OPTION_M,
4014
    QEMU_OPTION_cpu,
4015
    QEMU_OPTION_fda,
4016
    QEMU_OPTION_fdb,
4017
    QEMU_OPTION_hda,
4018
    QEMU_OPTION_hdb,
4019
    QEMU_OPTION_hdc,
4020
    QEMU_OPTION_hdd,
4021
    QEMU_OPTION_drive,
4022
    QEMU_OPTION_cdrom,
4023
    QEMU_OPTION_mtdblock,
4024
    QEMU_OPTION_sd,
4025
    QEMU_OPTION_pflash,
4026
    QEMU_OPTION_boot,
4027
    QEMU_OPTION_snapshot,
4028
#ifdef TARGET_I386
4029
    QEMU_OPTION_no_fd_bootchk,
4030
#endif
4031
    QEMU_OPTION_m,
4032
    QEMU_OPTION_nographic,
4033
    QEMU_OPTION_portrait,
4034
#ifdef HAS_AUDIO
4035
    QEMU_OPTION_audio_help,
4036
    QEMU_OPTION_soundhw,
4037
#endif
4038

    
4039
    QEMU_OPTION_net,
4040
    QEMU_OPTION_tftp,
4041
    QEMU_OPTION_bootp,
4042
    QEMU_OPTION_smb,
4043
    QEMU_OPTION_redir,
4044
    QEMU_OPTION_bt,
4045

    
4046
    QEMU_OPTION_kernel,
4047
    QEMU_OPTION_append,
4048
    QEMU_OPTION_initrd,
4049

    
4050
    QEMU_OPTION_S,
4051
    QEMU_OPTION_s,
4052
    QEMU_OPTION_p,
4053
    QEMU_OPTION_d,
4054
    QEMU_OPTION_hdachs,
4055
    QEMU_OPTION_L,
4056
    QEMU_OPTION_bios,
4057
    QEMU_OPTION_k,
4058
    QEMU_OPTION_localtime,
4059
    QEMU_OPTION_g,
4060
    QEMU_OPTION_vga,
4061
    QEMU_OPTION_echr,
4062
    QEMU_OPTION_monitor,
4063
    QEMU_OPTION_serial,
4064
    QEMU_OPTION_parallel,
4065
    QEMU_OPTION_loadvm,
4066
    QEMU_OPTION_full_screen,
4067
    QEMU_OPTION_no_frame,
4068
    QEMU_OPTION_alt_grab,
4069
    QEMU_OPTION_no_quit,
4070
    QEMU_OPTION_pidfile,
4071
    QEMU_OPTION_no_kqemu,
4072
    QEMU_OPTION_kernel_kqemu,
4073
    QEMU_OPTION_enable_kvm,
4074
    QEMU_OPTION_win2k_hack,
4075
    QEMU_OPTION_usb,
4076
    QEMU_OPTION_usbdevice,
4077
    QEMU_OPTION_smp,
4078
    QEMU_OPTION_vnc,
4079
    QEMU_OPTION_no_acpi,
4080
    QEMU_OPTION_no_hpet,
4081
    QEMU_OPTION_curses,
4082
    QEMU_OPTION_no_reboot,
4083
    QEMU_OPTION_no_shutdown,
4084
    QEMU_OPTION_show_cursor,
4085
    QEMU_OPTION_daemonize,
4086
    QEMU_OPTION_option_rom,
4087
    QEMU_OPTION_semihosting,
4088
    QEMU_OPTION_name,
4089
    QEMU_OPTION_prom_env,
4090
    QEMU_OPTION_old_param,
4091
    QEMU_OPTION_clock,
4092
    QEMU_OPTION_startdate,
4093
    QEMU_OPTION_tb_size,
4094
    QEMU_OPTION_icount,
4095
    QEMU_OPTION_uuid,
4096
    QEMU_OPTION_incoming,
4097
};
4098

    
4099
typedef struct QEMUOption {
4100
    const char *name;
4101
    int flags;
4102
    int index;
4103
} QEMUOption;
4104

    
4105
static const QEMUOption qemu_options[] = {
4106
    { "h", 0, QEMU_OPTION_h },
4107
    { "help", 0, QEMU_OPTION_h },
4108

    
4109
    { "M", HAS_ARG, QEMU_OPTION_M },
4110
    { "cpu", HAS_ARG, QEMU_OPTION_cpu },
4111
    { "fda", HAS_ARG, QEMU_OPTION_fda },
4112
    { "fdb", HAS_ARG, QEMU_OPTION_fdb },
4113
    { "hda", HAS_ARG, QEMU_OPTION_hda },
4114
    { "hdb", HAS_ARG, QEMU_OPTION_hdb },
4115
    { "hdc", HAS_ARG, QEMU_OPTION_hdc },
4116
    { "hdd", HAS_ARG, QEMU_OPTION_hdd },
4117
    { "drive", HAS_ARG, QEMU_OPTION_drive },
4118
    { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
4119
    { "mtdblock", HAS_ARG, QEMU_OPTION_mtdblock },
4120
    { "sd", HAS_ARG, QEMU_OPTION_sd },
4121
    { "pflash", HAS_ARG, QEMU_OPTION_pflash },
4122
    { "boot", HAS_ARG, QEMU_OPTION_boot },
4123
    { "snapshot", 0, QEMU_OPTION_snapshot },
4124
#ifdef TARGET_I386
4125
    { "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk },
4126
#endif
4127
    { "m", HAS_ARG, QEMU_OPTION_m },
4128
    { "nographic", 0, QEMU_OPTION_nographic },
4129
    { "portrait", 0, QEMU_OPTION_portrait },
4130
    { "k", HAS_ARG, QEMU_OPTION_k },
4131
#ifdef HAS_AUDIO
4132
    { "audio-help", 0, QEMU_OPTION_audio_help },
4133
    { "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
4134
#endif
4135

    
4136
    { "net", HAS_ARG, QEMU_OPTION_net},
4137
#ifdef CONFIG_SLIRP
4138
    { "tftp", HAS_ARG, QEMU_OPTION_tftp },
4139
    { "bootp", HAS_ARG, QEMU_OPTION_bootp },
4140
#ifndef _WIN32
4141
    { "smb", HAS_ARG, QEMU_OPTION_smb },
4142
#endif
4143
    { "redir", HAS_ARG, QEMU_OPTION_redir },
4144
#endif
4145
    { "bt", HAS_ARG, QEMU_OPTION_bt },
4146

    
4147
    { "kernel", HAS_ARG, QEMU_OPTION_kernel },
4148
    { "append", HAS_ARG, QEMU_OPTION_append },
4149
    { "initrd", HAS_ARG, QEMU_OPTION_initrd },
4150

