Statistics
| Branch: | Revision:

root / hw / slavio_intctl.c @ b2eb849d

History | View | Annotate | Download (11.4 kB)

1
/*
2
 * QEMU Sparc SLAVIO interrupt controller emulation
3
 *
4
 * Copyright (c) 2003-2005 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw.h"
25
#include "sun4m.h"
26
#include "console.h"
27

    
28
//#define DEBUG_IRQ_COUNT
29
//#define DEBUG_IRQ
30

    
31
#ifdef DEBUG_IRQ
32
#define DPRINTF(fmt, args...) \
33
do { printf("IRQ: " fmt , ##args); } while (0)
34
#else
35
#define DPRINTF(fmt, args...)
36
#endif
37

    
38
/*
39
 * Registers of interrupt controller in sun4m.
40
 *
41
 * This is the interrupt controller part of chip STP2001 (Slave I/O), also
42
 * produced as NCR89C105. See
43
 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
44
 *
45
 * There is a system master controller and one for each cpu.
46
 *
47
 */
48

    
49
#define MAX_CPUS 16
50
#define MAX_PILS 16
51

    
52
typedef struct SLAVIO_INTCTLState {
53
    uint32_t intreg_pending[MAX_CPUS];
54
    uint32_t intregm_pending;
55
    uint32_t intregm_disabled;
56
    uint32_t target_cpu;
57
#ifdef DEBUG_IRQ_COUNT
58
    uint64_t irq_count[32];
59
#endif
60
    qemu_irq *cpu_irqs[MAX_CPUS];
61
    const uint32_t *intbit_to_level;
62
    uint32_t cputimer_lbit, cputimer_mbit;
63
    uint32_t pil_out[MAX_CPUS];
64
} SLAVIO_INTCTLState;
65

    
66
#define INTCTL_MAXADDR 0xf
67
#define INTCTL_SIZE (INTCTL_MAXADDR + 1)
68
#define INTCTLM_MAXADDR 0x13
69
#define INTCTLM_SIZE (INTCTLM_MAXADDR + 1)
70
#define INTCTLM_MASK 0x1f
71
#define MASTER_IRQ_MASK ~0x0fa2007f
72
#define MASTER_DISABLE 0x80000000
73
#define CPU_SOFTIRQ_MASK 0xfffe0000
74
#define CPU_HARDIRQ_MASK 0x0000fffe
75
#define CPU_IRQ_INT15_IN 0x0004000
76
#define CPU_IRQ_INT15_MASK 0x80000000
77

    
78
static void slavio_check_interrupts(void *opaque);
79

    
80
// per-cpu interrupt controller
81
static uint32_t slavio_intctl_mem_readl(void *opaque, target_phys_addr_t addr)
82
{
83
    SLAVIO_INTCTLState *s = opaque;
84
    uint32_t saddr, ret;
85
    int cpu;
86

    
87
    cpu = (addr & (MAX_CPUS - 1) * TARGET_PAGE_SIZE) >> 12;
88
    saddr = (addr & INTCTL_MAXADDR) >> 2;
89
    switch (saddr) {
90
    case 0:
91
        ret = s->intreg_pending[cpu];
92
        break;
93
    default:
94
        ret = 0;
95
        break;
96
    }
97
    DPRINTF("read cpu %d reg 0x" TARGET_FMT_plx " = %x\n", cpu, addr, ret);
98

    
99
    return ret;
100
}
101

    
102
static void slavio_intctl_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
103
{
104
    SLAVIO_INTCTLState *s = opaque;
105
    uint32_t saddr;
106
    int cpu;
107

