Statistics
| Branch: | Revision:

root / fpu / softfloat.h @ b53d44e5

History | View | Annotate | Download (18.6 kB)

1 158142c2 bellard
/*============================================================================
2 158142c2 bellard

3 158142c2 bellard
This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
4 158142c2 bellard
Package, Release 2b.
5 158142c2 bellard

6 158142c2 bellard
Written by John R. Hauser.  This work was made possible in part by the
7 158142c2 bellard
International Computer Science Institute, located at Suite 600, 1947 Center
8 158142c2 bellard
Street, Berkeley, California 94704.  Funding was partially provided by the
9 158142c2 bellard
National Science Foundation under grant MIP-9311980.  The original version
10 158142c2 bellard
of this code was written as part of a project to build a fixed-point vector
11 158142c2 bellard
processor in collaboration with the University of California at Berkeley,
12 158142c2 bellard
overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
13 158142c2 bellard
is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
14 158142c2 bellard
arithmetic/SoftFloat.html'.
15 158142c2 bellard

16 158142c2 bellard
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has
17 158142c2 bellard
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
18 158142c2 bellard
RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
19 158142c2 bellard
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
20 158142c2 bellard
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
21 158142c2 bellard
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
22 158142c2 bellard
INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
23 158142c2 bellard
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
24 158142c2 bellard

25 158142c2 bellard
Derivative works are acceptable, even for commercial purposes, so long as
26 158142c2 bellard
(1) the source code for the derivative work includes prominent notice that
27 158142c2 bellard
the work is derivative, and (2) the source code includes prominent notice with
28 158142c2 bellard
these four paragraphs for those parts of this code that are retained.
29 158142c2 bellard

30 158142c2 bellard
=============================================================================*/
31 158142c2 bellard
32 158142c2 bellard
#ifndef SOFTFLOAT_H
33 158142c2 bellard
#define SOFTFLOAT_H
34 158142c2 bellard
35 75b5a697 Juan Quintela
#if defined(CONFIG_SOLARIS) && defined(CONFIG_NEEDS_LIBSUNMATH)
36 0475a5ca ths
#include <sunmath.h>
37 0475a5ca ths
#endif
38 0475a5ca ths
39 158142c2 bellard
#include <inttypes.h>
40 158142c2 bellard
#include "config.h"
41 158142c2 bellard
42 158142c2 bellard
/*----------------------------------------------------------------------------
43 158142c2 bellard
| Each of the following `typedef's defines the most convenient type that holds
44 158142c2 bellard
| integers of at least as many bits as specified.  For example, `uint8' should
45 158142c2 bellard
| be the most convenient type that can hold unsigned integers of as many as
46 158142c2 bellard
| 8 bits.  The `flag' type must be able to hold either a 0 or 1.  For most
47 158142c2 bellard
| implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
48 158142c2 bellard
| to the same as `int'.
49 158142c2 bellard
*----------------------------------------------------------------------------*/
50 750afe93 bellard
typedef uint8_t flag;
51 158142c2 bellard
typedef uint8_t uint8;
52 158142c2 bellard
typedef int8_t int8;
53 b29fe3ed malc
#ifndef _AIX
54 158142c2 bellard
typedef int uint16;
55 158142c2 bellard
typedef int int16;
56 b29fe3ed malc
#endif
57 158142c2 bellard
typedef unsigned int uint32;
58 158142c2 bellard
typedef signed int int32;
59 158142c2 bellard
typedef uint64_t uint64;
60 158142c2 bellard
typedef int64_t int64;
61 158142c2 bellard
62 158142c2 bellard
/*----------------------------------------------------------------------------
63 158142c2 bellard
| Each of the following `typedef's defines a type that holds integers
64 158142c2 bellard
| of _exactly_ the number of bits specified.  For instance, for most
65 158142c2 bellard
| implementation of C, `bits16' and `sbits16' should be `typedef'ed to
66 158142c2 bellard
| `unsigned short int' and `signed short int' (or `short int'), respectively.