    
4151
    { "S", 0, QEMU_OPTION_S },
4152
    { "s", 0, QEMU_OPTION_s },
4153
    { "p", HAS_ARG, QEMU_OPTION_p },
4154
    { "d", HAS_ARG, QEMU_OPTION_d },
4155
    { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
4156
    { "L", HAS_ARG, QEMU_OPTION_L },
4157
    { "bios", HAS_ARG, QEMU_OPTION_bios },
4158
#ifdef USE_KQEMU
4159
    { "no-kqemu", 0, QEMU_OPTION_no_kqemu },
4160
    { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
4161
#endif
4162
#ifdef CONFIG_KVM
4163
    { "enable-kvm", 0, QEMU_OPTION_enable_kvm },
4164
#endif
4165
#if defined(TARGET_PPC) || defined(TARGET_SPARC)
4166
    { "g", 1, QEMU_OPTION_g },
4167
#endif
4168
    { "localtime", 0, QEMU_OPTION_localtime },
4169
    { "vga", HAS_ARG, QEMU_OPTION_vga },
4170
    { "echr", HAS_ARG, QEMU_OPTION_echr },
4171
    { "monitor", HAS_ARG, QEMU_OPTION_monitor },
4172
    { "serial", HAS_ARG, QEMU_OPTION_serial },
4173
    { "parallel", HAS_ARG, QEMU_OPTION_parallel },
4174
    { "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
4175
    { "full-screen", 0, QEMU_OPTION_full_screen },
4176
#ifdef CONFIG_SDL
4177
    { "no-frame", 0, QEMU_OPTION_no_frame },
4178
    { "alt-grab", 0, QEMU_OPTION_alt_grab },
4179
    { "no-quit", 0, QEMU_OPTION_no_quit },
4180
#endif
4181
    { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
4182
    { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
4183
    { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
4184
    { "smp", HAS_ARG, QEMU_OPTION_smp },
4185
    { "vnc", HAS_ARG, QEMU_OPTION_vnc },
4186
#ifdef CONFIG_CURSES
4187
    { "curses", 0, QEMU_OPTION_curses },
4188
#endif
4189
    { "uuid", HAS_ARG, QEMU_OPTION_uuid },
4190

    
4191
    /* temporary options */
4192
    { "usb", 0, QEMU_OPTION_usb },
4193
    { "no-acpi", 0, QEMU_OPTION_no_acpi },
4194
    { "no-hpet", 0, QEMU_OPTION_no_hpet },
4195
    { "no-reboot", 0, QEMU_OPTION_no_reboot },
4196
    { "no-shutdown", 0, QEMU_OPTION_no_shutdown },
4197
    { "show-cursor", 0, QEMU_OPTION_show_cursor },
4198
    { "daemonize", 0, QEMU_OPTION_daemonize },
4199
    { "option-rom", HAS_ARG, QEMU_OPTION_option_rom },
4200
#if defined(TARGET_ARM) || defined(TARGET_M68K)
4201
    { "semihosting", 0, QEMU_OPTION_semihosting },
4202
#endif
4203
    { "name", HAS_ARG, QEMU_OPTION_name },
4204
#if defined(TARGET_SPARC) || defined(TARGET_PPC)
4205
    { "prom-env", HAS_ARG, QEMU_OPTION_prom_env },
4206
#endif
4207
#if defined(TARGET_ARM)
4208
    { "old-param", 0, QEMU_OPTION_old_param },
4209
#endif
4210
    { "clock", HAS_ARG, QEMU_OPTION_clock },
4211
    { "startdate", HAS_ARG, QEMU_OPTION_startdate },
4212
    { "tb-size", HAS_ARG, QEMU_OPTION_tb_size },
4213
    { "icount", HAS_ARG, QEMU_OPTION_icount },
4214
    { "incoming", HAS_ARG, QEMU_OPTION_incoming },
4215
    { NULL },
4216
};
4217

    
4218
/* password input */
4219

    
4220
int qemu_key_check(BlockDriverState *bs, const char *name)
4221
{
4222
    char password[256];
4223
    int i;
4224

    
4225
    if (!bdrv_is_encrypted(bs))
4226
        return 0;
4227

    
4228
    term_printf("%s is encrypted.\n", name);
4229
    for(i = 0; i < 3; i++) {
4230
        monitor_readline("Password: ", 1, password, sizeof(password));
4231
        if (bdrv_set_key(bs, password) == 0)
4232
            return 0;
4233
        term_printf("invalid password\n");
4234
    }
4235
    return -EPERM;
4236
}
4237

    
4238
static BlockDriverState *get_bdrv(int index)
4239
{
4240
    if (index > nb_drives)
4241
        return NULL;
4242
    return drives_table[index].bdrv;
4243
}
4244

    
4245
static void read_passwords(void)
4246
{
4247
    BlockDriverState *bs;
4248
    int i;
4249

    
4250
    for(i = 0; i < 6; i++) {
4251
        bs = get_bdrv(i);
4252
        if (bs)
4253
            qemu_key_check(bs, bdrv_get_device_name(bs));
4254
    }
4255
}
4256

    
4257
#ifdef HAS_AUDIO
4258
struct soundhw soundhw[] = {
4259
#ifdef HAS_AUDIO_CHOICE
4260
#if defined(TARGET_I386) || defined(TARGET_MIPS)
4261
    {
4262
        "pcspk",
4263
        "PC speaker",
4264
        0,
4265
        1,
4266
        { .init_isa = pcspk_audio_init }
4267
    },
4268
#endif
4269
    {
4270
        "sb16",
4271
        "Creative Sound Blaster 16",
4272
        0,
4273
        1,
4274
        { .init_isa = SB16_init }
4275
    },
4276

    
4277
#ifdef CONFIG_CS4231A
4278
    {
4279
        "cs4231a",
4280
        "CS4231A",
4281
        0,
4282
        1,
4283
        { .init_isa = cs4231a_init }
4284
    },
4285
#endif
4286

    
4287
#ifdef CONFIG_ADLIB
4288
    {
4289
        "adlib",
4290
#ifdef HAS_YMF262
4291
        "Yamaha YMF262 (OPL3)",
4292
#else
4293
        "Yamaha YM3812 (OPL2)",
4294
#endif
4295
        0,
4296
        1,
4297
        { .init_isa = Adlib_init }
4298
    },
4299
#endif
4300

    
4301
#ifdef CONFIG_GUS
4302
    {
4303
        "gus",
4304
        "Gravis Ultrasound GF1",
4305
        0,
4306
        1,
4307
        { .init_isa = GUS_init }
4308
    },
4309
#endif
4310

    
4311
    {
4312
        "ac97",
4313
        "Intel 82801AA AC97 Audio",
4314
        0,
4315
        0,
4316
        { .init_pci = ac97_init }
4317
    },
4318

    
4319
    {
4320
        "es1370",
4321
        "ENSONIQ AudioPCI ES1370",
4322
        0,
4323
        0,
4324
        { .init_pci = es1370_init }
4325
    },
4326
#endif
4327

    
4328
    { NULL, NULL, 0, 0, { NULL } }
4329
};
4330

    
4331
static void select_soundhw (const char *optarg)
4332
{
4333
    struct soundhw *c;
4334

    
4335
    if (*optarg == '?') {
4336
    show_valid_cards:
4337

    
4338
        printf ("Valid sound card names (comma separated):\n");
4339
        for (c = soundhw; c->name; ++c) {
4340
            printf ("%-11s %s\n", c->name, c->descr);
4341
        }
4342
        printf ("\n-soundhw all will enable all of the above\n");
4343
        exit (*optarg != '?');
4344
    }
4345
    else {
4346
        size_t l;
4347
        const char *p;
4348
        char *e;
4349
        int bad_card = 0;
4350

