Statistics
| Branch: | Revision:

root / qemu-doc.texi @ b5dc7732

History | View | Annotate | Download (88.4 kB)

1 386405f7 bellard
\input texinfo @c -*- texinfo -*-
2 debc7065 bellard
@c %**start of header
3 debc7065 bellard
@setfilename qemu-doc.info
4 8f40c388 bellard
@settitle QEMU Emulator User Documentation
5 debc7065 bellard
@exampleindent 0
6 debc7065 bellard
@paragraphindent 0
7 debc7065 bellard
@c %**end of header
8 386405f7 bellard
9 0806e3f6 bellard
@iftex
10 386405f7 bellard
@titlepage
11 386405f7 bellard
@sp 7
12 8f40c388 bellard
@center @titlefont{QEMU Emulator}
13 debc7065 bellard
@sp 1
14 debc7065 bellard
@center @titlefont{User Documentation}
15 386405f7 bellard
@sp 3
16 386405f7 bellard
@end titlepage
17 0806e3f6 bellard
@end iftex
18 386405f7 bellard
19 debc7065 bellard
@ifnottex
20 debc7065 bellard
@node Top
21 debc7065 bellard
@top
22 debc7065 bellard
23 debc7065 bellard
@menu
24 debc7065 bellard
* Introduction::
25 debc7065 bellard
* Installation::
26 debc7065 bellard
* QEMU PC System emulator::
27 debc7065 bellard
* QEMU System emulator for non PC targets::
28 83195237 bellard
* QEMU User space emulator::
29 debc7065 bellard
* compilation:: Compilation from the sources
30 debc7065 bellard
* Index::
31 debc7065 bellard
@end menu
32 debc7065 bellard
@end ifnottex
33 debc7065 bellard
34 debc7065 bellard
@contents
35 debc7065 bellard
36 debc7065 bellard
@node Introduction
37 386405f7 bellard
@chapter Introduction
38 386405f7 bellard
39 debc7065 bellard
@menu
40 debc7065 bellard
* intro_features:: Features
41 debc7065 bellard
@end menu
42 debc7065 bellard
43 debc7065 bellard
@node intro_features
44 322d0c66 bellard
@section Features
45 386405f7 bellard
46 1f673135 bellard
QEMU is a FAST! processor emulator using dynamic translation to
47 1f673135 bellard
achieve good emulation speed.
48 1eb20527 bellard
49 1eb20527 bellard
QEMU has two operating modes:
50 0806e3f6 bellard
51 0806e3f6 bellard
@itemize @minus
52 0806e3f6 bellard
53 5fafdf24 ths
@item
54 1f673135 bellard
Full system emulation. In this mode, QEMU emulates a full system (for
55 3f9f3aa1 bellard
example a PC), including one or several processors and various
56 3f9f3aa1 bellard
peripherals. It can be used to launch different Operating Systems
57 3f9f3aa1 bellard
without rebooting the PC or to debug system code.
58 1eb20527 bellard
59 5fafdf24 ths
@item
60 83195237 bellard
User mode emulation. In this mode, QEMU can launch
61 83195237 bellard
processes compiled for one CPU on another CPU. It can be used to
62 1f673135 bellard
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63 1f673135 bellard
to ease cross-compilation and cross-debugging.
64 1eb20527 bellard
65 1eb20527 bellard
@end itemize
66 1eb20527 bellard
67 7c3fc84d bellard
QEMU can run without an host kernel driver and yet gives acceptable
68 5fafdf24 ths
performance.
69 322d0c66 bellard
70 52c00a5f bellard
For system emulation, the following hardware targets are supported:
71 52c00a5f bellard
@itemize
72 9d0a8e6f bellard
@item PC (x86 or x86_64 processor)
73 3f9f3aa1 bellard
@item ISA PC (old style PC without PCI bus)
74 52c00a5f bellard
@item PREP (PowerPC processor)
75 9d0a8e6f bellard
@item G3 BW PowerMac (PowerPC processor)
76 9d0a8e6f bellard
@item Mac99 PowerMac (PowerPC processor, in progress)
77 ee76f82e blueswir1
@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
78 3475187d bellard
@item Sun4u (64-bit Sparc processor, in progress)
79 d9aedc32 ths
@item Malta board (32-bit and 64-bit MIPS processors)
80 88cb0a02 aurel32
@item MIPS Magnum (64-bit MIPS processor)
81 9ee6e8bb pbrook
@item ARM Integrator/CP (ARM)
82 9ee6e8bb pbrook
@item ARM Versatile baseboard (ARM)
83 9ee6e8bb pbrook
@item ARM RealView Emulation baseboard (ARM)
84 b00052e4 balrog
@item Spitz, Akita, Borzoi and Terrier PDAs (PXA270 processor)
85 9ee6e8bb pbrook
@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
86 9ee6e8bb pbrook
@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
87 707e011b pbrook
@item Freescale MCF5208EVB (ColdFire V2).
88 209a4e69 pbrook
@item Arnewsh MCF5206 evaluation board (ColdFire V2).
89 02645926 balrog
@item Palm Tungsten|E PDA (OMAP310 processor)
90 c30bb264 balrog
@item N800 and N810 tablets (OMAP2420 processor)
91 57cd6e97 balrog
@item MusicPal (MV88W8618 ARM processor)
92 52c00a5f bellard
@end itemize
93 386405f7 bellard
94 d9aedc32 ths
For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
95 0806e3f6 bellard
96 debc7065 bellard
@node Installation
97 5b9f457a bellard
@chapter Installation
98 5b9f457a bellard
99 15a34c63 bellard
If you want to compile QEMU yourself, see @ref{compilation}.
100 15a34c63 bellard
101 debc7065 bellard
@menu
102 debc7065 bellard
* install_linux::   Linux
103 debc7065 bellard
* install_windows:: Windows
104 debc7065 bellard
* install_mac::     Macintosh
105 debc7065 bellard
@end menu
106 debc7065 bellard
107 debc7065 bellard
@node install_linux
108 1f673135 bellard
@section Linux
109 1f673135 bellard
110 7c3fc84d bellard
If a precompiled package is available for your distribution - you just
111 7c3fc84d bellard
have to install it. Otherwise, see @ref{compilation}.
112 5b9f457a bellard
113 debc7065 bellard
@node install_windows
114 1f673135 bellard
@section Windows
115 8cd0ac2f bellard
116 15a34c63 bellard
Download the experimental binary installer at
117 debc7065 bellard
@url{http://www.free.oszoo.org/@/download.html}.
118 d691f669 bellard
119 debc7065 bellard
@node install_mac
120 1f673135 bellard
@section Mac OS X
121 d691f669 bellard
122 15a34c63 bellard
Download the experimental binary installer at
123 debc7065 bellard
@url{http://www.free.oszoo.org/@/download.html}.
124 df0f11a0 bellard
125 debc7065 bellard
@node QEMU PC System emulator
126 3f9f3aa1 bellard
@chapter QEMU PC System emulator
127 1eb20527 bellard
128 debc7065 bellard
@menu
129 debc7065 bellard
* pcsys_introduction:: Introduction
130 debc7065 bellard
* pcsys_quickstart::   Quick Start
131 debc7065 bellard
* sec_invocation::     Invocation
132 debc7065 bellard
* pcsys_keys::         Keys
133 debc7065 bellard
* pcsys_monitor::      QEMU Monitor
134 debc7065 bellard
* disk_images::        Disk Images
135 debc7065 bellard
* pcsys_network::      Network emulation
136 debc7065 bellard
* direct_linux_boot::  Direct Linux Boot
137 debc7065 bellard
* pcsys_usb::          USB emulation
138 f858dcae ths
* vnc_security::       VNC security
139 debc7065 bellard
* gdb_usage::          GDB usage
140 debc7065 bellard
* pcsys_os_specific::  Target OS specific information
141 debc7065 bellard
@end menu
142 debc7065 bellard
143 debc7065 bellard
@node pcsys_introduction
144 0806e3f6 bellard
@section Introduction
145 0806e3f6 bellard
146 0806e3f6 bellard
@c man begin DESCRIPTION
147 0806e3f6 bellard
148 3f9f3aa1 bellard
The QEMU PC System emulator simulates the
149 3f9f3aa1 bellard
following peripherals:
150 0806e3f6 bellard
151 0806e3f6 bellard
@itemize @minus
152 5fafdf24 ths
@item
153 15a34c63 bellard
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
154 0806e3f6 bellard
@item
155 15a34c63 bellard
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
156 15a34c63 bellard
extensions (hardware level, including all non standard modes).