67 158142c2 bellard
*----------------------------------------------------------------------------*/
68 158142c2 bellard
typedef uint8_t bits8;
69 158142c2 bellard
typedef int8_t sbits8;
70 158142c2 bellard
typedef uint16_t bits16;
71 158142c2 bellard
typedef int16_t sbits16;
72 158142c2 bellard
typedef uint32_t bits32;
73 158142c2 bellard
typedef int32_t sbits32;
74 158142c2 bellard
typedef uint64_t bits64;
75 158142c2 bellard
typedef int64_t sbits64;
76 158142c2 bellard
77 158142c2 bellard
#define LIT64( a ) a##LL
78 158142c2 bellard
#define INLINE static inline
79 158142c2 bellard
80 158142c2 bellard
/*----------------------------------------------------------------------------
81 158142c2 bellard
| The macro `FLOATX80' must be defined to enable the extended double-precision
82 158142c2 bellard
| floating-point format `floatx80'.  If this macro is not defined, the
83 158142c2 bellard
| `floatx80' type will not be defined, and none of the functions that either
84 158142c2 bellard
| input or output the `floatx80' type will be defined.  The same applies to
85 158142c2 bellard
| the `FLOAT128' macro and the quadruple-precision format `float128'.
86 158142c2 bellard
*----------------------------------------------------------------------------*/
87 158142c2 bellard
#ifdef CONFIG_SOFTFLOAT
88 158142c2 bellard
/* bit exact soft float support */
89 158142c2 bellard
#define FLOATX80
90 158142c2 bellard
#define FLOAT128
91 158142c2 bellard
#else
92 158142c2 bellard
/* native float support */
93 71e72a19 Juan Quintela
#if (defined(__i386__) || defined(__x86_64__)) && !defined(CONFIG_BSD)
94 158142c2 bellard
#define FLOATX80
95 158142c2 bellard
#endif
96 158142c2 bellard
#endif /* !CONFIG_SOFTFLOAT */
97 158142c2 bellard
98 158142c2 bellard
#define STATUS_PARAM , float_status *status
99 158142c2 bellard
#define STATUS(field) status->field
100 158142c2 bellard
#define STATUS_VAR , status
101 158142c2 bellard
102 1d6bda35 bellard
/*----------------------------------------------------------------------------
103 1d6bda35 bellard
| Software IEC/IEEE floating-point ordering relations
104 1d6bda35 bellard
*----------------------------------------------------------------------------*/
105 1d6bda35 bellard
enum {
106 1d6bda35 bellard
    float_relation_less      = -1,
107 1d6bda35 bellard
    float_relation_equal     =  0,
108 1d6bda35 bellard
    float_relation_greater   =  1,
109 1d6bda35 bellard
    float_relation_unordered =  2
110 1d6bda35 bellard
};
111 1d6bda35 bellard
112 158142c2 bellard
#ifdef CONFIG_SOFTFLOAT
113 158142c2 bellard
/*----------------------------------------------------------------------------
114 158142c2 bellard
| Software IEC/IEEE floating-point types.
115 158142c2 bellard
*----------------------------------------------------------------------------*/
116 f090c9d4 pbrook
/* Use structures for soft-float types.  This prevents accidentally mixing
117 f090c9d4 pbrook
   them with native int/float types.  A sufficiently clever compiler and
118 f090c9d4 pbrook
   sane ABI should be able to see though these structs.  However
119 f090c9d4 pbrook
   x86/gcc 3.x seems to struggle a bit, so leave them disabled by default.  */
120 f090c9d4 pbrook
//#define USE_SOFTFLOAT_STRUCT_TYPES
121 f090c9d4 pbrook
#ifdef USE_SOFTFLOAT_STRUCT_TYPES
122 f090c9d4 pbrook
typedef struct {
123 f090c9d4 pbrook
    uint32_t v;
124 f090c9d4 pbrook
} float32;
125 f090c9d4 pbrook
/* The cast ensures an error if the wrong type is passed.  */
126 f090c9d4 pbrook
#define float32_val(x) (((float32)(x)).v)
127 f090c9d4 pbrook
#define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; })
128 f090c9d4 pbrook
typedef struct {
129 f090c9d4 pbrook
    uint64_t v;
130 f090c9d4 pbrook
} float64;
131 f090c9d4 pbrook
#define float64_val(x) (((float64)(x)).v)
132 f090c9d4 pbrook
#define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; })
133 f090c9d4 pbrook
#else
134 158142c2 bellard
typedef uint32_t float32;
135 158142c2 bellard
typedef uint64_t float64;
136 f090c9d4 pbrook
#define float32_val(x) (x)
137 f090c9d4 pbrook
#define float64_val(x) (x)
138 f090c9d4 pbrook
#define make_float32(x) (x)
139 f090c9d4 pbrook
#define make_float64(x) (x)
140 f090c9d4 pbrook
#endif
141 158142c2 bellard
#ifdef FLOATX80
142 158142c2 bellard
typedef struct {
143 158142c2 bellard
    uint64_t low;
144 158142c2 bellard
    uint16_t high;
145 158142c2 bellard
} floatx80;
146 158142c2 bellard
#endif
147 158142c2 bellard
#ifdef FLOAT128
148 158142c2 bellard
typedef struct {
149 e2542fe2 Juan Quintela
#ifdef HOST_WORDS_BIGENDIAN
150 158142c2 bellard
    uint64_t high, low;
151 158142c2 bellard
#else
152 158142c2 bellard
    uint64_t low, high;
153 158142c2 bellard
#endif
154 158142c2 bellard
} float128;
155 158142c2 bellard
#endif
156 158142c2 bellard
157 158142c2 bellard
/*----------------------------------------------------------------------------
158 158142c2 bellard
| Software IEC/IEEE floating-point underflow tininess-detection mode.