    
108
    cpu = (addr & (MAX_CPUS - 1) * TARGET_PAGE_SIZE) >> 12;
109
    saddr = (addr & INTCTL_MAXADDR) >> 2;
110
    DPRINTF("write cpu %d reg 0x" TARGET_FMT_plx " = %x\n", cpu, addr, val);
111
    switch (saddr) {
112
    case 1: // clear pending softints
113
        if (val & CPU_IRQ_INT15_IN)
114
            val |= CPU_IRQ_INT15_MASK;
115
        val &= CPU_SOFTIRQ_MASK;
116
        s->intreg_pending[cpu] &= ~val;
117
        slavio_check_interrupts(s);
118
        DPRINTF("Cleared cpu %d irq mask %x, curmask %x\n", cpu, val, s->intreg_pending[cpu]);
119
        break;
120
    case 2: // set softint
121
        val &= CPU_SOFTIRQ_MASK;
122
        s->intreg_pending[cpu] |= val;
123
        slavio_check_interrupts(s);
124
        DPRINTF("Set cpu %d irq mask %x, curmask %x\n", cpu, val, s->intreg_pending[cpu]);
125
        break;
126
    default:
127
        break;
128
    }
129
}
130

    
131
static CPUReadMemoryFunc *slavio_intctl_mem_read[3] = {
132
    NULL,
133
    NULL,
134
    slavio_intctl_mem_readl,
135
};
136

    
137
static CPUWriteMemoryFunc *slavio_intctl_mem_write[3] = {
138
    NULL,
139
    NULL,
140
    slavio_intctl_mem_writel,
141
};
142

    
143
// master system interrupt controller
144
static uint32_t slavio_intctlm_mem_readl(void *opaque, target_phys_addr_t addr)
145
{
146
    SLAVIO_INTCTLState *s = opaque;
147
    uint32_t saddr, ret;
148

    
149
    saddr = (addr & INTCTLM_MASK) >> 2;
150
    switch (saddr) {
151
    case 0:
152
        ret = s->intregm_pending & ~MASTER_DISABLE;
153
        break;
154
    case 1:
155
        ret = s->intregm_disabled & MASTER_IRQ_MASK;
156
        break;
157
    case 4:
158
        ret = s->target_cpu;
159
        break;
160
    default:
161
        ret = 0;
162
        break;
163
    }
164
    DPRINTF("read system reg 0x" TARGET_FMT_plx " = %x\n", addr, ret);
165

    
166
    return ret;
167
}
168

    
169
static void slavio_intctlm_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
170
{
171
    SLAVIO_INTCTLState *s = opaque;
172
    uint32_t saddr;
173

    
174
    saddr = (addr & INTCTLM_MASK) >> 2;
175
    DPRINTF("write system reg 0x" TARGET_FMT_plx " = %x\n", addr, val);
176
    switch (saddr) {
177
    case 2: // clear (enable)
178
        // Force clear unused bits
179
        val &= MASTER_IRQ_MASK;
180
        s->intregm_disabled &= ~val;
181
        DPRINTF("Enabled master irq mask %x, curmask %x\n", val, s->intregm_disabled);
182
        slavio_check_interrupts(s);
183
        break;
184
    case 3: // set (disable, clear pending)
185
        // Force clear unused bits
186
        val &= MASTER_IRQ_MASK;
187
        s->intregm_disabled |= val;
188
        s->intregm_pending &= ~val;
189
        slavio_check_interrupts(s);
190
        DPRINTF("Disabled master irq mask %x, curmask %x\n", val, s->intregm_disabled);
191
        break;
192
    case 4:
193
        s->target_cpu = val & (MAX_CPUS - 1);
194
        slavio_check_interrupts(s);
195
        DPRINTF("Set master irq cpu %d\n", s->target_cpu);
196
        break;
197
    default:
198
        break;
199
    }
200
}
201

    
202
static CPUReadMemoryFunc *slavio_intctlm_mem_read[3] = {
203
    NULL,
204
    NULL,
205
    slavio_intctlm_mem_readl,
206
};
207

    
208
static CPUWriteMemoryFunc *slavio_intctlm_mem_write[3] = {
209
    NULL,
210
    NULL,
211
    slavio_intctlm_mem_writel,
212
};
213

    
214
void slavio_pic_info(void *opaque)
215
{
216
    SLAVIO_INTCTLState *s = opaque;
217
    int i;
218