157 0806e3f6 bellard
@item
158 0806e3f6 bellard
PS/2 mouse and keyboard
159 5fafdf24 ths
@item
160 15a34c63 bellard
2 PCI IDE interfaces with hard disk and CD-ROM support
161 1f673135 bellard
@item
162 1f673135 bellard
Floppy disk
163 5fafdf24 ths
@item
164 c4a7060c blueswir1
PCI/ISA PCI network adapters
165 0806e3f6 bellard
@item
166 05d5818c bellard
Serial ports
167 05d5818c bellard
@item
168 c0fe3827 bellard
Creative SoundBlaster 16 sound card
169 c0fe3827 bellard
@item
170 c0fe3827 bellard
ENSONIQ AudioPCI ES1370 sound card
171 c0fe3827 bellard
@item
172 e5c9a13e balrog
Intel 82801AA AC97 Audio compatible sound card
173 e5c9a13e balrog
@item
174 c0fe3827 bellard
Adlib(OPL2) - Yamaha YM3812 compatible chip
175 b389dbfb bellard
@item
176 26463dbc balrog
Gravis Ultrasound GF1 sound card
177 26463dbc balrog
@item
178 cc53d26d malc
CS4231A compatible sound card
179 cc53d26d malc
@item
180 b389dbfb bellard
PCI UHCI USB controller and a virtual USB hub.
181 0806e3f6 bellard
@end itemize
182 0806e3f6 bellard
183 3f9f3aa1 bellard
SMP is supported with up to 255 CPUs.
184 3f9f3aa1 bellard
185 cc53d26d malc
Note that adlib, ac97, gus and cs4231a are only available when QEMU
186 0c58ac1c malc
was configured with --audio-card-list option containing the name(s) of
187 0c58ac1c malc
required cards.
188 c0fe3827 bellard
189 15a34c63 bellard
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
190 15a34c63 bellard
VGA BIOS.
191 15a34c63 bellard
192 c0fe3827 bellard
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
193 c0fe3827 bellard
194 26463dbc balrog
QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
195 26463dbc balrog
by Tibor "TS" Sch?tz.
196 423d65f4 balrog
197 cc53d26d malc
CS4231A is the chip used in Windows Sound System and GUSMAX products
198 cc53d26d malc
199 0806e3f6 bellard
@c man end
200 0806e3f6 bellard
201 debc7065 bellard
@node pcsys_quickstart
202 1eb20527 bellard
@section Quick Start
203 1eb20527 bellard
204 285dc330 bellard
Download and uncompress the linux image (@file{linux.img}) and type:
205 0806e3f6 bellard
206 0806e3f6 bellard
@example
207 285dc330 bellard
qemu linux.img
208 0806e3f6 bellard
@end example
209 0806e3f6 bellard
210 0806e3f6 bellard
Linux should boot and give you a prompt.
211 0806e3f6 bellard
212 6cc721cf bellard
@node sec_invocation
213 ec410fc9 bellard
@section Invocation
214 ec410fc9 bellard
215 ec410fc9 bellard
@example
216 0806e3f6 bellard
@c man begin SYNOPSIS
217 89dfe898 ths
usage: qemu [options] [@var{disk_image}]
218 0806e3f6 bellard
@c man end
219 ec410fc9 bellard
@end example
220 ec410fc9 bellard
221 0806e3f6 bellard
@c man begin OPTIONS
222 9d4520d0 bellard
@var{disk_image} is a raw hard disk image for IDE hard disk 0.
223 ec410fc9 bellard
224 ec410fc9 bellard
General options:
225 ec410fc9 bellard
@table @option
226 89dfe898 ths
@item -M @var{machine}
227 89dfe898 ths
Select the emulated @var{machine} (@code{-M ?} for list)
228 3dbbdc25 bellard
229 89dfe898 ths
@item -fda @var{file}
230 89dfe898 ths
@item -fdb @var{file}
231 debc7065 bellard
Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
232 19cb3738 bellard
use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
233 2be3bc02 bellard
234 89dfe898 ths
@item -hda @var{file}
235 89dfe898 ths
@item -hdb @var{file}
236 89dfe898 ths
@item -hdc @var{file}
237 89dfe898 ths
@item -hdd @var{file}
238 debc7065 bellard
Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
239 1f47a922 bellard
240 89dfe898 ths
@item -cdrom @var{file}
241 89dfe898 ths
Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
242 be3edd95 bellard
@option{-cdrom} at the same time). You can use the host CD-ROM by
243 19cb3738 bellard
using @file{/dev/cdrom} as filename (@pxref{host_drives}).
244 181f1558 bellard
245 e0e7ada1 balrog
@item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
246 e0e7ada1 balrog
247 e0e7ada1 balrog
Define a new drive. Valid options are:
248 e0e7ada1 balrog
249 e0e7ada1 balrog
@table @code
250 e0e7ada1 balrog
@item file=@var{file}
251 e0e7ada1 balrog
This option defines which disk image (@pxref{disk_images}) to use with
252 609497ab balrog
this drive. If the filename contains comma, you must double it
253 609497ab balrog
(for instance, "file=my,,file" to use file "my,file").
254 e0e7ada1 balrog
@item if=@var{interface}
255 e0e7ada1 balrog
This option defines on which type on interface the drive is connected.
256 e0e7ada1 balrog
Available types are: ide, scsi, sd, mtd, floppy, pflash.
257 e0e7ada1 balrog
@item bus=@var{bus},unit=@var{unit}
258 e0e7ada1 balrog
These options define where is connected the drive by defining the bus number and
259 e0e7ada1 balrog
the unit id.
260 e0e7ada1 balrog
@item index=@var{index}
261 e0e7ada1 balrog
This option defines where is connected the drive by using an index in the list
262 e0e7ada1 balrog
of available connectors of a given interface type.
263 e0e7ada1 balrog
@item media=@var{media}
264 e0e7ada1 balrog
This option defines the type of the media: disk or cdrom.
265 e0e7ada1 balrog
@item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
266 e0e7ada1 balrog
These options have the same definition as they have in @option{-hdachs}.
267 e0e7ada1 balrog
@item snapshot=@var{snapshot}
268 e0e7ada1 balrog
@var{snapshot} is "on" or "off" and allows to enable snapshot for given drive (see @option{-snapshot}).
269 33f00271 balrog
@item cache=@var{cache}
270 33f00271 balrog
@var{cache} is "on" or "off" and allows to disable host cache to access data.
271 1e72d3b7 aurel32
@item format=@var{format}
272 1e72d3b7 aurel32
Specify which disk @var{format} will be used rather than detecting
273 1e72d3b7 aurel32
the format.  Can be used to specifiy format=raw to avoid interpreting
274 1e72d3b7 aurel32
an untrusted format header.