    
4351
        if (!strcmp (optarg, "all")) {
4352
            for (c = soundhw; c->name; ++c) {
4353
                c->enabled = 1;
4354
            }
4355
            return;
4356
        }
4357

    
4358
        p = optarg;
4359
        while (*p) {
4360
            e = strchr (p, ',');
4361
            l = !e ? strlen (p) : (size_t) (e - p);
4362

    
4363
            for (c = soundhw; c->name; ++c) {
4364
                if (!strncmp (c->name, p, l)) {
4365
                    c->enabled = 1;
4366
                    break;
4367
                }
4368
            }
4369

    
4370
            if (!c->name) {
4371
                if (l > 80) {
4372
                    fprintf (stderr,
4373
                             "Unknown sound card name (too big to show)\n");
4374
                }
4375
                else {
4376
                    fprintf (stderr, "Unknown sound card name `%.*s'\n",
4377
                             (int) l, p);
4378
                }
4379
                bad_card = 1;
4380
            }
4381
            p += l + (e != NULL);
4382
        }
4383

    
4384
        if (bad_card)
4385
            goto show_valid_cards;
4386
    }
4387
}
4388
#endif
4389

    
4390
static void select_vgahw (const char *p)
4391
{
4392
    const char *opts;
4393

    
4394
    if (strstart(p, "std", &opts)) {
4395
        cirrus_vga_enabled = 0;
4396
        vmsvga_enabled = 0;
4397
    } else if (strstart(p, "cirrus", &opts)) {
4398
        cirrus_vga_enabled = 1;
4399
        vmsvga_enabled = 0;
4400
    } else if (strstart(p, "vmware", &opts)) {
4401
        cirrus_vga_enabled = 0;
4402
        vmsvga_enabled = 1;
4403
    } else {
4404
    invalid_vga:
4405
        fprintf(stderr, "Unknown vga type: %s\n", p);
4406
        exit(1);
4407
    }
4408
    while (*opts) {
4409
        const char *nextopt;
4410

    
4411
        if (strstart(opts, ",retrace=", &nextopt)) {
4412
            opts = nextopt;
4413
            if (strstart(opts, "dumb", &nextopt))
4414
                vga_retrace_method = VGA_RETRACE_DUMB;
4415
            else if (strstart(opts, "precise", &nextopt))
4416
                vga_retrace_method = VGA_RETRACE_PRECISE;
4417
            else goto invalid_vga;
4418
        } else goto invalid_vga;
4419
        opts = nextopt;
4420
    }
4421
}
4422

    
4423
#ifdef _WIN32
4424
static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4425
{
4426
    exit(STATUS_CONTROL_C_EXIT);
4427
    return TRUE;
4428
}
4429
#endif
4430

    
4431
static int qemu_uuid_parse(const char *str, uint8_t *uuid)
4432
{
4433
    int ret;
4434

    
4435
    if(strlen(str) != 36)
4436
        return -1;
4437

    
4438
    ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4439
            &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4440
            &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4441

    
4442
    if(ret != 16)
4443
        return -1;
4444

    
4445
    return 0;
4446
}
4447

    
4448
#define MAX_NET_CLIENTS 32
4449

    
4450
#ifndef _WIN32
4451

    
4452
static void termsig_handler(int signal)
4453
{
4454
    qemu_system_shutdown_request();
4455
}
4456

    
4457
static void termsig_setup(void)
4458
{
4459
    struct sigaction act;
4460

    
4461
    memset(&act, 0, sizeof(act));
4462
    act.sa_handler = termsig_handler;
4463
    sigaction(SIGINT,  &act, NULL);
4464
    sigaction(SIGHUP,  &act, NULL);
4465
    sigaction(SIGTERM, &act, NULL);
4466
}
4467

    
4468
#endif
4469

    
4470
int main(int argc, char **argv, char **envp)
4471
{
4472
#ifdef CONFIG_GDBSTUB
4473
    int use_gdbstub;
4474
    const char *gdbstub_port;
4475
#endif
4476
    uint32_t boot_devices_bitmap = 0;
4477
    int i;
4478
    int snapshot, linux_boot, net_boot;
4479
    const char *initrd_filename;
4480
    const char *kernel_filename, *kernel_cmdline;
4481
    const char *boot_devices = "";
4482
    DisplayState *ds = &display_state;
4483
    int cyls, heads, secs, translation;
4484
    const char *net_clients[MAX_NET_CLIENTS];
4485
    int nb_net_clients;
4486
    const char *bt_opts[MAX_BT_CMDLINE];
4487
    int nb_bt_opts;
4488
    int hda_index;
4489
    int optind;
4490
    const char *r, *optarg;
4491
    CharDriverState *monitor_hd;
4492
    const char *monitor_device;
4493
    const char *serial_devices[MAX_SERIAL_PORTS];
4494
    int serial_device_index;
4495
    const char *parallel_devices[MAX_PARALLEL_PORTS];
4496
    int parallel_device_index;
4497
    const char *loadvm = NULL;
4498
    QEMUMachine *machine;
4499
    const char *cpu_model;
4500
    const char *usb_devices[MAX_USB_CMDLINE];
4501
    int usb_devices_index;
4502
    int fds[2];
4503
    int tb_size;
4504
    const char *pid_file = NULL;
4505
    int autostart;
4506
    const char *incoming = NULL;
4507

    
4508
    qemu_cache_utils_init(envp);
4509

    
4510
    LIST_INIT (&vm_change_state_head);
4511
#ifndef _WIN32
4512
    {
4513
        struct sigaction act;
4514
        sigfillset(&act.sa_mask);
4515
        act.sa_flags = 0;
4516
        act.sa_handler = SIG_IGN;
4517
        sigaction(SIGPIPE, &act, NULL);
4518
    }
4519
#else
4520
    SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4521
    /* Note: cpu_interrupt() is currently not SMP safe, so we force
4522
       QEMU to run on a single CPU */
4523
    {
4524
        HANDLE h;
4525
        DWORD mask, smask;
4526
        int i;
4527
        h = GetCurrentProcess();
4528
        if (GetProcessAffinityMask(h, &mask, &smask)) {
4529
            for(i = 0; i < 32; i++) {
4530
                if (mask & (1 << i))
4531
                    break;
4532
            }
4533
            if (i != 32) {
4534
                mask = 1 << i;
4535
                SetProcessAffinityMask(h, mask);
4536
            }
4537
        }
4538
    }
4539
#endif
4540

    
4541
    register_machines();
4542
    machine = first_machine;
4543
    cpu_model = NULL;
4544
    initrd_filename = NULL;
4545
    ram_size = 0;
4546
    vga_ram_size = VGA_RAM_SIZE;
4547
#ifdef CONFIG_GDBSTUB
4548
    use_gdbstub = 0;
4549
    gdbstub_port = DEFAULT_GDBSTUB_PORT;
4550
#endif
4551
    snapshot = 0;
4552
    nographic = 0;
4553
    curses = 0;
4554
    kernel_filename = NULL;
4555
    kernel_cmdline = "";
4556
    cyls = heads = secs = 0;
4557
    translation = BIOS_ATA_TRANSLATION_AUTO;
4558
    monitor_device = "vc";
4559

