Statistics
| Branch: | Revision:

root / target-xtensa / helper.c @ b3ce604e

History | View | Annotate | Download (19.3 kB)

1
/*
2
 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3
 * All rights reserved.
4
 *
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions are met:
7
 *     * Redistributions of source code must retain the above copyright
8
 *       notice, this list of conditions and the following disclaimer.
9
 *     * Redistributions in binary form must reproduce the above copyright
10
 *       notice, this list of conditions and the following disclaimer in the
11
 *       documentation and/or other materials provided with the distribution.
12
 *     * Neither the name of the Open Source and Linux Lab nor the
13
 *       names of its contributors may be used to endorse or promote products
14
 *       derived from this software without specific prior written permission.
15
 *
16
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19
 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 */
27

    
28
#include "cpu.h"
29
#include "exec-all.h"
30
#include "gdbstub.h"
31
#include "host-utils.h"
32
#if !defined(CONFIG_USER_ONLY)
33
#include "hw/loader.h"
34
#endif
35

    
36
static struct XtensaConfigList *xtensa_cores;
37

    
38
void xtensa_register_core(XtensaConfigList *node)
39
{
40
    node->next = xtensa_cores;
41
    xtensa_cores = node;
42
}
43

    
44
static uint32_t check_hw_breakpoints(CPUXtensaState *env)
45
{
46
    unsigned i;
47

    
48
    for (i = 0; i < env->config->ndbreak; ++i) {
49
        if (env->cpu_watchpoint[i] &&
50
                env->cpu_watchpoint[i]->flags & BP_WATCHPOINT_HIT) {
51
            return DEBUGCAUSE_DB | (i << DEBUGCAUSE_DBNUM_SHIFT);
52
        }
53
    }
54
    return 0;
55
}
56

    
57
static CPUDebugExcpHandler *prev_debug_excp_handler;
58

    
59
static void breakpoint_handler(CPUXtensaState *env)
60
{
61
    if (env->watchpoint_hit) {
62
        if (env->watchpoint_hit->flags & BP_CPU) {
63
            uint32_t cause;
64

    
65
            env->watchpoint_hit = NULL;
66
            cause = check_hw_breakpoints(env);
67
            if (cause) {
68
                debug_exception_env(env, cause);
69
            }
70
            cpu_resume_from_signal(env, NULL);
71
        }
72
    }
73
    if (prev_debug_excp_handler) {
74
        prev_debug_excp_handler(env);
75
    }
76
}
77

    
78
XtensaCPU *cpu_xtensa_init(const char *cpu_model)
79
{
80
    static int tcg_inited;
81
    static int debug_handler_inited;
82
    XtensaCPU *cpu;
83
    CPUXtensaState *env;
84
    const XtensaConfig *config = NULL;
85
    XtensaConfigList *core = xtensa_cores;
86

    
87
    for (; core; core = core->next)
88
        if (strcmp(core->config->name, cpu_model) == 0) {
89
            config = core->config;
90
            break;
91
        }
92

    
93
    if (config == NULL) {
94
        return NULL;
95
    }
96

    
97
    cpu = XTENSA_CPU(object_new(TYPE_XTENSA_CPU));
98
    env = &cpu->env;
99
    env->config = config;
100

    
101
    if (!tcg_inited) {
102
        tcg_inited = 1;
103
        xtensa_translate_init();
104
    }
105

    
106
    if (!debug_handler_inited && tcg_enabled()) {
107
        debug_handler_inited = 1;
108
        prev_debug_excp_handler =
109
            cpu_set_debug_excp_handler(breakpoint_handler);
110
    }
111

    
112
    xtensa_irq_init(env);
113
    qemu_init_vcpu(env);
114
    return cpu;
115
}
116

    
117

    
118
void xtensa_cpu_list(FILE *f, fprintf_function cpu_fprintf)
119
{
120
    XtensaConfigList *core = xtensa_cores;
121
    cpu_fprintf(f, "Available CPUs:\n");
122
    for (; core; core = core->next) {
123
        cpu_fprintf(f, "  %s\n", core->config->name);
124
    }
125
}
126