275 e0e7ada1 balrog
@end table
276 e0e7ada1 balrog
277 e0e7ada1 balrog
Instead of @option{-cdrom} you can use:
278 e0e7ada1 balrog
@example
279 e0e7ada1 balrog
qemu -drive file=file,index=2,media=cdrom
280 e0e7ada1 balrog
@end example
281 e0e7ada1 balrog
282 e0e7ada1 balrog
Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
283 e0e7ada1 balrog
use:
284 e0e7ada1 balrog
@example
285 e0e7ada1 balrog
qemu -drive file=file,index=0,media=disk
286 e0e7ada1 balrog
qemu -drive file=file,index=1,media=disk
287 e0e7ada1 balrog
qemu -drive file=file,index=2,media=disk
288 e0e7ada1 balrog
qemu -drive file=file,index=3,media=disk
289 e0e7ada1 balrog
@end example
290 e0e7ada1 balrog
291 e0e7ada1 balrog
You can connect a CDROM to the slave of ide0:
292 e0e7ada1 balrog
@example
293 e0e7ada1 balrog
qemu -drive file=file,if=ide,index=1,media=cdrom
294 e0e7ada1 balrog
@end example
295 e0e7ada1 balrog
296 e0e7ada1 balrog
If you don't specify the "file=" argument, you define an empty drive:
297 e0e7ada1 balrog
@example
298 e0e7ada1 balrog
qemu -drive if=ide,index=1,media=cdrom
299 e0e7ada1 balrog
@end example
300 e0e7ada1 balrog
301 e0e7ada1 balrog
You can connect a SCSI disk with unit ID 6 on the bus #0:
302 e0e7ada1 balrog
@example
303 e0e7ada1 balrog
qemu -drive file=file,if=scsi,bus=0,unit=6
304 e0e7ada1 balrog
@end example
305 e0e7ada1 balrog
306 e0e7ada1 balrog
Instead of @option{-fda}, @option{-fdb}, you can use:
307 e0e7ada1 balrog
@example
308 e0e7ada1 balrog
qemu -drive file=file,index=0,if=floppy
309 e0e7ada1 balrog
qemu -drive file=file,index=1,if=floppy
310 e0e7ada1 balrog
@end example
311 e0e7ada1 balrog
312 e0e7ada1 balrog
By default, @var{interface} is "ide" and @var{index} is automatically
313 e0e7ada1 balrog
incremented:
314 e0e7ada1 balrog
@example
315 e0e7ada1 balrog
qemu -drive file=a -drive file=b"
316 e0e7ada1 balrog
@end example
317 e0e7ada1 balrog
is interpreted like:
318 e0e7ada1 balrog
@example
319 e0e7ada1 balrog
qemu -hda a -hdb b
320 e0e7ada1 balrog
@end example
321 e0e7ada1 balrog
322 eec85c2a ths
@item -boot [a|c|d|n]
323 eec85c2a ths
Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
324 eec85c2a ths
is the default.
325 1f47a922 bellard
326 181f1558 bellard
@item -snapshot
327 1f47a922 bellard
Write to temporary files instead of disk image files. In this case,
328 1f47a922 bellard
the raw disk image you use is not written back. You can however force
329 42550fde ths
the write back by pressing @key{C-a s} (@pxref{disk_images}).
330 ec410fc9 bellard
331 52ca8d6a bellard
@item -no-fd-bootchk
332 52ca8d6a bellard
Disable boot signature checking for floppy disks in Bochs BIOS. It may
333 52ca8d6a bellard
be needed to boot from old floppy disks.
334 52ca8d6a bellard
335 89dfe898 ths
@item -m @var{megs}
336 00f82b8a aurel32
Set virtual RAM size to @var{megs} megabytes. Default is 128 MiB.  Optionally,
337 00f82b8a aurel32
a suffix of ``M'' or ``G'' can be used to signify a value in megabytes or
338 00f82b8a aurel32
gigabytes respectively.
339 ec410fc9 bellard
340 89dfe898 ths
@item -smp @var{n}
341 3f9f3aa1 bellard
Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
342 a785e42e blueswir1
CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
343 a785e42e blueswir1
to 4.
344 3f9f3aa1 bellard
345 1d14ffa9 bellard
@item -audio-help
346 1d14ffa9 bellard
347 1d14ffa9 bellard
Will show the audio subsystem help: list of drivers, tunable
348 1d14ffa9 bellard
parameters.
349 1d14ffa9 bellard
350 89dfe898 ths
@item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
351 1d14ffa9 bellard
352 1d14ffa9 bellard
Enable audio and selected sound hardware. Use ? to print all
353 1d14ffa9 bellard
available sound hardware.
354 1d14ffa9 bellard
355 1d14ffa9 bellard
@example
356 1d14ffa9 bellard
qemu -soundhw sb16,adlib hda
357 1d14ffa9 bellard
qemu -soundhw es1370 hda
358 e5c9a13e balrog
qemu -soundhw ac97 hda
359 6a36d84e bellard
qemu -soundhw all hda
360 1d14ffa9 bellard
qemu -soundhw ?
361 1d14ffa9 bellard
@end example
362 a8c490cd bellard
363 e5c9a13e balrog
Note that Linux's i810_audio OSS kernel (for AC97) module might
364 e5c9a13e balrog
require manually specifying clocking.
365 e5c9a13e balrog
366 e5c9a13e balrog
@example
367 e5c9a13e balrog
modprobe i810_audio clocking=48000
368 e5c9a13e balrog
@end example
369 e5c9a13e balrog
370 15a34c63 bellard
@item -localtime
371 15a34c63 bellard
Set the real time clock to local time (the default is to UTC
372 15a34c63 bellard
time). This option is needed to have correct date in MS-DOS or
373 15a34c63 bellard
Windows.
374 15a34c63 bellard
375 89dfe898 ths
@item -startdate @var{date}
376 7e0af5d0 bellard
Set the initial date of the real time clock. Valid format for
377 7e0af5d0 bellard
@var{date} are: @code{now} or @code{2006-06-17T16:01:21} or
378 7e0af5d0 bellard
@code{2006-06-17}. The default value is @code{now}.
379 7e0af5d0 bellard
380 89dfe898 ths
@item -pidfile @var{file}
381 f7cce898 bellard
Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
382 f7cce898 bellard
from a script.
383 f7cce898 bellard
384 71e3ceb8 ths
@item -daemonize
385 71e3ceb8 ths
Daemonize the QEMU process after initialization.  QEMU will not detach from
386 71e3ceb8 ths
standard IO until it is ready to receive connections on any of its devices.
387 71e3ceb8 ths
This option is a useful way for external programs to launch QEMU without having
388 71e3ceb8 ths
to cope with initialization race conditions.
389 71e3ceb8 ths
390 9d0a8e6f bellard
@item -win2k-hack
391 9d0a8e6f bellard
Use it when installing Windows 2000 to avoid a disk full bug. After
392 9d0a8e6f bellard
Windows 2000 is installed, you no longer need this option (this option
393 9d0a8e6f bellard
slows down the IDE transfers).
394 9d0a8e6f bellard
395 89dfe898 ths
@item -option-rom @var{file}
396 89dfe898 ths
Load the contents of @var{file} as an option ROM.
397 89dfe898 ths
This option is useful to load things like EtherBoot.
398 9ae02555 ths
399 89dfe898 ths
@item -name @var{name}
400 89dfe898 ths
Sets the @var{name} of the guest.
401 89dfe898 ths
This name will be display in the SDL window caption.
402 89dfe898 ths
The @var{name} will also be used for the VNC server.
403 c35734b2 ths
404 0806e3f6 bellard
@end table
405 0806e3f6 bellard
406 f858dcae ths
Display options:
407 f858dcae ths
@table @option
408 f858dcae ths
409 f858dcae ths
@item -nographic
410 f858dcae ths
411 f858dcae ths
Normally, QEMU uses SDL to display the VGA output. With this option,
412 f858dcae ths
you can totally disable graphical output so that QEMU is a simple
413 f858dcae ths
command line application. The emulated serial port is redirected on
414 f858dcae ths
the console. Therefore, you can still use QEMU to debug a Linux kernel
415 f858dcae ths
with a serial console.
416 f858dcae ths
417 052caf70 aurel32
@item -curses
418 052caf70 aurel32
419 052caf70 aurel32
Normally, QEMU uses SDL to display the VGA output.  With this option,
420 052caf70 aurel32
QEMU can display the VGA output when in text mode using a 
421 052caf70 aurel32
curses/ncurses interface.  Nothing is displayed in graphical mode.
422 052caf70 aurel32
423 f858dcae ths
@item -no-frame
424 f858dcae ths
425 f858dcae ths
Do not use decorations for SDL windows and start them using the whole
426 f858dcae ths
available screen space. This makes the using QEMU in a dedicated desktop
427 f858dcae ths
workspace more convenient.