    
4560
    serial_devices[0] = "vc:80Cx24C";
4561
    for(i = 1; i < MAX_SERIAL_PORTS; i++)
4562
        serial_devices[i] = NULL;
4563
    serial_device_index = 0;
4564

    
4565
    parallel_devices[0] = "vc:640x480";
4566
    for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4567
        parallel_devices[i] = NULL;
4568
    parallel_device_index = 0;
4569

    
4570
    usb_devices_index = 0;
4571

    
4572
    nb_net_clients = 0;
4573
    nb_bt_opts = 0;
4574
    nb_drives = 0;
4575
    nb_drives_opt = 0;
4576
    hda_index = -1;
4577

    
4578
    nb_nics = 0;
4579

    
4580
    tb_size = 0;
4581
    autostart= 1;
4582

    
4583
    optind = 1;
4584
    for(;;) {
4585
        if (optind >= argc)
4586
            break;
4587
        r = argv[optind];
4588
        if (r[0] != '-') {
4589
            hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
4590
        } else {
4591
            const QEMUOption *popt;
4592

    
4593
            optind++;
4594
            /* Treat --foo the same as -foo.  */
4595
            if (r[1] == '-')
4596
                r++;
4597
            popt = qemu_options;
4598
            for(;;) {
4599
                if (!popt->name) {
4600
                    fprintf(stderr, "%s: invalid option -- '%s'\n",
4601
                            argv[0], r);
4602
                    exit(1);
4603
                }
4604
                if (!strcmp(popt->name, r + 1))
4605
                    break;
4606
                popt++;
4607
            }
4608
            if (popt->flags & HAS_ARG) {
4609
                if (optind >= argc) {
4610
                    fprintf(stderr, "%s: option '%s' requires an argument\n",
4611
                            argv[0], r);
4612
                    exit(1);
4613
                }
4614
                optarg = argv[optind++];
4615
            } else {
4616
                optarg = NULL;
4617
            }
4618

    
4619
            switch(popt->index) {
4620
            case QEMU_OPTION_M:
4621
                machine = find_machine(optarg);
4622
                if (!machine) {
4623
                    QEMUMachine *m;
4624
                    printf("Supported machines are:\n");
4625
                    for(m = first_machine; m != NULL; m = m->next) {
4626
                        printf("%-10s %s%s\n",
4627
                               m->name, m->desc,
4628
                               m == first_machine ? " (default)" : "");
4629
                    }
4630
                    exit(*optarg != '?');
4631
                }
4632
                break;
4633
            case QEMU_OPTION_cpu:
4634
                /* hw initialization will check this */
4635
                if (*optarg == '?') {
4636
/* XXX: implement xxx_cpu_list for targets that still miss it */
4637
#if defined(cpu_list)
4638
                    cpu_list(stdout, &fprintf);
4639
#endif
4640
                    exit(0);
4641
                } else {
4642
                    cpu_model = optarg;
4643
                }
4644
                break;
4645
            case QEMU_OPTION_initrd:
4646
                initrd_filename = optarg;
4647
                break;
4648
            case QEMU_OPTION_hda:
4649
                if (cyls == 0)
4650
                    hda_index = drive_add(optarg, HD_ALIAS, 0);
4651
                else
4652
                    hda_index = drive_add(optarg, HD_ALIAS
4653
                             ",cyls=%d,heads=%d,secs=%d%s",
4654
                             0, cyls, heads, secs,
4655
                             translation == BIOS_ATA_TRANSLATION_LBA ?
4656
                                 ",trans=lba" :
4657
                             translation == BIOS_ATA_TRANSLATION_NONE ?
4658
                                 ",trans=none" : "");
4659
                 break;
4660
            case QEMU_OPTION_hdb:
4661
            case QEMU_OPTION_hdc:
4662
            case QEMU_OPTION_hdd:
4663
                drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
4664
                break;
4665
            case QEMU_OPTION_drive:
4666
                drive_add(NULL, "%s", optarg);
4667
                break;
4668
            case QEMU_OPTION_mtdblock:
4669
                drive_add(optarg, MTD_ALIAS);
4670
                break;
4671
            case QEMU_OPTION_sd:
4672
                drive_add(optarg, SD_ALIAS);
4673
                break;
4674
            case QEMU_OPTION_pflash:
4675
                drive_add(optarg, PFLASH_ALIAS);
4676
                break;
4677
            case QEMU_OPTION_snapshot:
4678
                snapshot = 1;
4679
                break;
4680
            case QEMU_OPTION_hdachs:
4681
                {
4682
                    const char *p;
4683
                    p = optarg;
4684
                    cyls = strtol(p, (char **)&p, 0);
4685
                    if (cyls < 1 || cyls > 16383)
4686
                        goto chs_fail;
4687
                    if (*p != ',')
4688
                        goto chs_fail;
4689
                    p++;
4690
                    heads = strtol(p, (char **)&p, 0);
4691
                    if (heads < 1 || heads > 16)
4692
                        goto chs_fail;
4693
                    if (*p != ',')
4694
                        goto chs_fail;
4695
                    p++;
4696
                    secs = strtol(p, (char **)&p, 0);
4697
                    if (secs < 1 || secs > 63)
4698
                        goto chs_fail;
4699
                    if (*p == ',') {
4700
                        p++;
4701
                        if (!strcmp(p, "none"))
4702
                            translation = BIOS_ATA_TRANSLATION_NONE;
4703
                        else if (!strcmp(p, "lba"))
4704
                            translation = BIOS_ATA_TRANSLATION_LBA;
4705
                        else if (!strcmp(p, "auto"))
4706
                            translation = BIOS_ATA_TRANSLATION_AUTO;
4707
                        else
4708
                            goto chs_fail;
4709
                    } else if (*p != '\0') {
4710
                    chs_fail:
4711
                        fprintf(stderr, "qemu: invalid physical CHS format\n");
4712
                        exit(1);
4713
                    }
4714
                    if (hda_index != -1)
4715
                        snprintf(drives_opt[hda_index].opt,
4716
                                 sizeof(drives_opt[hda_index].opt),
4717
                                 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
4718
                                 0, cyls, heads, secs,
4719
                                 translation == BIOS_ATA_TRANSLATION_LBA ?
4720
                                         ",trans=lba" :
4721
                                 translation == BIOS_ATA_TRANSLATION_NONE ?
4722
                                     ",trans=none" : "");
4723
                }
4724
                break;
4725
            case QEMU_OPTION_nographic:
4726
                nographic = 1;
4727
                break;
4728
#ifdef CONFIG_CURSES
4729
            case QEMU_OPTION_curses:
4730
                curses = 1;
4731
                break;
4732
#endif
4733
            case QEMU_OPTION_portrait:
4734
                graphic_rotate = 1;
4735
                break;
4736
            case QEMU_OPTION_kernel:
4737
                kernel_filename = optarg;
4738
                break;
4739
            case QEMU_OPTION_append:
4740
                kernel_cmdline = optarg;
4741
                break;
4742
            case QEMU_OPTION_cdrom:
4743
                drive_add(optarg, CDROM_ALIAS);
4744
                break;
4745
            case QEMU_OPTION_boot:
4746
                boot_devices = optarg;
4747
                /* We just do some generic consistency checks */
4748
                {
4749
                    /* Could easily be extended to 64 devices if needed */
4750
                    const char *p;
4751
                    