159 158142c2 bellard
*----------------------------------------------------------------------------*/
160 158142c2 bellard
enum {
161 158142c2 bellard
    float_tininess_after_rounding  = 0,
162 158142c2 bellard
    float_tininess_before_rounding = 1
163 158142c2 bellard
};
164 158142c2 bellard
165 158142c2 bellard
/*----------------------------------------------------------------------------
166 158142c2 bellard
| Software IEC/IEEE floating-point rounding mode.
167 158142c2 bellard
*----------------------------------------------------------------------------*/
168 158142c2 bellard
enum {
169 158142c2 bellard
    float_round_nearest_even = 0,
170 158142c2 bellard
    float_round_down         = 1,
171 158142c2 bellard
    float_round_up           = 2,
172 158142c2 bellard
    float_round_to_zero      = 3
173 158142c2 bellard
};
174 158142c2 bellard
175 158142c2 bellard
/*----------------------------------------------------------------------------
176 158142c2 bellard
| Software IEC/IEEE floating-point exception flags.
177 158142c2 bellard
*----------------------------------------------------------------------------*/
178 158142c2 bellard
enum {
179 158142c2 bellard
    float_flag_invalid   =  1,
180 158142c2 bellard
    float_flag_divbyzero =  4,
181 158142c2 bellard
    float_flag_overflow  =  8,
182 158142c2 bellard
    float_flag_underflow = 16,
183 158142c2 bellard
    float_flag_inexact   = 32
184 158142c2 bellard
};
185 158142c2 bellard
186 158142c2 bellard
typedef struct float_status {
187 158142c2 bellard
    signed char float_detect_tininess;
188 158142c2 bellard
    signed char float_rounding_mode;
189 158142c2 bellard
    signed char float_exception_flags;
190 158142c2 bellard
#ifdef FLOATX80
191 158142c2 bellard
    signed char floatx80_rounding_precision;
192 158142c2 bellard
#endif
193 fe76d976 pbrook
    flag flush_to_zero;
194 5c7908ed pbrook
    flag default_nan_mode;
195 158142c2 bellard
} float_status;
196 158142c2 bellard
197 158142c2 bellard
void set_float_rounding_mode(int val STATUS_PARAM);
198 1d6bda35 bellard
void set_float_exception_flags(int val STATUS_PARAM);
199 fe76d976 pbrook
INLINE void set_flush_to_zero(flag val STATUS_PARAM)
200 fe76d976 pbrook
{
201 fe76d976 pbrook
    STATUS(flush_to_zero) = val;
202 fe76d976 pbrook
}
203 5c7908ed pbrook
INLINE void set_default_nan_mode(flag val STATUS_PARAM)
204 5c7908ed pbrook
{
205 5c7908ed pbrook
    STATUS(default_nan_mode) = val;
206 5c7908ed pbrook
}
207 1d6bda35 bellard
INLINE int get_float_exception_flags(float_status *status)
208 1d6bda35 bellard
{
209 1d6bda35 bellard
    return STATUS(float_exception_flags);
210 1d6bda35 bellard
}
211 158142c2 bellard
#ifdef FLOATX80
212 158142c2 bellard
void set_floatx80_rounding_precision(int val STATUS_PARAM);
213 158142c2 bellard
#endif
214 158142c2 bellard
215 158142c2 bellard
/*----------------------------------------------------------------------------
216 158142c2 bellard
| Routine to raise any or all of the software IEC/IEEE floating-point
217 158142c2 bellard
| exception flags.