428 f858dcae ths
429 99aa9e4c aurel32
@item -no-quit
430 99aa9e4c aurel32
431 99aa9e4c aurel32
Disable SDL window close capability.
432 99aa9e4c aurel32
433 f858dcae ths
@item -full-screen
434 f858dcae ths
Start in full screen.
435 f858dcae ths
436 89dfe898 ths
@item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
437 f858dcae ths
438 f858dcae ths
Normally, QEMU uses SDL to display the VGA output.  With this option,
439 f858dcae ths
you can have QEMU listen on VNC display @var{display} and redirect the VGA
440 f858dcae ths
display over the VNC session.  It is very useful to enable the usb
441 f858dcae ths
tablet device when using this option (option @option{-usbdevice
442 f858dcae ths
tablet}). When using the VNC display, you must use the @option{-k}
443 f858dcae ths
parameter to set the keyboard layout if you are not using en-us. Valid
444 f858dcae ths
syntax for the @var{display} is
445 f858dcae ths
446 f858dcae ths
@table @code
447 f858dcae ths
448 3aa3eea3 balrog
@item @var{host}:@var{d}
449 f858dcae ths
450 3aa3eea3 balrog
TCP connections will only be allowed from @var{host} on display @var{d}.
451 3aa3eea3 balrog
By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
452 3aa3eea3 balrog
be omitted in which case the server will accept connections from any host.
453 f858dcae ths
454 3aa3eea3 balrog
@item @code{unix}:@var{path}
455 f858dcae ths
456 f858dcae ths
Connections will be allowed over UNIX domain sockets where @var{path} is the
457 f858dcae ths
location of a unix socket to listen for connections on.
458 f858dcae ths
459 89dfe898 ths
@item none
460 f858dcae ths
461 3aa3eea3 balrog
VNC is initialized but not started. The monitor @code{change} command
462 3aa3eea3 balrog
can be used to later start the VNC server.
463 f858dcae ths
464 f858dcae ths
@end table
465 f858dcae ths
466 f858dcae ths
Following the @var{display} value there may be one or more @var{option} flags
467 f858dcae ths
separated by commas. Valid options are
468 f858dcae ths
469 f858dcae ths
@table @code
470 f858dcae ths
471 3aa3eea3 balrog
@item reverse
472 3aa3eea3 balrog
473 3aa3eea3 balrog
Connect to a listening VNC client via a ``reverse'' connection. The
474 3aa3eea3 balrog
client is specified by the @var{display}. For reverse network
475 3aa3eea3 balrog
connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
476 3aa3eea3 balrog
is a TCP port number, not a display number.
477 3aa3eea3 balrog
478 89dfe898 ths
@item password
479 f858dcae ths
480 f858dcae ths
Require that password based authentication is used for client connections.
481 f858dcae ths
The password must be set separately using the @code{change} command in the
482 f858dcae ths
@ref{pcsys_monitor}
483 f858dcae ths
484 89dfe898 ths
@item tls
485 f858dcae ths
486 f858dcae ths
Require that client use TLS when communicating with the VNC server. This
487 f858dcae ths
uses anonymous TLS credentials so is susceptible to a man-in-the-middle
488 f858dcae ths
attack. It is recommended that this option be combined with either the
489 f858dcae ths
@var{x509} or @var{x509verify} options.
490 f858dcae ths
491 89dfe898 ths
@item x509=@var{/path/to/certificate/dir}
492 f858dcae ths
493 89dfe898 ths
Valid if @option{tls} is specified. Require that x509 credentials are used
494 f858dcae ths
for negotiating the TLS session. The server will send its x509 certificate
495 f858dcae ths
to the client. It is recommended that a password be set on the VNC server
496 f858dcae ths
to provide authentication of the client when this is used. The path following
497 f858dcae ths
this option specifies where the x509 certificates are to be loaded from.
498 f858dcae ths
See the @ref{vnc_security} section for details on generating certificates.
499 f858dcae ths
500 89dfe898 ths
@item x509verify=@var{/path/to/certificate/dir}
501 f858dcae ths
502 89dfe898 ths
Valid if @option{tls} is specified. Require that x509 credentials are used
503 f858dcae ths
for negotiating the TLS session. The server will send its x509 certificate
504 f858dcae ths
to the client, and request that the client send its own x509 certificate.
505 f858dcae ths
The server will validate the client's certificate against the CA certificate,
506 f858dcae ths
and reject clients when validation fails. If the certificate authority is
507 f858dcae ths
trusted, this is a sufficient authentication mechanism. You may still wish
508 f858dcae ths
to set a password on the VNC server as a second authentication layer. The
509 f858dcae ths
path following this option specifies where the x509 certificates are to
510 f858dcae ths
be loaded from. See the @ref{vnc_security} section for details on generating
511 f858dcae ths
certificates.
512 f858dcae ths
513 f858dcae ths
@end table
514 f858dcae ths
515 89dfe898 ths
@item -k @var{language}
516 f858dcae ths
517 f858dcae ths
Use keyboard layout @var{language} (for example @code{fr} for
518 f858dcae ths
French). This option is only needed where it is not easy to get raw PC
519 f858dcae ths
keycodes (e.g. on Macs, with some X11 servers or with a VNC
520 f858dcae ths
display). You don't normally need to use it on PC/Linux or PC/Windows
521 f858dcae ths
hosts.
522 f858dcae ths
523 f858dcae ths
The available layouts are:
524 f858dcae ths
@example
525 f858dcae ths
ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
526 f858dcae ths
da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
527 f858dcae ths
de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
528 f858dcae ths
@end example
529 f858dcae ths
530 f858dcae ths
The default is @code{en-us}.
531 f858dcae ths
532 f858dcae ths
@end table
533 f858dcae ths
534 b389dbfb bellard
USB options:
535 b389dbfb bellard
@table @option
536 b389dbfb bellard
537 b389dbfb bellard
@item -usb
538 b389dbfb bellard
Enable the USB driver (will be the default soon)
539 b389dbfb bellard
540 89dfe898 ths
@item -usbdevice @var{devname}
541 0aff66b5 pbrook
Add the USB device @var{devname}. @xref{usb_devices}.
542 8fccda83 ths
543 8fccda83 ths
@table @code
544 8fccda83 ths
545 8fccda83 ths
@item mouse
546 8fccda83 ths
Virtual Mouse. This will override the PS/2 mouse emulation when activated.
547 8fccda83 ths
548 8fccda83 ths
@item tablet
549 8fccda83 ths
Pointer device that uses absolute coordinates (like a touchscreen). This
550 8fccda83 ths
means qemu is able to report the mouse position without having to grab the
551 8fccda83 ths
mouse. Also overrides the PS/2 mouse emulation when activated.
552 8fccda83 ths
553 8fccda83 ths
@item disk:file
554 8fccda83 ths
Mass storage device based on file
555 8fccda83 ths
556 8fccda83 ths
@item host:bus.addr
557 8fccda83 ths
Pass through the host device identified by bus.addr (Linux only).
558 8fccda83 ths
559 8fccda83 ths
@item host:vendor_id:product_id
560 8fccda83 ths
Pass through the host device identified by vendor_id:product_id (Linux only).
561 8fccda83 ths
562 db380c06 balrog
@item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev}
563 db380c06 balrog
Serial converter to host character device @var{dev}, see @code{-serial} for the
564 db380c06 balrog
available devices.
565 db380c06 balrog
566 2e4d9fb1 aurel32
@item braille
567 2e4d9fb1 aurel32
Braille device.  This will use BrlAPI to display the braille output on a real
568 2e4d9fb1 aurel32
or fake device.