    
127
target_phys_addr_t cpu_get_phys_page_debug(CPUXtensaState *env, target_ulong addr)
128
{
129
    uint32_t paddr;
130
    uint32_t page_size;
131
    unsigned access;
132

    
133
    if (xtensa_get_physical_addr(env, false, addr, 0, 0,
134
                &paddr, &page_size, &access) == 0) {
135
        return paddr;
136
    }
137
    if (xtensa_get_physical_addr(env, false, addr, 2, 0,
138
                &paddr, &page_size, &access) == 0) {
139
        return paddr;
140
    }
141
    return ~0;
142
}
143

    
144
static uint32_t relocated_vector(CPUXtensaState *env, uint32_t vector)
145
{
146
    if (xtensa_option_enabled(env->config,
147
                XTENSA_OPTION_RELOCATABLE_VECTOR)) {
148
        return vector - env->config->vecbase + env->sregs[VECBASE];
149
    } else {
150
        return vector;
151
    }
152
}
153

    
154
/*!
155
 * Handle penging IRQ.
156
 * For the high priority interrupt jump to the corresponding interrupt vector.
157
 * For the level-1 interrupt convert it to either user, kernel or double
158
 * exception with the 'level-1 interrupt' exception cause.
159
 */
160
static void handle_interrupt(CPUXtensaState *env)
161
{
162
    int level = env->pending_irq_level;
163

    
164
    if (level > xtensa_get_cintlevel(env) &&
165
            level <= env->config->nlevel &&
166
            (env->config->level_mask[level] &
167
             env->sregs[INTSET] &
168
             env->sregs[INTENABLE])) {
169
        if (level > 1) {
170
            env->sregs[EPC1 + level - 1] = env->pc;
171
            env->sregs[EPS2 + level - 2] = env->sregs[PS];
172
            env->sregs[PS] =
173
                (env->sregs[PS] & ~PS_INTLEVEL) | level | PS_EXCM;
174
            env->pc = relocated_vector(env,
175
                    env->config->interrupt_vector[level]);
176
        } else {
177
            env->sregs[EXCCAUSE] = LEVEL1_INTERRUPT_CAUSE;
178

    
179
            if (env->sregs[PS] & PS_EXCM) {
180
                if (env->config->ndepc) {
181
                    env->sregs[DEPC] = env->pc;
182
                } else {
183
                    env->sregs[EPC1] = env->pc;
184
                }
185
                env->exception_index = EXC_DOUBLE;
186
            } else {
187
                env->sregs[EPC1] = env->pc;
188
                env->exception_index =
189
                    (env->sregs[PS] & PS_UM) ? EXC_USER : EXC_KERNEL;
190
            }
191
            env->sregs[PS] |= PS_EXCM;
192
        }
193
        env->exception_taken = 1;
194
    }
195
}
196

    
197
void do_interrupt(CPUXtensaState *env)
198
{
199
    if (env->exception_index == EXC_IRQ) {
200
        qemu_log_mask(CPU_LOG_INT,
201
                "%s(EXC_IRQ) level = %d, cintlevel = %d, "
202
                "pc = %08x, a0 = %08x, ps = %08x, "
203
                "intset = %08x, intenable = %08x, "
204
                "ccount = %08x\n",
205
                __func__, env->pending_irq_level, xtensa_get_cintlevel(env),
206
                env->pc, env->regs[0], env->sregs[PS],
207
                env->sregs[INTSET], env->sregs[INTENABLE],
208
                env->sregs[CCOUNT]);
209
        handle_interrupt(env);
210
    }
211