218 158142c2 bellard
*----------------------------------------------------------------------------*/
219 ec530c81 bellard
void float_raise( int8 flags STATUS_PARAM);
220 158142c2 bellard
221 158142c2 bellard
/*----------------------------------------------------------------------------
222 158142c2 bellard
| Software IEC/IEEE integer-to-floating-point conversion routines.
223 158142c2 bellard
*----------------------------------------------------------------------------*/
224 158142c2 bellard
float32 int32_to_float32( int STATUS_PARAM );
225 158142c2 bellard
float64 int32_to_float64( int STATUS_PARAM );
226 1d6bda35 bellard
float32 uint32_to_float32( unsigned int STATUS_PARAM );
227 1d6bda35 bellard
float64 uint32_to_float64( unsigned int STATUS_PARAM );
228 158142c2 bellard
#ifdef FLOATX80
229 158142c2 bellard
floatx80 int32_to_floatx80( int STATUS_PARAM );
230 158142c2 bellard
#endif
231 158142c2 bellard
#ifdef FLOAT128
232 158142c2 bellard
float128 int32_to_float128( int STATUS_PARAM );
233 158142c2 bellard
#endif
234 158142c2 bellard
float32 int64_to_float32( int64_t STATUS_PARAM );
235 75d62a58 j_mayer
float32 uint64_to_float32( uint64_t STATUS_PARAM );
236 158142c2 bellard
float64 int64_to_float64( int64_t STATUS_PARAM );
237 75d62a58 j_mayer
float64 uint64_to_float64( uint64_t STATUS_PARAM );
238 158142c2 bellard
#ifdef FLOATX80
239 158142c2 bellard
floatx80 int64_to_floatx80( int64_t STATUS_PARAM );
240 158142c2 bellard
#endif
241 158142c2 bellard
#ifdef FLOAT128
242 158142c2 bellard
float128 int64_to_float128( int64_t STATUS_PARAM );
243 158142c2 bellard
#endif
244 158142c2 bellard
245 158142c2 bellard
/*----------------------------------------------------------------------------
246 158142c2 bellard
| Software IEC/IEEE single-precision conversion routines.
247 158142c2 bellard
*----------------------------------------------------------------------------*/
248 158142c2 bellard
int float32_to_int32( float32 STATUS_PARAM );
249 158142c2 bellard
int float32_to_int32_round_to_zero( float32 STATUS_PARAM );
250 1d6bda35 bellard
unsigned int float32_to_uint32( float32 STATUS_PARAM );
251 1d6bda35 bellard
unsigned int float32_to_uint32_round_to_zero( float32 STATUS_PARAM );
252 158142c2 bellard
int64_t float32_to_int64( float32 STATUS_PARAM );
253 158142c2 bellard
int64_t float32_to_int64_round_to_zero( float32 STATUS_PARAM );
254 158142c2 bellard
float64 float32_to_float64( float32 STATUS_PARAM );
255 158142c2 bellard
#ifdef FLOATX80
256 158142c2 bellard
floatx80 float32_to_floatx80( float32 STATUS_PARAM );
257 158142c2 bellard
#endif
258 158142c2 bellard
#ifdef FLOAT128
259 158142c2 bellard
float128 float32_to_float128( float32 STATUS_PARAM );
260 158142c2 bellard
#endif
261 158142c2 bellard
262 158142c2 bellard
/*----------------------------------------------------------------------------
263 158142c2 bellard
| Software IEC/IEEE single-precision operations.