569 2e4d9fb1 aurel32
570 8fccda83 ths
@end table
571 8fccda83 ths
572 b389dbfb bellard
@end table
573 b389dbfb bellard
574 1f673135 bellard
Network options:
575 1f673135 bellard
576 1f673135 bellard
@table @option
577 1f673135 bellard
578 89dfe898 ths
@item -net nic[,vlan=@var{n}][,macaddr=@var{addr}][,model=@var{type}]
579 41d03949 bellard
Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
580 c4a7060c blueswir1
= 0 is the default). The NIC is an ne2k_pci by default on the PC
581 41d03949 bellard
target. Optionally, the MAC address can be changed. If no
582 41d03949 bellard
@option{-net} option is specified, a single NIC is created.
583 549444e1 balrog
Qemu can emulate several different models of network card.
584 549444e1 balrog
Valid values for @var{type} are
585 549444e1 balrog
@code{i82551}, @code{i82557b}, @code{i82559er},
586 549444e1 balrog
@code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
587 7c23b892 balrog
@code{e1000}, @code{smc91c111}, @code{lance} and @code{mcf_fec}.
588 c4a7060c blueswir1
Not all devices are supported on all targets.  Use -net nic,model=?
589 c4a7060c blueswir1
for a list of available devices for your target.
590 41d03949 bellard
591 89dfe898 ths
@item -net user[,vlan=@var{n}][,hostname=@var{name}]
592 7e89463d bellard
Use the user mode network stack which requires no administrator
593 4be456f1 ths
privilege to run.  @option{hostname=name} can be used to specify the client
594 115defd1 pbrook
hostname reported by the builtin DHCP server.
595 41d03949 bellard
596 89dfe898 ths
@item -net tap[,vlan=@var{n}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}]
597 41d03949 bellard
Connect the host TAP network interface @var{name} to VLAN @var{n} and
598 41d03949 bellard
use the network script @var{file} to configure it. The default
599 6a1cbf68 ths
network script is @file{/etc/qemu-ifup}. Use @option{script=no} to
600 6a1cbf68 ths
disable script execution. If @var{name} is not
601 89dfe898 ths
provided, the OS automatically provides one. @option{fd}=@var{h} can be
602 41d03949 bellard
used to specify the handle of an already opened host TAP interface. Example:
603 1f673135 bellard
604 41d03949 bellard
@example
605 41d03949 bellard
qemu linux.img -net nic -net tap
606 41d03949 bellard
@end example
607 41d03949 bellard
608 41d03949 bellard
More complicated example (two NICs, each one connected to a TAP device)
609 41d03949 bellard
@example
610 41d03949 bellard
qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
611 41d03949 bellard
               -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
612 41d03949 bellard
@end example
613 3f1a88f4 bellard
614 3f1a88f4 bellard
615 89dfe898 ths
@item -net socket[,vlan=@var{n}][,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
616 1f673135 bellard
617 41d03949 bellard
Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
618 41d03949 bellard
machine using a TCP socket connection. If @option{listen} is
619 41d03949 bellard
specified, QEMU waits for incoming connections on @var{port}
620 41d03949 bellard
(@var{host} is optional). @option{connect} is used to connect to
621 89dfe898 ths
another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
622 3d830459 bellard
specifies an already opened TCP socket.
623 1f673135 bellard
624 41d03949 bellard
Example:
625 41d03949 bellard
@example
626 41d03949 bellard
# launch a first QEMU instance
627 debc7065 bellard
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
628 debc7065 bellard
               -net socket,listen=:1234
629 debc7065 bellard
# connect the VLAN 0 of this instance to the VLAN 0
630 debc7065 bellard
# of the first instance
631 debc7065 bellard
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
632 debc7065 bellard
               -net socket,connect=127.0.0.1:1234
633 41d03949 bellard
@end example
634 52c00a5f bellard
635 89dfe898 ths
@item -net socket[,vlan=@var{n}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}]
636 3d830459 bellard
637 3d830459 bellard
Create a VLAN @var{n} shared with another QEMU virtual
638 5fafdf24 ths
machines using a UDP multicast socket, effectively making a bus for
639 3d830459 bellard
every QEMU with same multicast address @var{maddr} and @var{port}.
640 3d830459 bellard
NOTES:
641 3d830459 bellard
@enumerate
642 5fafdf24 ths
@item
643 5fafdf24 ths
Several QEMU can be running on different hosts and share same bus (assuming
644 3d830459 bellard
correct multicast setup for these hosts).
645 3d830459 bellard
@item
646 3d830459 bellard
mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
647 3d830459 bellard
@url{http://user-mode-linux.sf.net}.
648 4be456f1 ths
@item
649 4be456f1 ths
Use @option{fd=h} to specify an already opened UDP multicast socket.
650 3d830459 bellard
@end enumerate
651 3d830459 bellard
652 3d830459 bellard
Example:
653 3d830459 bellard
@example
654 3d830459 bellard
# launch one QEMU instance
655 debc7065 bellard
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
656 debc7065 bellard
               -net socket,mcast=230.0.0.1:1234
657 3d830459 bellard
# launch another QEMU instance on same "bus"
658 debc7065 bellard
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
659 debc7065 bellard
               -net socket,mcast=230.0.0.1:1234
660 3d830459 bellard
# launch yet another QEMU instance on same "bus"
661 debc7065 bellard
qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
662 debc7065 bellard
               -net socket,mcast=230.0.0.1:1234
663 3d830459 bellard
@end example
664 3d830459 bellard
665 3d830459 bellard
Example (User Mode Linux compat.):
666 3d830459 bellard
@example
667 debc7065 bellard
# launch QEMU instance (note mcast address selected
668 debc7065 bellard
# is UML's default)
669 debc7065 bellard
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
670 debc7065 bellard
               -net socket,mcast=239.192.168.1:1102
671 3d830459 bellard
# launch UML
672 3d830459 bellard
/path/to/linux ubd0=/path/to/root_fs eth0=mcast
673 3d830459 bellard
@end example
674 3d830459 bellard
675 41d03949 bellard
@item -net none
676 41d03949 bellard
Indicate that no network devices should be configured. It is used to
677 039af320 bellard
override the default configuration (@option{-net nic -net user}) which
678 039af320 bellard
is activated if no @option{-net} options are provided.
679 52c00a5f bellard
680 89dfe898 ths
@item -tftp @var{dir}
681 9bf05444 bellard
When using the user mode network stack, activate a built-in TFTP
682 0db1137d ths
server. The files in @var{dir} will be exposed as the root of a TFTP server.
683 0db1137d ths
The TFTP client on the guest must be configured in binary mode (use the command
684 0db1137d ths
@code{bin} of the Unix TFTP client). The host IP address on the guest is as
685 0db1137d ths
usual 10.0.2.2.
686 9bf05444 bellard
687 89dfe898 ths
@item -bootp @var{file}
688 47d5d01a ths
When using the user mode network stack, broadcast @var{file} as the BOOTP
689 47d5d01a ths
filename.  In conjunction with @option{-tftp}, this can be used to network boot
690 47d5d01a ths
a guest from a local directory.
691 47d5d01a ths
692 47d5d01a ths
Example (using pxelinux):
693 47d5d01a ths
@example
694 47d5d01a ths
qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
695 47d5d01a ths
@end example
696 47d5d01a ths
697 89dfe898 ths
@item -smb @var{dir}
698 2518bd0d bellard
When using the user mode network stack, activate a built-in SMB
699 89dfe898 ths
server so that Windows OSes can access to the host files in @file{@var{dir}}
700 2518bd0d bellard
transparently.
701 2518bd0d bellard
702 2518bd0d bellard
In the guest Windows OS, the line:
703 2518bd0d bellard
@example
704 2518bd0d bellard
10.0.2.4 smbserver
705 2518bd0d bellard
@end example
706 2518bd0d bellard
must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
707 2518bd0d bellard
or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
708 2518bd0d bellard
709 89dfe898 ths
Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
710 2518bd0d bellard
711 2518bd0d bellard
Note that a SAMBA server must be installed on the host OS in
712 366dfc52 ths
@file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
713 6cc721cf bellard
2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
714 2518bd0d bellard
715 89dfe898 ths
@item -redir [tcp|udp]:@var{host-port}:[@var{guest-host}]:@var{guest-port}
716 9bf05444 bellard
717 9bf05444 bellard
When using the user mode network stack, redirect incoming TCP or UDP
718 9bf05444 bellard
connections to the host port @var{host-port} to the guest
719 9bf05444 bellard
@var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
720 9bf05444 bellard
is not specified, its value is 10.0.2.15 (default address given by the
721 9bf05444 bellard
built-in DHCP server).