    
212
    switch (env->exception_index) {
213
    case EXC_WINDOW_OVERFLOW4:
214
    case EXC_WINDOW_UNDERFLOW4:
215
    case EXC_WINDOW_OVERFLOW8:
216
    case EXC_WINDOW_UNDERFLOW8:
217
    case EXC_WINDOW_OVERFLOW12:
218
    case EXC_WINDOW_UNDERFLOW12:
219
    case EXC_KERNEL:
220
    case EXC_USER:
221
    case EXC_DOUBLE:
222
    case EXC_DEBUG:
223
        qemu_log_mask(CPU_LOG_INT, "%s(%d) "
224
                "pc = %08x, a0 = %08x, ps = %08x, ccount = %08x\n",
225
                __func__, env->exception_index,
226
                env->pc, env->regs[0], env->sregs[PS], env->sregs[CCOUNT]);
227
        if (env->config->exception_vector[env->exception_index]) {
228
            env->pc = relocated_vector(env,
229
                    env->config->exception_vector[env->exception_index]);
230
            env->exception_taken = 1;
231
        } else {
232
            qemu_log("%s(pc = %08x) bad exception_index: %d\n",
233
                    __func__, env->pc, env->exception_index);
234
        }
235
        break;
236

    
237
    case EXC_IRQ:
238
        break;
239

    
240
    default:
241
        qemu_log("%s(pc = %08x) unknown exception_index: %d\n",
242
                __func__, env->pc, env->exception_index);
243
        break;
244
    }
245
    check_interrupts(env);
246
}
247

    
248
static void reset_tlb_mmu_all_ways(CPUXtensaState *env,
249
        const xtensa_tlb *tlb, xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
250
{
251
    unsigned wi, ei;
252

    
253
    for (wi = 0; wi < tlb->nways; ++wi) {
254
        for (ei = 0; ei < tlb->way_size[wi]; ++ei) {
255
            entry[wi][ei].asid = 0;
256
            entry[wi][ei].variable = true;
257
        }
258
    }
259
}
260

    
261
static void reset_tlb_mmu_ways56(CPUXtensaState *env,
262
        const xtensa_tlb *tlb, xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
263
{
264
    if (!tlb->varway56) {
265
        static const xtensa_tlb_entry way5[] = {
266
            {
267
                .vaddr = 0xd0000000,
268
                .paddr = 0,
269
                .asid = 1,
270
                .attr = 7,
271
                .variable = false,
272
            }, {
273
                .vaddr = 0xd8000000,
274
                .paddr = 0,
275
                .asid = 1,
276
                .attr = 3,
277
                .variable = false,
278
            }
279
        };
280
        static const xtensa_tlb_entry way6[] = {
281
            {
282
                .vaddr = 0xe0000000,
283
                .paddr = 0xf0000000,
284
                .asid = 1,
285
                .attr = 7,
286
                .variable = false,
287
            }, {
288
                .vaddr = 0xf0000000,
289
                .paddr = 0xf0000000,
290
                .asid = 1,
291
                .attr = 3,
292
                .variable = false,
293
            }
294
        };
295
        memcpy(entry[5], way5, sizeof(way5));
296
        memcpy(entry[6], way6, sizeof(way6));
297
    } else {
298
        uint32_t ei;
299
        for (ei = 0; ei < 8; ++ei) {
300
            entry[6][ei].vaddr = ei << 29;
301
            entry[6][ei].paddr = ei << 29;
302
            entry[6][ei].asid = 1;
303
            entry[6][ei].attr = 3;
304
        }
305
    }
306
}
307

    
308
static void reset_tlb_region_way0(CPUXtensaState *env,
309
        xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
310
{
311
    unsigned ei;
312

    
313
    for (ei = 0; ei < 8; ++ei) {
314
        entry[0][ei].vaddr = ei << 29;
315
        entry[0][ei].paddr = ei << 29;
316
        entry[0][ei].asid = 1;
317
        entry[0][ei].attr = 2;
318
        entry[0][ei].variable = true;
319
    }
320
}
321

    
322
void reset_mmu(CPUXtensaState *env)
323
{
324
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
325
        env->sregs[RASID] = 0x04030201;
326
        env->sregs[ITLBCFG] = 0;
327
        env->sregs[DTLBCFG] = 0;
328
        env->autorefill_idx = 0;
329
        reset_tlb_mmu_all_ways(env, &env->config->itlb, env->itlb);
330
        reset_tlb_mmu_all_ways(env, &env->config->dtlb, env->dtlb);
331
        reset_tlb_mmu_ways56(env, &env->config->itlb, env->itlb);
332
        reset_tlb_mmu_ways56(env, &env->config->dtlb, env->dtlb);
333
    } else {
334
        reset_tlb_region_way0(env, env->itlb);
335
        reset_tlb_region_way0(env, env->dtlb);
336
    }
337
}
338