264 158142c2 bellard
*----------------------------------------------------------------------------*/
265 158142c2 bellard
float32 float32_round_to_int( float32 STATUS_PARAM );
266 158142c2 bellard
float32 float32_add( float32, float32 STATUS_PARAM );
267 158142c2 bellard
float32 float32_sub( float32, float32 STATUS_PARAM );
268 158142c2 bellard
float32 float32_mul( float32, float32 STATUS_PARAM );
269 158142c2 bellard
float32 float32_div( float32, float32 STATUS_PARAM );
270 158142c2 bellard
float32 float32_rem( float32, float32 STATUS_PARAM );
271 158142c2 bellard
float32 float32_sqrt( float32 STATUS_PARAM );
272 374dfc33 aurel32
float32 float32_log2( float32 STATUS_PARAM );
273 750afe93 bellard
int float32_eq( float32, float32 STATUS_PARAM );
274 750afe93 bellard
int float32_le( float32, float32 STATUS_PARAM );
275 750afe93 bellard
int float32_lt( float32, float32 STATUS_PARAM );
276 750afe93 bellard
int float32_eq_signaling( float32, float32 STATUS_PARAM );
277 750afe93 bellard
int float32_le_quiet( float32, float32 STATUS_PARAM );
278 750afe93 bellard
int float32_lt_quiet( float32, float32 STATUS_PARAM );
279 750afe93 bellard
int float32_compare( float32, float32 STATUS_PARAM );
280 750afe93 bellard
int float32_compare_quiet( float32, float32 STATUS_PARAM );
281 924b2c07 ths
int float32_is_nan( float32 );
282 750afe93 bellard
int float32_is_signaling_nan( float32 );
283 9ee6e8bb pbrook
float32 float32_scalbn( float32, int STATUS_PARAM );
284 158142c2 bellard
285 1d6bda35 bellard
INLINE float32 float32_abs(float32 a)
286 1d6bda35 bellard
{
287 f090c9d4 pbrook
    return make_float32(float32_val(a) & 0x7fffffff);
288 1d6bda35 bellard
}
289 1d6bda35 bellard
290 1d6bda35 bellard
INLINE float32 float32_chs(float32 a)
291 1d6bda35 bellard
{
292 f090c9d4 pbrook
    return make_float32(float32_val(a) ^ 0x80000000);
293 1d6bda35 bellard
}
294 1d6bda35 bellard
295 c52ab6f5 aurel32
INLINE int float32_is_infinity(float32 a)
296 c52ab6f5 aurel32
{
297 dadd71a7 aurel32
    return (float32_val(a) & 0x7fffffff) == 0x7f800000;
298 c52ab6f5 aurel32
}
299 c52ab6f5 aurel32
300 c52ab6f5 aurel32
INLINE int float32_is_neg(float32 a)
301 c52ab6f5 aurel32
{
302 c52ab6f5 aurel32
    return float32_val(a) >> 31;
303 c52ab6f5 aurel32
}
304 c52ab6f5 aurel32
305 c52ab6f5 aurel32
INLINE int float32_is_zero(float32 a)
306 c52ab6f5 aurel32
{
307 c52ab6f5 aurel32
    return (float32_val(a) & 0x7fffffff) == 0;
308 c52ab6f5 aurel32
}
309 c52ab6f5 aurel32
310 f090c9d4 pbrook
#define float32_zero make_float32(0)
311 196cfc89 aurel32
#define float32_one make_float32(0x3f800000)
312 f090c9d4 pbrook
313 158142c2 bellard
/*----------------------------------------------------------------------------
314 158142c2 bellard
| Software IEC/IEEE double-precision conversion routines.
315 158142c2 bellard
*----------------------------------------------------------------------------*/
316 158142c2 bellard
int float64_to_int32( float64 STATUS_PARAM );
317 158142c2 bellard
int float64_to_int32_round_to_zero( float64 STATUS_PARAM );
318 1d6bda35 bellard
unsigned int float64_to_uint32( float64 STATUS_PARAM );
319 1d6bda35 bellard
unsigned int float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
320 158142c2 bellard
int64_t float64_to_int64( float64 STATUS_PARAM );
321 158142c2 bellard
int64_t float64_to_int64_round_to_zero( float64 STATUS_PARAM );
322 75d62a58 j_mayer
uint64_t float64_to_uint64 (float64 a STATUS_PARAM);
323 75d62a58 j_mayer
uint64_t float64_to_uint64_round_to_zero (float64 a STATUS_PARAM);
324 158142c2 bellard
float32 float64_to_float32( float64 STATUS_PARAM );
325 158142c2 bellard
#ifdef FLOATX80
326 158142c2 bellard
floatx80 float64_to_floatx80( float64 STATUS_PARAM );
327 158142c2 bellard
#endif
328 158142c2 bellard
#ifdef FLOAT128
329 158142c2 bellard
float128 float64_to_float128( float64 STATUS_PARAM );
330 158142c2 bellard
#endif
331 158142c2 bellard
332 158142c2 bellard
/*----------------------------------------------------------------------------
333 158142c2 bellard
| Software IEC/IEEE double-precision operations.