722 9bf05444 bellard
723 9bf05444 bellard
For example, to redirect host X11 connection from screen 1 to guest
724 9bf05444 bellard
screen 0, use the following:
725 9bf05444 bellard
726 9bf05444 bellard
@example
727 9bf05444 bellard
# on the host
728 9bf05444 bellard
qemu -redir tcp:6001::6000 [...]
729 9bf05444 bellard
# this host xterm should open in the guest X11 server
730 9bf05444 bellard
xterm -display :1
731 9bf05444 bellard
@end example
732 9bf05444 bellard
733 9bf05444 bellard
To redirect telnet connections from host port 5555 to telnet port on
734 9bf05444 bellard
the guest, use the following:
735 9bf05444 bellard
736 9bf05444 bellard
@example
737 9bf05444 bellard
# on the host
738 9bf05444 bellard
qemu -redir tcp:5555::23 [...]
739 9bf05444 bellard
telnet localhost 5555
740 9bf05444 bellard
@end example
741 9bf05444 bellard
742 9bf05444 bellard
Then when you use on the host @code{telnet localhost 5555}, you
743 9bf05444 bellard
connect to the guest telnet server.
744 9bf05444 bellard
745 1f673135 bellard
@end table
746 1f673135 bellard
747 41d03949 bellard
Linux boot specific: When using these options, you can use a given
748 1f673135 bellard
Linux kernel without installing it in the disk image. It can be useful
749 1f673135 bellard
for easier testing of various kernels.
750 1f673135 bellard
751 0806e3f6 bellard
@table @option
752 0806e3f6 bellard
753 89dfe898 ths
@item -kernel @var{bzImage}
754 0806e3f6 bellard
Use @var{bzImage} as kernel image.
755 0806e3f6 bellard
756 89dfe898 ths
@item -append @var{cmdline}
757 0806e3f6 bellard
Use @var{cmdline} as kernel command line
758 0806e3f6 bellard
759 89dfe898 ths
@item -initrd @var{file}
760 0806e3f6 bellard
Use @var{file} as initial ram disk.
761 0806e3f6 bellard
762 ec410fc9 bellard
@end table
763 ec410fc9 bellard
764 15a34c63 bellard
Debug/Expert options:
765 ec410fc9 bellard
@table @option
766 a0a821a4 bellard
767 89dfe898 ths
@item -serial @var{dev}
768 0bab00f3 bellard
Redirect the virtual serial port to host character device
769 0bab00f3 bellard
@var{dev}. The default device is @code{vc} in graphical mode and
770 0bab00f3 bellard
@code{stdio} in non graphical mode.
771 0bab00f3 bellard
772 0bab00f3 bellard
This option can be used several times to simulate up to 4 serials
773 0bab00f3 bellard
ports.
774 0bab00f3 bellard
775 c03b0f0f bellard
Use @code{-serial none} to disable all serial ports.
776 c03b0f0f bellard
777 0bab00f3 bellard
Available character devices are:
778 a0a821a4 bellard
@table @code
779 af3a9031 ths
@item vc[:WxH]
780 af3a9031 ths
Virtual console. Optionally, a width and height can be given in pixel with
781 af3a9031 ths
@example
782 af3a9031 ths
vc:800x600
783 af3a9031 ths
@end example
784 af3a9031 ths
It is also possible to specify width or height in characters:
785 af3a9031 ths
@example
786 af3a9031 ths
vc:80Cx24C
787 af3a9031 ths
@end example
788 a0a821a4 bellard
@item pty
789 a0a821a4 bellard
[Linux only] Pseudo TTY (a new PTY is automatically allocated)
790 c03b0f0f bellard
@item none
791 c03b0f0f bellard
No device is allocated.
792 a0a821a4 bellard
@item null
793 a0a821a4 bellard
void device
794 f8d179e3 bellard
@item /dev/XXX
795 e57a8c0e bellard
[Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
796 f8d179e3 bellard
parameters are set according to the emulated ones.
797 89dfe898 ths
@item /dev/parport@var{N}
798 e57a8c0e bellard
[Linux only, parallel port only] Use host parallel port
799 5867c88a ths
@var{N}. Currently SPP and EPP parallel port features can be used.
800 89dfe898 ths
@item file:@var{filename}
801 89dfe898 ths
Write output to @var{filename}. No character can be read.
802 a0a821a4 bellard
@item stdio
803 a0a821a4 bellard
[Unix only] standard input/output
804 89dfe898 ths
@item pipe:@var{filename}
805 0bab00f3 bellard
name pipe @var{filename}
806 89dfe898 ths
@item COM@var{n}
807 0bab00f3 bellard
[Windows only] Use host serial port @var{n}
808 89dfe898 ths
@item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
809 89dfe898 ths
This implements UDP Net Console.
810 89dfe898 ths
When @var{remote_host} or @var{src_ip} are not specified
811 89dfe898 ths
they default to @code{0.0.0.0}.
812 89dfe898 ths
When not using a specified @var{src_port} a random port is automatically chosen.
813 951f1351 bellard
814 951f1351 bellard
If you just want a simple readonly console you can use @code{netcat} or
815 951f1351 bellard
@code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
816 951f1351 bellard
@code{nc -u -l -p 4555}. Any time qemu writes something to that port it
817 951f1351 bellard
will appear in the netconsole session.
818 0bab00f3 bellard
819 0bab00f3 bellard
If you plan to send characters back via netconsole or you want to stop
820 0bab00f3 bellard
and start qemu a lot of times, you should have qemu use the same
821 0bab00f3 bellard
source port each time by using something like @code{-serial
822 951f1351 bellard
udp::4555@@:4556} to qemu. Another approach is to use a patched
823 0bab00f3 bellard
version of netcat which can listen to a TCP port and send and receive
824 0bab00f3 bellard
characters via udp.  If you have a patched version of netcat which
825 0bab00f3 bellard
activates telnet remote echo and single char transfer, then you can
826 0bab00f3 bellard
use the following options to step up a netcat redirector to allow
827 0bab00f3 bellard
telnet on port 5555 to access the qemu port.
828 0bab00f3 bellard
@table @code
829 951f1351 bellard
@item Qemu Options:
830 951f1351 bellard
-serial udp::4555@@:4556
831 951f1351 bellard
@item netcat options:
832 951f1351 bellard
-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
833 951f1351 bellard
@item telnet options:
834 951f1351 bellard
localhost 5555
835 951f1351 bellard
@end table
836 951f1351 bellard
837 951f1351 bellard
838 89dfe898 ths
@item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay]
839 951f1351 bellard
The TCP Net Console has two modes of operation.  It can send the serial
840 951f1351 bellard
I/O to a location or wait for a connection from a location.  By default
841 951f1351 bellard
the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
842 f542086d bellard
the @var{server} option QEMU will wait for a client socket application
843 f542086d bellard
to connect to the port before continuing, unless the @code{nowait}
844 f7499989 pbrook
option was specified.  The @code{nodelay} option disables the Nagle buffering
845 4be456f1 ths
algorithm.  If @var{host} is omitted, 0.0.0.0 is assumed. Only
846 951f1351 bellard
one TCP connection at a time is accepted. You can use @code{telnet} to
847 951f1351 bellard
connect to the corresponding character device.