    
339
static unsigned get_ring(const CPUXtensaState *env, uint8_t asid)
340
{
341
    unsigned i;
342
    for (i = 0; i < 4; ++i) {
343
        if (((env->sregs[RASID] >> i * 8) & 0xff) == asid) {
344
            return i;
345
        }
346
    }
347
    return 0xff;
348
}
349

    
350
/*!
351
 * Lookup xtensa TLB for the given virtual address.
352
 * See ISA, 4.6.2.2
353
 *
354
 * \param pwi: [out] way index
355
 * \param pei: [out] entry index
356
 * \param pring: [out] access ring
357
 * \return 0 if ok, exception cause code otherwise
358
 */
359
int xtensa_tlb_lookup(const CPUXtensaState *env, uint32_t addr, bool dtlb,
360
        uint32_t *pwi, uint32_t *pei, uint8_t *pring)
361
{
362
    const xtensa_tlb *tlb = dtlb ?
363
        &env->config->dtlb : &env->config->itlb;
364
    const xtensa_tlb_entry (*entry)[MAX_TLB_WAY_SIZE] = dtlb ?
365
        env->dtlb : env->itlb;
366

    
367
    int nhits = 0;
368
    unsigned wi;
369

    
370
    for (wi = 0; wi < tlb->nways; ++wi) {
371
        uint32_t vpn;
372
        uint32_t ei;
373
        split_tlb_entry_spec_way(env, addr, dtlb, &vpn, wi, &ei);
374
        if (entry[wi][ei].vaddr == vpn && entry[wi][ei].asid) {
375
            unsigned ring = get_ring(env, entry[wi][ei].asid);
376
            if (ring < 4) {
377
                if (++nhits > 1) {
378
                    return dtlb ?
379
                        LOAD_STORE_TLB_MULTI_HIT_CAUSE :
380
                        INST_TLB_MULTI_HIT_CAUSE;
381
                }
382
                *pwi = wi;
383
                *pei = ei;
384
                *pring = ring;
385
            }
386
        }
387
    }
388
    return nhits ? 0 :
389
        (dtlb ? LOAD_STORE_TLB_MISS_CAUSE : INST_TLB_MISS_CAUSE);
390
}
391

    
392
/*!
393
 * Convert MMU ATTR to PAGE_{READ,WRITE,EXEC} mask.
394
 * See ISA, 4.6.5.10
395
 */
396
static unsigned mmu_attr_to_access(uint32_t attr)
397
{
398
    unsigned access = 0;
399
    if (attr < 12) {
400
        access |= PAGE_READ;
401
        if (attr & 0x1) {
402
            access |= PAGE_EXEC;
403
        }
404
        if (attr & 0x2) {
405
            access |= PAGE_WRITE;
406
        }
407
    } else if (attr == 13) {
408
        access |= PAGE_READ | PAGE_WRITE;
409
    }
410
    return access;
411
}
412

    
413
/*!
414
 * Convert region protection ATTR to PAGE_{READ,WRITE,EXEC} mask.
415
 * See ISA, 4.6.3.3
416
 */
417
static unsigned region_attr_to_access(uint32_t attr)
418
{
419
    unsigned access = 0;
420
    if ((attr < 6 && attr != 3) || attr == 14) {
421
        access |= PAGE_READ | PAGE_WRITE;
422
    }
423
    if (attr > 0 && attr < 6) {
424
        access |= PAGE_EXEC;
425
    }
426
    return access;
427
}
428

    
429
static bool is_access_granted(unsigned access, int is_write)
430
{
431
    switch (is_write) {
432
    case 0:
433
        return access & PAGE_READ;
434