334 158142c2 bellard
*----------------------------------------------------------------------------*/
335 158142c2 bellard
float64 float64_round_to_int( float64 STATUS_PARAM );
336 e6e5906b pbrook
float64 float64_trunc_to_int( float64 STATUS_PARAM );
337 158142c2 bellard
float64 float64_add( float64, float64 STATUS_PARAM );
338 158142c2 bellard
float64 float64_sub( float64, float64 STATUS_PARAM );
339 158142c2 bellard
float64 float64_mul( float64, float64 STATUS_PARAM );
340 158142c2 bellard
float64 float64_div( float64, float64 STATUS_PARAM );
341 158142c2 bellard
float64 float64_rem( float64, float64 STATUS_PARAM );
342 158142c2 bellard
float64 float64_sqrt( float64 STATUS_PARAM );
343 374dfc33 aurel32
float64 float64_log2( float64 STATUS_PARAM );
344 750afe93 bellard
int float64_eq( float64, float64 STATUS_PARAM );
345 750afe93 bellard
int float64_le( float64, float64 STATUS_PARAM );
346 750afe93 bellard
int float64_lt( float64, float64 STATUS_PARAM );
347 750afe93 bellard
int float64_eq_signaling( float64, float64 STATUS_PARAM );
348 750afe93 bellard
int float64_le_quiet( float64, float64 STATUS_PARAM );
349 750afe93 bellard
int float64_lt_quiet( float64, float64 STATUS_PARAM );
350 750afe93 bellard
int float64_compare( float64, float64 STATUS_PARAM );
351 750afe93 bellard
int float64_compare_quiet( float64, float64 STATUS_PARAM );
352 924b2c07 ths
int float64_is_nan( float64 a );
353 750afe93 bellard
int float64_is_signaling_nan( float64 );
354 9ee6e8bb pbrook
float64 float64_scalbn( float64, int STATUS_PARAM );
355 158142c2 bellard
356 1d6bda35 bellard
INLINE float64 float64_abs(float64 a)
357 1d6bda35 bellard
{
358 f090c9d4 pbrook
    return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
359 1d6bda35 bellard
}
360 1d6bda35 bellard
361 1d6bda35 bellard
INLINE float64 float64_chs(float64 a)
362 1d6bda35 bellard
{
363 f090c9d4 pbrook
    return make_float64(float64_val(a) ^ 0x8000000000000000LL);
364 1d6bda35 bellard
}
365 1d6bda35 bellard
366 c52ab6f5 aurel32
INLINE int float64_is_infinity(float64 a)
367 c52ab6f5 aurel32
{
368 c52ab6f5 aurel32
    return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
369 c52ab6f5 aurel32
}
370 c52ab6f5 aurel32
371 c52ab6f5 aurel32
INLINE int float64_is_neg(float64 a)
372 c52ab6f5 aurel32
{
373 c52ab6f5 aurel32
    return float64_val(a) >> 63;
374 c52ab6f5 aurel32
}
375 c52ab6f5 aurel32
376 c52ab6f5 aurel32
INLINE int float64_is_zero(float64 a)
377 c52ab6f5 aurel32
{
378 c52ab6f5 aurel32
    return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
379 c52ab6f5 aurel32
}
380 c52ab6f5 aurel32
381 f090c9d4 pbrook
#define float64_zero make_float64(0)
382 196cfc89 aurel32
#define float64_one make_float64(0x3ff0000000000000LL)
383 f090c9d4 pbrook
384 158142c2 bellard
#ifdef FLOATX80
385 158142c2 bellard
386 158142c2 bellard
/*----------------------------------------------------------------------------
387 158142c2 bellard
| Software IEC/IEEE extended double-precision conversion routines.