4752
                    boot_devices_bitmap = 0;
4753
                    for (p = boot_devices; *p != '\0'; p++) {
4754
                        /* Allowed boot devices are:
4755
                         * a b     : floppy disk drives
4756
                         * c ... f : IDE disk drives
4757
                         * g ... m : machine implementation dependant drives
4758
                         * n ... p : network devices
4759
                         * It's up to each machine implementation to check
4760
                         * if the given boot devices match the actual hardware
4761
                         * implementation and firmware features.
4762
                         */
4763
                        if (*p < 'a' || *p > 'q') {
4764
                            fprintf(stderr, "Invalid boot device '%c'\n", *p);
4765
                            exit(1);
4766
                        }
4767
                        if (boot_devices_bitmap & (1 << (*p - 'a'))) {
4768
                            fprintf(stderr,
4769
                                    "Boot device '%c' was given twice\n",*p);
4770
                            exit(1);
4771
                        }
4772
                        boot_devices_bitmap |= 1 << (*p - 'a');
4773
                    }
4774
                }
4775
                break;
4776
            case QEMU_OPTION_fda:
4777
            case QEMU_OPTION_fdb:
4778
                drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
4779
                break;
4780
#ifdef TARGET_I386
4781
            case QEMU_OPTION_no_fd_bootchk:
4782
                fd_bootchk = 0;
4783
                break;
4784
#endif
4785
            case QEMU_OPTION_net:
4786
                if (nb_net_clients >= MAX_NET_CLIENTS) {
4787
                    fprintf(stderr, "qemu: too many network clients\n");
4788
                    exit(1);
4789
                }
4790
                net_clients[nb_net_clients] = optarg;
4791
                nb_net_clients++;
4792
                break;
4793
#ifdef CONFIG_SLIRP
4794
            case QEMU_OPTION_tftp:
4795
                tftp_prefix = optarg;
4796
                break;
4797
            case QEMU_OPTION_bootp:
4798
                bootp_filename = optarg;
4799
                break;
4800
#ifndef _WIN32
4801
            case QEMU_OPTION_smb:
4802
                net_slirp_smb(optarg);
4803
                break;
4804
#endif
4805
            case QEMU_OPTION_redir:
4806
                net_slirp_redir(optarg);
4807
                break;
4808
#endif
4809
            case QEMU_OPTION_bt:
4810
                if (nb_bt_opts >= MAX_BT_CMDLINE) {
4811
                    fprintf(stderr, "qemu: too many bluetooth options\n");
4812
                    exit(1);
4813
                }
4814
                bt_opts[nb_bt_opts++] = optarg;
4815
                break;
4816
#ifdef HAS_AUDIO
4817
            case QEMU_OPTION_audio_help:
4818
                AUD_help ();
4819
                exit (0);
4820
                break;
4821
            case QEMU_OPTION_soundhw:
4822
                select_soundhw (optarg);
4823
                break;
4824
#endif
4825
            case QEMU_OPTION_h:
4826
                help(0);
4827
                break;
4828
            case QEMU_OPTION_m: {
4829
                uint64_t value;
4830
                char *ptr;
4831

    
4832
                value = strtoul(optarg, &ptr, 10);
4833
                switch (*ptr) {
4834
                case 0: case 'M': case 'm':
4835
                    value <<= 20;
4836
                    break;
4837
                case 'G': case 'g':
4838
                    value <<= 30;
4839
                    break;
4840
                default:
4841
                    fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
4842
                    exit(1);
4843
                }
4844

    
4845
                /* On 32-bit hosts, QEMU is limited by virtual address space */
4846
                if (value > (2047 << 20)
4847
#ifndef USE_KQEMU
4848
                    && HOST_LONG_BITS == 32
4849
#endif
4850
                    ) {
4851
                    fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
4852
                    exit(1);
4853
                }
4854
                if (value != (uint64_t)(ram_addr_t)value) {
4855
                    fprintf(stderr, "qemu: ram size too large\n");
4856
                    exit(1);
4857
                }
4858
                ram_size = value;
4859
                break;
4860
            }
4861
            case QEMU_OPTION_d:
4862
                {
4863
                    int mask;
4864
                    const CPULogItem *item;
4865

    
4866
                    mask = cpu_str_to_log_mask(optarg);
4867
                    if (!mask) {
4868
                        printf("Log items (comma separated):\n");
4869
                    for(item = cpu_log_items; item->mask != 0; item++) {
4870
                        printf("%-10s %s\n", item->name, item->help);
4871
                    }
4872
                    exit(1);
4873
                    }
4874
                    cpu_set_log(mask);
4875
                }
4876
                break;
4877
#ifdef CONFIG_GDBSTUB
4878
            case QEMU_OPTION_s:
4879
                use_gdbstub = 1;
4880
                break;
4881
            case QEMU_OPTION_p:
4882
                gdbstub_port = optarg;
4883
                break;
4884
#endif
4885
            case QEMU_OPTION_L:
4886
                bios_dir = optarg;
4887
                break;
4888
            case QEMU_OPTION_bios:
4889
                bios_name = optarg;
4890
                break;
4891
            case QEMU_OPTION_S:
4892
                autostart = 0;
4893
                break;
4894
            case QEMU_OPTION_k:
4895
                keyboard_layout = optarg;
4896
                break;
4897
            case QEMU_OPTION_localtime:
4898
                rtc_utc = 0;
4899
                break;
4900
            case QEMU_OPTION_vga:
4901
                select_vgahw (optarg);
4902
                break;
4903
            case QEMU_OPTION_g:
4904
                {
4905
                    const char *p;
4906
                    int w, h, depth;
4907
                    p = optarg;
4908
                    w = strtol(p, (char **)&p, 10);
4909
                    if (w <= 0) {
4910
                    graphic_error:
4911
                        fprintf(stderr, "qemu: invalid resolution or depth\n");
4912
                        exit(1);
4913
                    }
4914
                    if (*p != 'x')
4915
                        goto graphic_error;
4916
                    p++;
4917
                    h = strtol(p, (char **)&p, 10);
4918
                    if (h <= 0)
4919
                        goto graphic_error;
4920
                    if (*p == 'x') {
4921
                        p++;
4922
                        depth = strtol(p, (char **)&p, 10);
4923
                        if (depth != 8 && depth != 15 && depth != 16 &&
4924
                            depth != 24 && depth != 32)
4925
                            goto graphic_error;
4926
                    } else if (*p == '\0') {
4927
                        depth = graphic_depth;
4928
                    } else {
4929
                        goto graphic_error;
4930
                    }
4931