    
219
    for (i = 0; i < MAX_CPUS; i++) {
220
        term_printf("per-cpu %d: pending 0x%08x\n", i, s->intreg_pending[i]);
221
    }
222
    term_printf("master: pending 0x%08x, disabled 0x%08x\n", s->intregm_pending, s->intregm_disabled);
223
}
224

    
225
void slavio_irq_info(void *opaque)
226
{
227
#ifndef DEBUG_IRQ_COUNT
228
    term_printf("irq statistic code not compiled.\n");
229
#else
230
    SLAVIO_INTCTLState *s = opaque;
231
    int i;
232
    int64_t count;
233

    
234
    term_printf("IRQ statistics:\n");
235
    for (i = 0; i < 32; i++) {
236
        count = s->irq_count[i];
237
        if (count > 0)
238
            term_printf("%2d: %" PRId64 "\n", i, count);
239
    }
240
#endif
241
}
242

    
243
static void slavio_check_interrupts(void *opaque)
244
{
245
    SLAVIO_INTCTLState *s = opaque;
246
    uint32_t pending = s->intregm_pending, pil_pending;
247
    unsigned int i, j;
248

    
249
    pending &= ~s->intregm_disabled;
250

    
251
    DPRINTF("pending %x disabled %x\n", pending, s->intregm_disabled);
252
    for (i = 0; i < MAX_CPUS; i++) {
253
        pil_pending = 0;
254
        if (pending && !(s->intregm_disabled & MASTER_DISABLE) &&
255
            (i == s->target_cpu)) {
256
            for (j = 0; j < 32; j++) {
257
                if (pending & (1 << j))
258
                    pil_pending |= 1 << s->intbit_to_level[j];
259
            }
260
        }
261
        pil_pending |= (s->intreg_pending[i] & CPU_SOFTIRQ_MASK) >> 16;
262

    
263
        for (j = 0; j < MAX_PILS; j++) {
264
            if (pil_pending & (1 << j)) {
265
                if (!(s->pil_out[i] & (1 << j)))
266
                    qemu_irq_raise(s->cpu_irqs[i][j]);
267
            } else {
268
                if (s->pil_out[i] & (1 << j))
269
                    qemu_irq_lower(s->cpu_irqs[i][j]);
270
            }
271
        }
272
        s->pil_out[i] = pil_pending;
273
    }
274
}
275

    
276
/*
277
 * "irq" here is the bit number in the system interrupt register to
278
 * separate serial and keyboard interrupts sharing a level.
279
 */
280
static void slavio_set_irq(void *opaque, int irq, int level)
281
{
282
    SLAVIO_INTCTLState *s = opaque;
283
    uint32_t mask = 1 << irq;
284
    uint32_t pil = s->intbit_to_level[irq];
285

    
286
    DPRINTF("Set cpu %d irq %d -> pil %d level %d\n", s->target_cpu, irq, pil,
287
            level);
288
    if (pil > 0) {
289
        if (level) {
290
#ifdef DEBUG_IRQ_COUNT
291
            s->irq_count[pil]++;
292
#endif
293
            s->intregm_pending |= mask;
294
            s->intreg_pending[s->target_cpu] |= 1 << pil;
295
        } else {
296
            s->intregm_pending &= ~mask;
297
            s->intreg_pending[s->target_cpu] &= ~(1 << pil);
298
        }
299
        slavio_check_interrupts(s);
300
    }
301
}
302

    
303
static void slavio_set_timer_irq_cpu(void *opaque, int cpu, int level)
304
{
305
    SLAVIO_INTCTLState *s = opaque;
306

    
307
    DPRINTF("Set cpu %d local timer level %d\n", cpu, level);
308

    
309
    if (level) {
310
        s->intregm_pending |= s->cputimer_mbit;
311
        s->intreg_pending[cpu] |= s->cputimer_lbit;
312
    } else {
313
        s->intregm_pending &= ~s->cputimer_mbit;
314
        s->intreg_pending[cpu] &= ~s->cputimer_lbit;
315
    }
316