388 158142c2 bellard
*----------------------------------------------------------------------------*/
389 158142c2 bellard
int floatx80_to_int32( floatx80 STATUS_PARAM );
390 158142c2 bellard
int floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
391 158142c2 bellard
int64_t floatx80_to_int64( floatx80 STATUS_PARAM );
392 158142c2 bellard
int64_t floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM );
393 158142c2 bellard
float32 floatx80_to_float32( floatx80 STATUS_PARAM );
394 158142c2 bellard
float64 floatx80_to_float64( floatx80 STATUS_PARAM );
395 158142c2 bellard
#ifdef FLOAT128
396 158142c2 bellard
float128 floatx80_to_float128( floatx80 STATUS_PARAM );
397 158142c2 bellard
#endif
398 158142c2 bellard
399 158142c2 bellard
/*----------------------------------------------------------------------------
400 158142c2 bellard
| Software IEC/IEEE extended double-precision operations.
401 158142c2 bellard
*----------------------------------------------------------------------------*/
402 158142c2 bellard
floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
403 158142c2 bellard
floatx80 floatx80_add( floatx80, floatx80 STATUS_PARAM );
404 158142c2 bellard
floatx80 floatx80_sub( floatx80, floatx80 STATUS_PARAM );
405 158142c2 bellard
floatx80 floatx80_mul( floatx80, floatx80 STATUS_PARAM );
406 158142c2 bellard
floatx80 floatx80_div( floatx80, floatx80 STATUS_PARAM );
407 158142c2 bellard
floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
408 158142c2 bellard
floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
409 750afe93 bellard
int floatx80_eq( floatx80, floatx80 STATUS_PARAM );
410 750afe93 bellard
int floatx80_le( floatx80, floatx80 STATUS_PARAM );
411 750afe93 bellard
int floatx80_lt( floatx80, floatx80 STATUS_PARAM );
412 750afe93 bellard
int floatx80_eq_signaling( floatx80, floatx80 STATUS_PARAM );
413 750afe93 bellard
int floatx80_le_quiet( floatx80, floatx80 STATUS_PARAM );
414 750afe93 bellard
int floatx80_lt_quiet( floatx80, floatx80 STATUS_PARAM );
415 924b2c07 ths
int floatx80_is_nan( floatx80 );
416 750afe93 bellard
int floatx80_is_signaling_nan( floatx80 );
417 9ee6e8bb pbrook
floatx80 floatx80_scalbn( floatx80, int STATUS_PARAM );
418 158142c2 bellard
419 1d6bda35 bellard
INLINE floatx80 floatx80_abs(floatx80 a)
420 1d6bda35 bellard
{
421 1d6bda35 bellard
    a.high &= 0x7fff;
422 1d6bda35 bellard
    return a;
423 1d6bda35 bellard
}
424 1d6bda35 bellard
425 1d6bda35 bellard
INLINE floatx80 floatx80_chs(floatx80 a)
426 1d6bda35 bellard
{
427 1d6bda35 bellard
    a.high ^= 0x8000;
428 1d6bda35 bellard
    return a;
429 1d6bda35 bellard
}
430 1d6bda35 bellard
431 c52ab6f5 aurel32
INLINE int floatx80_is_infinity(floatx80 a)
432 c52ab6f5 aurel32
{
433 c52ab6f5 aurel32
    return (a.high & 0x7fff) == 0x7fff && a.low == 0;
434 c52ab6f5 aurel32
}
435 c52ab6f5 aurel32
436 c52ab6f5 aurel32
INLINE int floatx80_is_neg(floatx80 a)
437 c52ab6f5 aurel32
{
438 c52ab6f5 aurel32
    return a.high >> 15;
439 c52ab6f5 aurel32
}
440 c52ab6f5 aurel32
441 c52ab6f5 aurel32
INLINE int floatx80_is_zero(floatx80 a)
442 c52ab6f5 aurel32
{
443 c52ab6f5 aurel32
    return (a.high & 0x7fff) == 0 && a.low == 0;
444 c52ab6f5 aurel32
}
445 c52ab6f5 aurel32
446 158142c2 bellard
#endif
447 158142c2 bellard
448 158142c2 bellard
#ifdef FLOAT128
449 158142c2 bellard
450 158142c2 bellard
/*----------------------------------------------------------------------------
451 158142c2 bellard
| Software IEC/IEEE quadruple-precision conversion routines.