    
435
    case 1:
436
        return access & PAGE_WRITE;
437

    
438
    case 2:
439
        return access & PAGE_EXEC;
440

    
441
    default:
442
        return 0;
443
    }
444
}
445

    
446
static int get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte);
447

    
448
static int get_physical_addr_mmu(CPUXtensaState *env, bool update_tlb,
449
        uint32_t vaddr, int is_write, int mmu_idx,
450
        uint32_t *paddr, uint32_t *page_size, unsigned *access,
451
        bool may_lookup_pt)
452
{
453
    bool dtlb = is_write != 2;
454
    uint32_t wi;
455
    uint32_t ei;
456
    uint8_t ring;
457
    uint32_t vpn;
458
    uint32_t pte;
459
    const xtensa_tlb_entry *entry = NULL;
460
    xtensa_tlb_entry tmp_entry;
461
    int ret = xtensa_tlb_lookup(env, vaddr, dtlb, &wi, &ei, &ring);
462

    
463
    if ((ret == INST_TLB_MISS_CAUSE || ret == LOAD_STORE_TLB_MISS_CAUSE) &&
464
            may_lookup_pt && get_pte(env, vaddr, &pte) == 0) {
465
        ring = (pte >> 4) & 0x3;
466
        wi = 0;
467
        split_tlb_entry_spec_way(env, vaddr, dtlb, &vpn, wi, &ei);
468

    
469
        if (update_tlb) {
470
            wi = ++env->autorefill_idx & 0x3;
471
            xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, pte);
472
            env->sregs[EXCVADDR] = vaddr;
473
            qemu_log("%s: autorefill(%08x): %08x -> %08x\n",
474
                    __func__, vaddr, vpn, pte);
475
        } else {
476
            xtensa_tlb_set_entry_mmu(env, &tmp_entry, dtlb, wi, ei, vpn, pte);
477
            entry = &tmp_entry;
478
        }
479
        ret = 0;
480
    }
481
    if (ret != 0) {
482
        return ret;
483
    }
484

    
485
    if (entry == NULL) {
486
        entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
487
    }
488

    
489
    if (ring < mmu_idx) {
490
        return dtlb ?
491
            LOAD_STORE_PRIVILEGE_CAUSE :
492
            INST_FETCH_PRIVILEGE_CAUSE;
493
    }
494

    
495
    *access = mmu_attr_to_access(entry->attr);
496
    if (!is_access_granted(*access, is_write)) {
497
        return dtlb ?
498
            (is_write ?
499
             STORE_PROHIBITED_CAUSE :
500
             LOAD_PROHIBITED_CAUSE) :
501
            INST_FETCH_PROHIBITED_CAUSE;
502
    }
503

    
504
    *paddr = entry->paddr | (vaddr & ~xtensa_tlb_get_addr_mask(env, dtlb, wi));
505
    *page_size = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
506

    
507
    return 0;
508
}
509

    
510
static int get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte)
511
{
512
    uint32_t paddr;
513
    uint32_t page_size;
514
    unsigned access;
515
    uint32_t pt_vaddr =
516
        (env->sregs[PTEVADDR] | (vaddr >> 10)) & 0xfffffffc;
517
    int ret = get_physical_addr_mmu(env, false, pt_vaddr, 0, 0,
518
            &paddr, &page_size, &access, false);
519

    
520
    qemu_log("%s: trying autorefill(%08x) -> %08x\n", __func__,
521
            vaddr, ret ? ~0 : paddr);
522

    
523
    if (ret == 0) {
524
        *pte = ldl_phys(paddr);
525
    }
526
    return ret;
527
}
528

    
529
static int get_physical_addr_region(CPUXtensaState *env,
530
        uint32_t vaddr, int is_write, int mmu_idx,
531
        uint32_t *paddr, uint32_t *page_size, unsigned *access)
532
{
533
    bool dtlb = is_write != 2;
534
    uint32_t wi = 0;
535
    uint32_t ei = (vaddr >> 29) & 0x7;
536
    const xtensa_tlb_entry *entry =
537
        xtensa_tlb_get_entry(env, dtlb, wi, ei);
538

    
539
    *access = region_attr_to_access(entry->attr);
540
    if (!is_access_granted(*access, is_write)) {
541
        return dtlb ?
542
            (is_write ?
543
             STORE_PROHIBITED_CAUSE :
544
             LOAD_PROHIBITED_CAUSE) :
545
            INST_FETCH_PROHIBITED_CAUSE;
546
    }
547