848 951f1351 bellard
@table @code
849 951f1351 bellard
@item Example to send tcp console to 192.168.0.2 port 4444
850 951f1351 bellard
-serial tcp:192.168.0.2:4444
851 951f1351 bellard
@item Example to listen and wait on port 4444 for connection
852 951f1351 bellard
-serial tcp::4444,server
853 951f1351 bellard
@item Example to not wait and listen on ip 192.168.0.100 port 4444
854 951f1351 bellard
-serial tcp:192.168.0.100:4444,server,nowait
855 a0a821a4 bellard
@end table
856 a0a821a4 bellard
857 89dfe898 ths
@item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
858 951f1351 bellard
The telnet protocol is used instead of raw tcp sockets.  The options
859 951f1351 bellard
work the same as if you had specified @code{-serial tcp}.  The
860 951f1351 bellard
difference is that the port acts like a telnet server or client using
861 951f1351 bellard
telnet option negotiation.  This will also allow you to send the
862 951f1351 bellard
MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
863 951f1351 bellard
sequence.  Typically in unix telnet you do it with Control-] and then
864 951f1351 bellard
type "send break" followed by pressing the enter key.
865 0bab00f3 bellard
866 89dfe898 ths
@item unix:@var{path}[,server][,nowait]
867 ffd843bc ths
A unix domain socket is used instead of a tcp socket.  The option works the
868 ffd843bc ths
same as if you had specified @code{-serial tcp} except the unix domain socket
869 ffd843bc ths
@var{path} is used for connections.
870 ffd843bc ths
871 89dfe898 ths
@item mon:@var{dev_string}
872 20d8a3ed ths
This is a special option to allow the monitor to be multiplexed onto
873 20d8a3ed ths
another serial port.  The monitor is accessed with key sequence of
874 20d8a3ed ths
@key{Control-a} and then pressing @key{c}. See monitor access
875 20d8a3ed ths
@ref{pcsys_keys} in the -nographic section for more keys.
876 20d8a3ed ths
@var{dev_string} should be any one of the serial devices specified
877 20d8a3ed ths
above.  An example to multiplex the monitor onto a telnet server
878 20d8a3ed ths
listening on port 4444 would be:
879 20d8a3ed ths
@table @code
880 20d8a3ed ths
@item -serial mon:telnet::4444,server,nowait
881 20d8a3ed ths
@end table
882 20d8a3ed ths
883 2e4d9fb1 aurel32
@item braille
884 2e4d9fb1 aurel32
Braille device.  This will use BrlAPI to display the braille output on a real
885 2e4d9fb1 aurel32
or fake device.
886 2e4d9fb1 aurel32
887 0bab00f3 bellard
@end table
888 05d5818c bellard
889 89dfe898 ths
@item -parallel @var{dev}
890 e57a8c0e bellard
Redirect the virtual parallel port to host device @var{dev} (same
891 e57a8c0e bellard
devices as the serial port). On Linux hosts, @file{/dev/parportN} can
892 e57a8c0e bellard
be used to use hardware devices connected on the corresponding host
893 e57a8c0e bellard
parallel port.
894 e57a8c0e bellard
895 e57a8c0e bellard
This option can be used several times to simulate up to 3 parallel
896 e57a8c0e bellard
ports.
897 e57a8c0e bellard
898 c03b0f0f bellard
Use @code{-parallel none} to disable all parallel ports.
899 c03b0f0f bellard
900 89dfe898 ths
@item -monitor @var{dev}
901 a0a821a4 bellard
Redirect the monitor to host device @var{dev} (same devices as the
902 a0a821a4 bellard
serial port).
903 a0a821a4 bellard
The default device is @code{vc} in graphical mode and @code{stdio} in
904 a0a821a4 bellard
non graphical mode.
905 a0a821a4 bellard
906 20d8a3ed ths
@item -echr numeric_ascii_value
907 20d8a3ed ths
Change the escape character used for switching to the monitor when using
908 20d8a3ed ths
monitor and serial sharing.  The default is @code{0x01} when using the
909 20d8a3ed ths
@code{-nographic} option.  @code{0x01} is equal to pressing
910 20d8a3ed ths
@code{Control-a}.  You can select a different character from the ascii
911 20d8a3ed ths
control keys where 1 through 26 map to Control-a through Control-z.  For
912 20d8a3ed ths
instance you could use the either of the following to change the escape
913 20d8a3ed ths
character to Control-t.
914 20d8a3ed ths
@table @code
915 20d8a3ed ths
@item -echr 0x14
916 20d8a3ed ths
@item -echr 20
917 20d8a3ed ths
@end table
918 20d8a3ed ths
919 ec410fc9 bellard
@item -s
920 5fafdf24 ths
Wait gdb connection to port 1234 (@pxref{gdb_usage}).
921 89dfe898 ths
@item -p @var{port}
922 4046d913 pbrook
Change gdb connection port.  @var{port} can be either a decimal number
923 4046d913 pbrook
to specify a TCP port, or a host device (same devices as the serial port).
924 52c00a5f bellard
@item -S
925 52c00a5f bellard
Do not start CPU at startup (you must type 'c' in the monitor).
926 3b46e624 ths
@item -d
927 9d4520d0 bellard
Output log in /tmp/qemu.log
928 89dfe898 ths
@item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
929 46d4767d bellard
Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
930 46d4767d bellard
@var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
931 46d4767d bellard
translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
932 4be456f1 ths
all those parameters. This option is useful for old MS-DOS disk
933 46d4767d bellard
images.
934 7c3fc84d bellard
935 87b47350 bellard
@item -L path
936 87b47350 bellard
Set the directory for the BIOS, VGA BIOS and keymaps.
937 87b47350 bellard
938 15a34c63 bellard
@item -std-vga
939 15a34c63 bellard
Simulate a standard VGA card with Bochs VBE extensions (default is
940 3cb0853a bellard
Cirrus Logic GD5446 PCI VGA). If your guest OS supports the VESA 2.0
941 3cb0853a bellard
VBE extensions (e.g. Windows XP) and if you want to use high
942 3cb0853a bellard
resolution modes (>= 1280x1024x16) then you should use this option.
943 3cb0853a bellard
944 3c656346 bellard
@item -no-acpi
945 3c656346 bellard
Disable ACPI (Advanced Configuration and Power Interface) support. Use
946 3c656346 bellard
it if your guest OS complains about ACPI problems (PC target machine
947 3c656346 bellard
only).
948 3c656346 bellard
949 d1beab82 bellard
@item -no-reboot
950 d1beab82 bellard
Exit instead of rebooting.
951 d1beab82 bellard
952 99aa9e4c aurel32
@item -no-shutdown
953 99aa9e4c aurel32
Don't exit QEMU on guest shutdown, but instead only stop the emulation.
954 99aa9e4c aurel32
This allows for instance switching to monitor to commit changes to the
955 99aa9e4c aurel32
disk image.
956 99aa9e4c aurel32
957 d63d307f bellard
@item -loadvm file
958 d63d307f bellard
Start right away with a saved state (@code{loadvm} in monitor)
959 8e71621f pbrook
960 8e71621f pbrook
@item -semihosting
961 a87295e8 pbrook
Enable semihosting syscall emulation (ARM and M68K target machines only).
962 a87295e8 pbrook
963 a87295e8 pbrook
On ARM this implements the "Angel" interface.
964 a87295e8 pbrook
On M68K this implements the "ColdFire GDB" interface used by libgloss.
965 a87295e8 pbrook
966 8e71621f pbrook
Note that this allows guest direct access to the host filesystem,
967 8e71621f pbrook
so should only be used with trusted guest OS.
968 ec410fc9 bellard
@end table
969 ec410fc9 bellard
970 3e11db9a bellard
@c man end
971 3e11db9a bellard
972 debc7065 bellard
@node pcsys_keys
973 3e11db9a bellard
@section Keys
974 3e11db9a bellard
975 3e11db9a bellard
@c man begin OPTIONS
976 3e11db9a bellard
977 a1b74fe8 bellard
During the graphical emulation, you can use the following keys:
978 a1b74fe8 bellard
@table @key
979 f9859310 bellard
@item Ctrl-Alt-f
980 a1b74fe8 bellard
Toggle full screen
981 a0a821a4 bellard
982 f9859310 bellard
@item Ctrl-Alt-n
983 a0a821a4 bellard
Switch to virtual console 'n'. Standard console mappings are:
984 a0a821a4 bellard
@table @emph
985 a0a821a4 bellard
@item 1
986 a0a821a4 bellard
Target system display
987 a0a821a4 bellard
@item 2
988 a0a821a4 bellard
Monitor
989 a0a821a4 bellard
@item 3
990 a0a821a4 bellard
Serial port
991 a1b74fe8 bellard
@end table
992 a1b74fe8 bellard
993 f9859310 bellard
@item Ctrl-Alt
994 a0a821a4 bellard
Toggle mouse and keyboard grab.