    
317
    slavio_check_interrupts(s);
318
}
319

    
320
static void slavio_intctl_save(QEMUFile *f, void *opaque)
321
{
322
    SLAVIO_INTCTLState *s = opaque;
323
    int i;
324

    
325
    for (i = 0; i < MAX_CPUS; i++) {
326
        qemu_put_be32s(f, &s->intreg_pending[i]);
327
    }
328
    qemu_put_be32s(f, &s->intregm_pending);
329
    qemu_put_be32s(f, &s->intregm_disabled);
330
    qemu_put_be32s(f, &s->target_cpu);
331
}
332

    
333
static int slavio_intctl_load(QEMUFile *f, void *opaque, int version_id)
334
{
335
    SLAVIO_INTCTLState *s = opaque;
336
    int i;
337

    
338
    if (version_id != 1)
339
        return -EINVAL;
340

    
341
    for (i = 0; i < MAX_CPUS; i++) {
342
        qemu_get_be32s(f, &s->intreg_pending[i]);
343
    }
344
    qemu_get_be32s(f, &s->intregm_pending);
345
    qemu_get_be32s(f, &s->intregm_disabled);
346
    qemu_get_be32s(f, &s->target_cpu);
347
    slavio_check_interrupts(s);
348
    return 0;
349
}
350

    
351
static void slavio_intctl_reset(void *opaque)
352
{
353
    SLAVIO_INTCTLState *s = opaque;
354
    int i;
355

    
356
    for (i = 0; i < MAX_CPUS; i++) {
357
        s->intreg_pending[i] = 0;
358
    }
359
    s->intregm_disabled = ~MASTER_IRQ_MASK;
360
    s->intregm_pending = 0;
361
    s->target_cpu = 0;
362
    slavio_check_interrupts(s);
363
}
364

    
365
void *slavio_intctl_init(target_phys_addr_t addr, target_phys_addr_t addrg,
366
                         const uint32_t *intbit_to_level,
367
                         qemu_irq **irq, qemu_irq **cpu_irq,
368
                         qemu_irq **parent_irq, unsigned int cputimer)
369
{
370
    int slavio_intctl_io_memory, slavio_intctlm_io_memory, i;
371
    SLAVIO_INTCTLState *s;
372

    
373
    s = qemu_mallocz(sizeof(SLAVIO_INTCTLState));
374
    if (!s)
375
        return NULL;
376

    
377
    s->intbit_to_level = intbit_to_level;
378
    for (i = 0; i < MAX_CPUS; i++) {
379
        slavio_intctl_io_memory = cpu_register_io_memory(0, slavio_intctl_mem_read, slavio_intctl_mem_write, s);
380
        cpu_register_physical_memory(addr + i * TARGET_PAGE_SIZE, INTCTL_SIZE,
381
                                     slavio_intctl_io_memory);
382
        s->cpu_irqs[i] = parent_irq[i];
383
    }
384

    
385
    slavio_intctlm_io_memory = cpu_register_io_memory(0, slavio_intctlm_mem_read, slavio_intctlm_mem_write, s);
386
    cpu_register_physical_memory(addrg, INTCTLM_SIZE, slavio_intctlm_io_memory);
387

    
388
    register_savevm("slavio_intctl", addr, 1, slavio_intctl_save, slavio_intctl_load, s);
389
    qemu_register_reset(slavio_intctl_reset, s);
390
    *irq = qemu_allocate_irqs(slavio_set_irq, s, 32);
391

    
392
    *cpu_irq = qemu_allocate_irqs(slavio_set_timer_irq_cpu, s, MAX_CPUS);
393
    s->cputimer_mbit = 1 << cputimer;
394
    s->cputimer_lbit = 1 << intbit_to_level[cputimer];
395
    slavio_intctl_reset(s);
396
    return s;
397
}
398