    
4932
                    graphic_width = w;
4933
                    graphic_height = h;
4934
                    graphic_depth = depth;
4935
                }
4936
                break;
4937
            case QEMU_OPTION_echr:
4938
                {
4939
                    char *r;
4940
                    term_escape_char = strtol(optarg, &r, 0);
4941
                    if (r == optarg)
4942
                        printf("Bad argument to echr\n");
4943
                    break;
4944
                }
4945
            case QEMU_OPTION_monitor:
4946
                monitor_device = optarg;
4947
                break;
4948
            case QEMU_OPTION_serial:
4949
                if (serial_device_index >= MAX_SERIAL_PORTS) {
4950
                    fprintf(stderr, "qemu: too many serial ports\n");
4951
                    exit(1);
4952
                }
4953
                serial_devices[serial_device_index] = optarg;
4954
                serial_device_index++;
4955
                break;
4956
            case QEMU_OPTION_parallel:
4957
                if (parallel_device_index >= MAX_PARALLEL_PORTS) {
4958
                    fprintf(stderr, "qemu: too many parallel ports\n");
4959
                    exit(1);
4960
                }
4961
                parallel_devices[parallel_device_index] = optarg;
4962
                parallel_device_index++;
4963
                break;
4964
            case QEMU_OPTION_loadvm:
4965
                loadvm = optarg;
4966
                break;
4967
            case QEMU_OPTION_full_screen:
4968
                full_screen = 1;
4969
                break;
4970
#ifdef CONFIG_SDL
4971
            case QEMU_OPTION_no_frame:
4972
                no_frame = 1;
4973
                break;
4974
            case QEMU_OPTION_alt_grab:
4975
                alt_grab = 1;
4976
                break;
4977
            case QEMU_OPTION_no_quit:
4978
                no_quit = 1;
4979
                break;
4980
#endif
4981
            case QEMU_OPTION_pidfile:
4982
                pid_file = optarg;
4983
                break;
4984
#ifdef TARGET_I386
4985
            case QEMU_OPTION_win2k_hack:
4986
                win2k_install_hack = 1;
4987
                break;
4988
#endif
4989
#ifdef USE_KQEMU
4990
            case QEMU_OPTION_no_kqemu:
4991
                kqemu_allowed = 0;
4992
                break;
4993
            case QEMU_OPTION_kernel_kqemu:
4994
                kqemu_allowed = 2;
4995
                break;
4996
#endif
4997
#ifdef CONFIG_KVM
4998
            case QEMU_OPTION_enable_kvm:
4999
                kvm_allowed = 1;
5000
#ifdef USE_KQEMU
5001
                kqemu_allowed = 0;
5002
#endif
5003
                break;
5004
#endif
5005
            case QEMU_OPTION_usb:
5006
                usb_enabled = 1;
5007
                break;
5008
            case QEMU_OPTION_usbdevice:
5009
                usb_enabled = 1;
5010
                if (usb_devices_index >= MAX_USB_CMDLINE) {
5011
                    fprintf(stderr, "Too many USB devices\n");
5012
                    exit(1);
5013
                }
5014
                usb_devices[usb_devices_index] = optarg;
5015
                usb_devices_index++;
5016
                break;
5017
            case QEMU_OPTION_smp:
5018
                smp_cpus = atoi(optarg);
5019
                if (smp_cpus < 1) {
5020
                    fprintf(stderr, "Invalid number of CPUs\n");
5021
                    exit(1);
5022
                }
5023
                break;
5024
            case QEMU_OPTION_vnc:
5025
                vnc_display = optarg;
5026
                break;
5027
            case QEMU_OPTION_no_acpi:
5028
                acpi_enabled = 0;
5029
                break;
5030
            case QEMU_OPTION_no_hpet:
5031
                no_hpet = 1;
5032
                break;
5033
            case QEMU_OPTION_no_reboot:
5034
                no_reboot = 1;
5035
                break;
5036
            case QEMU_OPTION_no_shutdown:
5037
                no_shutdown = 1;
5038
                break;
5039
            case QEMU_OPTION_show_cursor:
5040
                cursor_hide = 0;
5041
                break;
5042
            case QEMU_OPTION_uuid:
5043
                if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5044
                    fprintf(stderr, "Fail to parse UUID string."
5045
                            " Wrong format.\n");
5046
                    exit(1);
5047
                }
5048
                break;
5049
            case QEMU_OPTION_daemonize:
5050
                daemonize = 1;
5051
                break;
5052
            case QEMU_OPTION_option_rom:
5053
                if (nb_option_roms >= MAX_OPTION_ROMS) {
5054
                    fprintf(stderr, "Too many option ROMs\n");
5055
                    exit(1);
5056
                }
5057
                option_rom[nb_option_roms] = optarg;
5058
                nb_option_roms++;
5059
                break;
5060
            case QEMU_OPTION_semihosting:
5061
                semihosting_enabled = 1;
5062
                break;
5063
            case QEMU_OPTION_name:
5064
                qemu_name = optarg;
5065
                break;
5066
#if defined(TARGET_SPARC) || defined(TARGET_PPC)
5067
            case QEMU_OPTION_prom_env:
5068
                if (nb_prom_envs >= MAX_PROM_ENVS) {
5069
                    fprintf(stderr, "Too many prom variables\n");
5070
                    exit(1);
5071
                }
5072
                prom_envs[nb_prom_envs] = optarg;
5073
                nb_prom_envs++;
5074
                break;
5075
#endif
5076
#ifdef TARGET_ARM
5077
            case QEMU_OPTION_old_param:
5078
                old_param = 1;
5079
                break;
5080
#endif
5081
            case QEMU_OPTION_clock:
5082
                configure_alarms(optarg);
5083
                break;
5084
            case QEMU_OPTION_startdate:
5085
                {
5086
                    struct tm tm;
5087
                    time_t rtc_start_date;
5088
                    if (!strcmp(optarg, "now")) {
5089
                        rtc_date_offset = -1;
5090
                    } else {
5091
                        if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
5092
                               &tm.tm_year,
5093
                               &tm.tm_mon,
5094
                               &tm.tm_mday,
5095
                               &tm.tm_hour,
5096
                               &tm.tm_min,
5097
                               &tm.tm_sec) == 6) {
5098
                            /* OK */
5099
                        } else if (sscanf(optarg, "%d-%d-%d",
5100
                                          &tm.tm_year,
5101
                                          &tm.tm_mon,
5102
                                          &tm.tm_mday) == 3) {
5103
                            tm.tm_hour = 0;
5104
                            tm.tm_min = 0;
5105
                            tm.tm_sec = 0;
5106
                        } else {
5107
                            goto date_fail;
5108
                        }
5109
                        tm.tm_year -= 1900;
5110
                        tm.tm_mon--;
5111
                        rtc_start_date = mktimegm(&tm);
5112
                        if (rtc_start_date == -1) {
5113
                        date_fail:
5114
                            fprintf(stderr, "Invalid date format. Valid format are:\n"
5115
                                    "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5116
                            exit(1);
5117
                        }
5118
                        rtc_date_offset = time(NULL) - rtc_start_date;
5119
                    }
5120
                }
5121
                break;
5122
            case QEMU_OPTION_tb_size:
5123
                tb_size = strtol(optarg, NULL, 0);
5124
                if (tb_size < 0)
5125
                    tb_size = 0;
5126
                break;
5127
            case QEMU_OPTION_icount:
5128
                use_icount = 1;
5129
                if (strcmp(optarg, "auto") == 0) {
5130
                    icount_time_shift = -1;
5131
                } else {
5132
                    icount_time_shift = strtol(optarg, NULL, 0);
5133
                }
5134
                break;
5135
            case QEMU_OPTION_incoming:
5136
                incoming = optarg;
5137
                break;
5138
            }
5139
        }
5140
    }
5141