452 158142c2 bellard
*----------------------------------------------------------------------------*/
453 158142c2 bellard
int float128_to_int32( float128 STATUS_PARAM );
454 158142c2 bellard
int float128_to_int32_round_to_zero( float128 STATUS_PARAM );
455 158142c2 bellard
int64_t float128_to_int64( float128 STATUS_PARAM );
456 158142c2 bellard
int64_t float128_to_int64_round_to_zero( float128 STATUS_PARAM );
457 158142c2 bellard
float32 float128_to_float32( float128 STATUS_PARAM );
458 158142c2 bellard
float64 float128_to_float64( float128 STATUS_PARAM );
459 158142c2 bellard
#ifdef FLOATX80
460 158142c2 bellard
floatx80 float128_to_floatx80( float128 STATUS_PARAM );
461 158142c2 bellard
#endif
462 158142c2 bellard
463 158142c2 bellard
/*----------------------------------------------------------------------------
464 158142c2 bellard
| Software IEC/IEEE quadruple-precision operations.
465 158142c2 bellard
*----------------------------------------------------------------------------*/
466 158142c2 bellard
float128 float128_round_to_int( float128 STATUS_PARAM );
467 158142c2 bellard
float128 float128_add( float128, float128 STATUS_PARAM );
468 158142c2 bellard
float128 float128_sub( float128, float128 STATUS_PARAM );
469 158142c2 bellard
float128 float128_mul( float128, float128 STATUS_PARAM );
470 158142c2 bellard
float128 float128_div( float128, float128 STATUS_PARAM );
471 158142c2 bellard
float128 float128_rem( float128, float128 STATUS_PARAM );
472 158142c2 bellard
float128 float128_sqrt( float128 STATUS_PARAM );
473 750afe93 bellard
int float128_eq( float128, float128 STATUS_PARAM );
474 750afe93 bellard
int float128_le( float128, float128 STATUS_PARAM );
475 750afe93 bellard
int float128_lt( float128, float128 STATUS_PARAM );
476 750afe93 bellard
int float128_eq_signaling( float128, float128 STATUS_PARAM );
477 750afe93 bellard
int float128_le_quiet( float128, float128 STATUS_PARAM );
478 750afe93 bellard
int float128_lt_quiet( float128, float128 STATUS_PARAM );
479 1f587329 blueswir1
int float128_compare( float128, float128 STATUS_PARAM );
480 1f587329 blueswir1
int float128_compare_quiet( float128, float128 STATUS_PARAM );
481 924b2c07 ths
int float128_is_nan( float128 );
482 750afe93 bellard
int float128_is_signaling_nan( float128 );
483 9ee6e8bb pbrook
float128 float128_scalbn( float128, int STATUS_PARAM );
484 158142c2 bellard
485 1d6bda35 bellard
INLINE float128 float128_abs(float128 a)
486 1d6bda35 bellard
{
487 1d6bda35 bellard
    a.high &= 0x7fffffffffffffffLL;
488 1d6bda35 bellard
    return a;
489 1d6bda35 bellard
}
490 1d6bda35 bellard
491 1d6bda35 bellard
INLINE float128 float128_chs(float128 a)
492 1d6bda35 bellard
{
493 1d6bda35 bellard
    a.high ^= 0x8000000000000000LL;
494 1d6bda35 bellard
    return a;
495 1d6bda35 bellard
}
496 1d6bda35 bellard
497 c52ab6f5 aurel32
INLINE int float128_is_infinity(float128 a)
498 c52ab6f5 aurel32
{
499 c52ab6f5 aurel32
    return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
500 c52ab6f5 aurel32
}
501 c52ab6f5 aurel32
502 c52ab6f5 aurel32
INLINE int float128_is_neg(float128 a)
503 c52ab6f5 aurel32
{
504 c52ab6f5 aurel32
    return a.high >> 63;
505 c52ab6f5 aurel32
}
506 c52ab6f5 aurel32
507 c52ab6f5 aurel32
INLINE int float128_is_zero(float128 a)
508 c52ab6f5 aurel32
{
509 c52ab6f5 aurel32
    return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
510 c52ab6f5 aurel32
}
511 c52ab6f5 aurel32
512 158142c2 bellard
#endif
513 158142c2 bellard
514 158142c2 bellard
#else /* CONFIG_SOFTFLOAT */
515 158142c2 bellard
516 158142c2 bellard
#include "softfloat-native.h"
517 158142c2 bellard
518 158142c2 bellard
#endif /* !CONFIG_SOFTFLOAT */
519 158142c2 bellard
520 158142c2 bellard
#endif /* !SOFTFLOAT_H */