    
548
    *paddr = entry->paddr | (vaddr & ~REGION_PAGE_MASK);
549
    *page_size = ~REGION_PAGE_MASK + 1;
550

    
551
    return 0;
552
}
553

    
554
/*!
555
 * Convert virtual address to physical addr.
556
 * MMU may issue pagewalk and change xtensa autorefill TLB way entry.
557
 *
558
 * \return 0 if ok, exception cause code otherwise
559
 */
560
int xtensa_get_physical_addr(CPUXtensaState *env, bool update_tlb,
561
        uint32_t vaddr, int is_write, int mmu_idx,
562
        uint32_t *paddr, uint32_t *page_size, unsigned *access)
563
{
564
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
565
        return get_physical_addr_mmu(env, update_tlb,
566
                vaddr, is_write, mmu_idx, paddr, page_size, access, true);
567
    } else if (xtensa_option_bits_enabled(env->config,
568
                XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
569
                XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION))) {
570
        return get_physical_addr_region(env, vaddr, is_write, mmu_idx,
571
                paddr, page_size, access);
572
    } else {
573
        *paddr = vaddr;
574
        *page_size = TARGET_PAGE_SIZE;
575
        *access = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
576
        return 0;
577
    }
578
}
579

    
580
static void dump_tlb(FILE *f, fprintf_function cpu_fprintf,
581
        CPUXtensaState *env, bool dtlb)
582
{
583
    unsigned wi, ei;
584
    const xtensa_tlb *conf =
585
        dtlb ? &env->config->dtlb : &env->config->itlb;
586
    unsigned (*attr_to_access)(uint32_t) =
587
        xtensa_option_enabled(env->config, XTENSA_OPTION_MMU) ?
588
        mmu_attr_to_access : region_attr_to_access;
589

    
590
    for (wi = 0; wi < conf->nways; ++wi) {
591
        uint32_t sz = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
592
        const char *sz_text;
593
        bool print_header = true;
594

    
595
        if (sz >= 0x100000) {
596
            sz >>= 20;
597
            sz_text = "MB";
598
        } else {
599
            sz >>= 10;
600
            sz_text = "KB";
601
        }
602

    
603
        for (ei = 0; ei < conf->way_size[wi]; ++ei) {
604
            const xtensa_tlb_entry *entry =
605
                xtensa_tlb_get_entry(env, dtlb, wi, ei);
606

    
607
            if (entry->asid) {
608
                unsigned access = attr_to_access(entry->attr);
609

    
610
                if (print_header) {
611
                    print_header = false;
612
                    cpu_fprintf(f, "Way %u (%d %s)\n", wi, sz, sz_text);
613
                    cpu_fprintf(f,
614
                            "\tVaddr       Paddr       ASID  Attr RWX\n"
615
                            "\t----------  ----------  ----  ---- ---\n");
616
                }
617
                cpu_fprintf(f,
618
                        "\t0x%08x  0x%08x  0x%02x  0x%02x %c%c%c\n",
619
                        entry->vaddr,
620
                        entry->paddr,
621
                        entry->asid,
622
                        entry->attr,
623
                        (access & PAGE_READ) ? 'R' : '-',
624
                        (access & PAGE_WRITE) ? 'W' : '-',
625
                        (access & PAGE_EXEC) ? 'X' : '-');
626
            }
627
        }
628
    }
629
}
630

    
631
void dump_mmu(FILE *f, fprintf_function cpu_fprintf, CPUXtensaState *env)
632
{
633
    if (xtensa_option_bits_enabled(env->config,
634
                XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
635
                XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION) |
636
                XTENSA_OPTION_BIT(XTENSA_OPTION_MMU))) {
637

    
638
        cpu_fprintf(f, "ITLB:\n");
639
        dump_tlb(f, cpu_fprintf, env, false);
640
        cpu_fprintf(f, "\nDTLB:\n");
641
        dump_tlb(f, cpu_fprintf, env, true);
642
    } else {
643
        cpu_fprintf(f, "No TLB for this CPU core\n");
644
    }
645
}