    
5142
#if defined(CONFIG_KVM) && defined(USE_KQEMU)
5143
    if (kvm_allowed && kqemu_allowed) {
5144
        fprintf(stderr,
5145
                "You can not enable both KVM and kqemu at the same time\n");
5146
        exit(1);
5147
    }
5148
#endif
5149

    
5150
    machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5151
    if (smp_cpus > machine->max_cpus) {
5152
        fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5153
                "supported by machine `%s' (%d)\n", smp_cpus,  machine->name,
5154
                machine->max_cpus);
5155
        exit(1);
5156
    }
5157

    
5158
    if (nographic) {
5159
       if (serial_device_index == 0)
5160
           serial_devices[0] = "stdio";
5161
       if (parallel_device_index == 0)
5162
           parallel_devices[0] = "null";
5163
       if (strncmp(monitor_device, "vc", 2) == 0)
5164
           monitor_device = "stdio";
5165
    }
5166

    
5167
#ifndef _WIN32
5168
    if (daemonize) {
5169
        pid_t pid;
5170

    
5171
        if (pipe(fds) == -1)
5172
            exit(1);
5173

    
5174
        pid = fork();
5175
        if (pid > 0) {
5176
            uint8_t status;
5177
            ssize_t len;
5178

    
5179
            close(fds[1]);
5180

    
5181
        again:
5182
            len = read(fds[0], &status, 1);
5183
            if (len == -1 && (errno == EINTR))
5184
                goto again;
5185

    
5186
            if (len != 1)
5187
                exit(1);
5188
            else if (status == 1) {
5189
                fprintf(stderr, "Could not acquire pidfile\n");
5190
                exit(1);
5191
            } else
5192
                exit(0);
5193
        } else if (pid < 0)
5194
            exit(1);
5195

    
5196
        setsid();
5197

    
5198
        pid = fork();
5199
        if (pid > 0)
5200
            exit(0);
5201
        else if (pid < 0)
5202
            exit(1);
5203

    
5204
        umask(027);
5205

    
5206
        signal(SIGTSTP, SIG_IGN);
5207
        signal(SIGTTOU, SIG_IGN);
5208
        signal(SIGTTIN, SIG_IGN);
5209
    }
5210
#endif
5211

    
5212
    if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5213
        if (daemonize) {
5214
            uint8_t status = 1;
5215
            write(fds[1], &status, 1);
5216
        } else
5217
            fprintf(stderr, "Could not acquire pid file\n");
5218
        exit(1);
5219
    }
5220

    
5221
#ifdef USE_KQEMU
5222
    if (smp_cpus > 1)
5223
        kqemu_allowed = 0;
5224
#endif
5225
    linux_boot = (kernel_filename != NULL);
5226
    net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5227

    
5228
    if (!linux_boot && net_boot == 0 &&
5229
        !machine->nodisk_ok && nb_drives_opt == 0)
5230
        help(1);
5231

    
5232
    if (!linux_boot && *kernel_cmdline != '\0') {
5233
        fprintf(stderr, "-append only allowed with -kernel option\n");
5234
        exit(1);
5235
    }
5236

    
5237
    if (!linux_boot && initrd_filename != NULL) {
5238
        fprintf(stderr, "-initrd only allowed with -kernel option\n");
5239
        exit(1);
5240
    }
5241

    
5242
    /* boot to floppy or the default cd if no hard disk defined yet */
5243
    if (!boot_devices[0]) {
5244
        boot_devices = "cad";
5245
    }
5246
    setvbuf(stdout, NULL, _IOLBF, 0);
5247

    
5248
    init_timers();
5249
    if (init_timer_alarm() < 0) {
5250
        fprintf(stderr, "could not initialize alarm timer\n");
5251
        exit(1);
5252
    }
5253
    if (use_icount && icount_time_shift < 0) {
5254
        use_icount = 2;
5255
        /* 125MIPS seems a reasonable initial guess at the guest speed.
5256
           It will be corrected fairly quickly anyway.  */
5257
        icount_time_shift = 3;
5258
        init_icount_adjust();
5259
    }
5260

    
5261
#ifdef _WIN32
5262
    socket_init();
5263
#endif
5264

    
5265
    /* init network clients */
5266
    if (nb_net_clients == 0) {
5267
        /* if no clients, we use a default config */
5268
        net_clients[nb_net_clients++] = "nic";
5269
#ifdef CONFIG_SLIRP
5270
        net_clients[nb_net_clients++] = "user";
5271
#endif
5272
    }
5273

    
5274
    for(i = 0;i < nb_net_clients; i++) {
5275
        if (net_client_parse(net_clients[i]) < 0)
5276
            exit(1);
5277
    }
5278
    net_client_check();
5279

    
5280
#ifdef TARGET_I386
5281
    /* XXX: this should be moved in the PC machine instantiation code */
5282
    if (net_boot != 0) {
5283
        int netroms = 0;
5284
        for (i = 0; i < nb_nics && i < 4; i++) {
5285
            const char *model = nd_table[i].model;
5286
            char buf[1024];
5287
            if (net_boot & (1 << i)) {
5288
                if (model == NULL)
5289
                    model = "ne2k_pci";
5290
                snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
5291
                if (get_image_size(buf) > 0) {
5292
                    if (nb_option_roms >= MAX_OPTION_ROMS) {
5293
                        fprintf(stderr, "Too many option ROMs\n");
5294
                        exit(1);
5295
                    }
5296
                    option_rom[nb_option_roms] = strdup(buf);
5297
                    nb_option_roms++;
5298
                    netroms++;
5299
                }
5300
            }
5301
        }
5302
        if (netroms == 0) {
5303
            fprintf(stderr, "No valid PXE rom found for network device\n");
5304
            exit(1);
5305
        }
5306
    }
5307
#endif
5308

    
5309
    /* init the bluetooth world */
5310
    for (i = 0; i < nb_bt_opts; i++)
5311
        if (bt_parse(bt_opts[i]))
5312
            exit(1);
5313

    
5314
    /* init the memory */
5315
    phys_ram_size = machine->ram_require & ~RAMSIZE_FIXED;
5316

    
5317
    if (machine->ram_require & RAMSIZE_FIXED) {
5318
        if (ram_size > 0) {
5319
            if (ram_size < phys_ram_size) {
5320
                fprintf(stderr, "Machine `%s' requires %llu bytes of memory\n",
5321
                                machine->name, (unsigned long long) phys_ram_size);
5322
                exit(-1);
5323
            }
5324

    
5325
            phys_ram_size = ram_size;
5326
        } else
5327
            ram_size = phys_ram_size;
5328
    } else {
5329
        if (ram_size == 0)
5330
            ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5331

    
5332
        phys_ram_size += ram_size;
5333
    }
5334

    
5335
    phys_ram_base = qemu_vmalloc(phys_ram_size);
5336
    if (!phys_ram_base) {
5337
        fprintf(stderr, "Could not allocate physical memory\n");
5338
        exit(1);
5339
    }
5340

    
5341
    /* init the dynamic translator */
5342
    cpu_exec_init_all(tb_size * 1024 * 1024);
5343

    
5344
    bdrv_init();
5345

    
5346
    /* we always create the cdrom drive, even if no disk is there */
5347

    
5348
    if (nb_drives_opt < MAX_DRIVES)
5349
        drive_add(NULL, CDROM_ALIAS);
5350

    
5351
    /* we always create at least one floppy */
5352

    
5353
    if (nb_drives_opt < MAX_DRIVES)
5354
        drive_add(NULL, FD_ALIAS, 0);
5355

    
5356
    /* we always create one sd slot, even if no card is in it */
5357

    
5358
    if (nb_drives_opt < MAX_DRIVES)
5359
        drive_add(NULL, SD_ALIAS);
5360

    
5361
    /* open the virtual block devices */
5362

    
5363
    for(i = 0; i < nb_drives_opt; i++)
5364
        if (drive_init(&drives_opt[i], snapshot, machine) == -1)
5365
            exit(1);
5366

    
5367
    register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5368
    register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5369

    
5370
    /* terminal init */
5371
    memset(&display_state, 0, sizeof(display_state));
5372
    if (nographic) {
5373
        if (curses) {
5374
            fprintf(stderr, "fatal: -nographic can't be used with -curses\n");
5375
            exit(1);
5376
        }
5377
        /* nearly nothing to do */
5378
        dumb_display_init(ds);
5379
    } else if (vnc_display != NULL) {
5380
        vnc_display_init(ds);
5381
        if (vnc_display_open(ds, vnc_display) < 0)
5382
            exit(1);
5383
    } else
5384
#if defined(CONFIG_CURSES)
5385
    if (curses) {
5386
        curses_display_init(ds, full_screen);
5387
    } else
5388
#endif
5389
    {
5390
#if defined(CONFIG_SDL)
5391
        sdl_display_init(ds, full_screen, no_frame);
5392
#elif defined(CONFIG_COCOA)
5393
        cocoa_display_init(ds, full_screen);
5394
#else
5395
        dumb_display_init(ds);
5396
#endif
5397
    }
5398

    
5399
#ifndef _WIN32
5400
    /* must be after terminal init, SDL library changes signal handlers */
5401
    termsig_setup();
5402
#endif
5403

    
5404
    /* Maintain compatibility with multiple stdio monitors */
5405
    if (!strcmp(monitor_device,"stdio")) {
5406
        for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5407
            const char *devname = serial_devices[i];
5408
            if (devname && !strcmp(devname,"mon:stdio")) {
5409
                monitor_device = NULL;
5410
                break;
5411
            } else if (devname && !strcmp(devname,"stdio")) {
5412
                monitor_device = NULL;
5413
                serial_devices[i] = "mon:stdio";
5414
                break;
5415
            }
5416
        }
5417
    }
5418
    if (monitor_device) {
5419
        monitor_hd = qemu_chr_open("monitor", monitor_device);
5420
        if (!monitor_hd) {
5421
            fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
5422
            exit(1);
5423
        }
5424
        monitor_init(monitor_hd, !nographic);
5425
    }
5426

    
5427
    for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5428
        const char *devname = serial_devices[i];
5429
        if (devname && strcmp(devname, "none")) {
5430
            char label[32];
5431
            snprintf(label, sizeof(label), "serial%d", i);
5432
            serial_hds[i] = qemu_chr_open(label, devname);
5433
            if (!serial_hds[i]) {
5434
                fprintf(stderr, "qemu: could not open serial device '%s'\n",
5435
                        devname);
5436
                exit(1);
5437
            }
5438
            if (strstart(devname, "vc", 0))
5439
                qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
5440
        }
5441
    }
5442

    
5443
    for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5444
        const char *devname = parallel_devices[i];
5445
        if (devname && strcmp(devname, "none")) {
5446
            char label[32];
5447
            snprintf(label, sizeof(label), "parallel%d", i);
5448
            parallel_hds[i] = qemu_chr_open(label, devname);
5449
            if (!parallel_hds[i]) {
5450
                fprintf(stderr, "qemu: could not open parallel device '%s'\n",
5451
                        devname);
5452
                exit(1);
5453
            }
5454
            if (strstart(devname, "vc", 0))
5455
                qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
5456
        }
5457
    }
5458

    
5459
    if (kvm_enabled()) {
5460
        int ret;
5461

    
5462
        ret = kvm_init(smp_cpus);
5463
        if (ret < 0) {
5464
            fprintf(stderr, "failed to initialize KVM\n");
5465
            exit(1);
5466
        }
5467
    }
5468

    
5469
    machine->init(ram_size, vga_ram_size, boot_devices, ds,
5470
                  kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5471

    
5472
    /* Set KVM's vcpu state to qemu's initial CPUState. */
5473
    if (kvm_enabled()) {
5474
        int ret;
5475

    
5476
        ret = kvm_sync_vcpus();
5477
        if (ret < 0) {
5478
            fprintf(stderr, "failed to initialize vcpus\n");
5479
            exit(1);
5480
        }
5481
    }
5482

    
5483
    /* init USB devices */
5484
    if (usb_enabled) {
5485
        for(i = 0; i < usb_devices_index; i++) {
5486
            if (usb_device_add(usb_devices[i]) < 0) {
5487
                fprintf(stderr, "Warning: could not add USB device %s\n",
5488
                        usb_devices[i]);
5489
            }
5490
        }
5491
    }
5492

    
5493
    if (display_state.dpy_refresh) {
5494
        display_state.gui_timer = qemu_new_timer(rt_clock, gui_update, &display_state);
5495
        qemu_mod_timer(display_state.gui_timer, qemu_get_clock(rt_clock));
5496
    }
5497

    
5498
#ifdef CONFIG_GDBSTUB
5499
    if (use_gdbstub) {
5500
        /* XXX: use standard host:port notation and modify options
5501
           accordingly. */
5502
        if (gdbserver_start(gdbstub_port) < 0) {
5503
            fprintf(stderr, "qemu: could not open gdbstub device on port '%s'\n",
5504
                    gdbstub_port);
5505
            exit(1);
5506
        }
5507
    }
5508
#endif
5509

    
5510
    if (loadvm)
5511
        do_loadvm(loadvm);
5512

    
5513
    if (incoming) {
5514
        autostart = 0; /* fixme how to deal with -daemonize */
5515
        qemu_start_incoming_migration(incoming);
5516
    }
5517

    
5518
    {
5519
        /* XXX: simplify init */
5520
        read_passwords();
5521
        if (autostart) {
5522
            vm_start();
5523
        }
5524
    }
5525

    
5526
    if (daemonize) {
5527
        uint8_t status = 0;
5528
        ssize_t len;
5529
        int fd;
5530

    
5531
    again1:
5532
        len = write(fds[1], &status, 1);
5533
        if (len == -1 && (errno == EINTR))
5534
            goto again1;
5535

    
5536
        if (len != 1)
5537
            exit(1);
5538

    
5539
        chdir("/");
5540
        TFR(fd = open("/dev/null", O_RDWR));
5541
        if (fd == -1)
5542
            exit(1);
5543

    
5544
        dup2(fd, 0);
5545
        dup2(fd, 1);
5546
        dup2(fd, 2);
5547

    
5548
        close(fd);
5549
    }
5550

    
5551
    main_loop();
5552
    quit_timers();
5553
    net_cleanup();
5554

    
5555
    return 0;
5556
}