995 a0a821a4 bellard
@end table
996 a0a821a4 bellard
997 3e11db9a bellard
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
998 3e11db9a bellard
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
999 3e11db9a bellard
1000 a0a821a4 bellard
During emulation, if you are using the @option{-nographic} option, use
1001 a0a821a4 bellard
@key{Ctrl-a h} to get terminal commands:
1002 ec410fc9 bellard
1003 ec410fc9 bellard
@table @key
1004 a1b74fe8 bellard
@item Ctrl-a h
1005 ec410fc9 bellard
Print this help
1006 3b46e624 ths
@item Ctrl-a x
1007 366dfc52 ths
Exit emulator
1008 3b46e624 ths
@item Ctrl-a s
1009 1f47a922 bellard
Save disk data back to file (if -snapshot)
1010 20d8a3ed ths
@item Ctrl-a t
1011 20d8a3ed ths
toggle console timestamps
1012 a1b74fe8 bellard
@item Ctrl-a b
1013 1f673135 bellard
Send break (magic sysrq in Linux)
1014 a1b74fe8 bellard
@item Ctrl-a c
1015 1f673135 bellard
Switch between console and monitor
1016 a1b74fe8 bellard
@item Ctrl-a Ctrl-a
1017 a1b74fe8 bellard
Send Ctrl-a
1018 ec410fc9 bellard
@end table
1019 0806e3f6 bellard
@c man end
1020 0806e3f6 bellard
1021 0806e3f6 bellard
@ignore
1022 0806e3f6 bellard
1023 1f673135 bellard
@c man begin SEEALSO
1024 1f673135 bellard
The HTML documentation of QEMU for more precise information and Linux
1025 1f673135 bellard
user mode emulator invocation.
1026 1f673135 bellard
@c man end
1027 1f673135 bellard
1028 1f673135 bellard
@c man begin AUTHOR
1029 1f673135 bellard
Fabrice Bellard
1030 1f673135 bellard
@c man end
1031 1f673135 bellard
1032 1f673135 bellard
@end ignore
1033 1f673135 bellard
1034 debc7065 bellard
@node pcsys_monitor
1035 1f673135 bellard
@section QEMU Monitor
1036 1f673135 bellard
1037 1f673135 bellard
The QEMU monitor is used to give complex commands to the QEMU
1038 1f673135 bellard
emulator. You can use it to:
1039 1f673135 bellard
1040 1f673135 bellard
@itemize @minus
1041 1f673135 bellard
1042 1f673135 bellard
@item
1043 e598752a ths
Remove or insert removable media images
1044 89dfe898 ths
(such as CD-ROM or floppies).
1045 1f673135 bellard
1046 5fafdf24 ths
@item
1047 1f673135 bellard
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
1048 1f673135 bellard
from a disk file.
1049 1f673135 bellard
1050 1f673135 bellard
@item Inspect the VM state without an external debugger.
1051 1f673135 bellard
1052 1f673135 bellard
@end itemize
1053 1f673135 bellard
1054 1f673135 bellard
@subsection Commands
1055 1f673135 bellard
1056 1f673135 bellard
The following commands are available:
1057 1f673135 bellard
1058 1f673135 bellard
@table @option
1059 1f673135 bellard
1060 89dfe898 ths
@item help or ? [@var{cmd}]
1061 1f673135 bellard
Show the help for all commands or just for command @var{cmd}.
1062 1f673135 bellard
1063 3b46e624 ths
@item commit
1064 89dfe898 ths
Commit changes to the disk images (if -snapshot is used).
1065 1f673135 bellard
1066 89dfe898 ths
@item info @var{subcommand}
1067 89dfe898 ths
Show various information about the system state.
1068 1f673135 bellard
1069 1f673135 bellard
@table @option
1070 1f673135 bellard
@item info network
1071 41d03949 bellard
show the various VLANs and the associated devices
1072 1f673135 bellard
@item info block
1073 1f673135 bellard
show the block devices
1074 1f673135 bellard
@item info registers
1075 1f673135 bellard
show the cpu registers
1076 1f673135 bellard
@item info history
1077 1f673135 bellard
show the command line history
1078 b389dbfb bellard
@item info pci
1079 b389dbfb bellard
show emulated PCI device
1080 b389dbfb bellard
@item info usb
1081 b389dbfb bellard
show USB devices plugged on the virtual USB hub
1082 b389dbfb bellard
@item info usbhost
1083 b389dbfb bellard
show all USB host devices
1084 a3c25997 bellard
@item info capture
1085 a3c25997 bellard
show information about active capturing
1086 13a2e80f bellard
@item info snapshots
1087 13a2e80f bellard
show list of VM snapshots
1088 455204eb ths
@item info mice
1089 455204eb ths
show which guest mouse is receiving events
1090 1f673135 bellard
@end table
1091 1f673135 bellard
1092 1f673135 bellard
@item q or quit
1093 1f673135 bellard
Quit the emulator.
1094 1f673135 bellard
1095 89dfe898 ths
@item eject [-f] @var{device}
1096 e598752a ths
Eject a removable medium (use -f to force it).
1097 1f673135 bellard
1098 89dfe898 ths
@item change @var{device} @var{setting}
1099 f858dcae ths
1100 89dfe898 ths
Change the configuration of a device.
1101 f858dcae ths
1102 f858dcae ths
@table @option
1103 f858dcae ths
@item change @var{diskdevice} @var{filename}
1104 f858dcae ths
Change the medium for a removable disk device to point to @var{filename}. eg
1105 f858dcae ths
1106 f858dcae ths
@example
1107 4bf27c24 aurel32
(qemu) change ide1-cd0 /path/to/some.iso
1108 f858dcae ths
@end example
1109 f858dcae ths
1110 89dfe898 ths
@item change vnc @var{display},@var{options}
1111 f858dcae ths
Change the configuration of the VNC server. The valid syntax for @var{display}
1112 f858dcae ths
and @var{options} are described at @ref{sec_invocation}. eg
1113 f858dcae ths
1114 f858dcae ths
@example
1115 f858dcae ths
(qemu) change vnc localhost:1
1116 f858dcae ths
@end example
1117 f858dcae ths
1118 f858dcae ths
@item change vnc password
1119 f858dcae ths
1120 f858dcae ths
Change the password associated with the VNC server. The monitor will prompt for
1121 f858dcae ths
the new password to be entered. VNC passwords are only significant upto 8 letters.
1122 f858dcae ths
eg.
1123 f858dcae ths
1124 f858dcae ths
@example
1125 f858dcae ths
(qemu) change vnc password
1126 f858dcae ths
Password: ********
1127 f858dcae ths
@end example
1128 f858dcae ths
1129 f858dcae ths
@end table
1130 1f673135 bellard
1131 89dfe898 ths
@item screendump @var{filename}
1132 1f673135 bellard
Save screen into PPM image @var{filename}.
1133 1f673135 bellard
1134 89dfe898 ths
@item mouse_move @var{dx} @var{dy} [@var{dz}]
1135 455204eb ths
Move the active mouse to the specified coordinates @var{dx} @var{dy}
1136 455204eb ths
with optional scroll axis @var{dz}.
1137 455204eb ths
1138 89dfe898 ths
@item mouse_button @var{val}
1139 455204eb ths
Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
1140 455204eb ths
1141 89dfe898 ths
@item mouse_set @var{index}
1142 455204eb ths
Set which mouse device receives events at given @var{index}, index
1143 455204eb ths
can be obtained with
1144 455204eb ths
@example
1145 455204eb ths
info mice
1146 455204eb ths
@end example
1147 455204eb ths
1148 89dfe898 ths
@item wavcapture @var{filename} [@var{frequency} [@var{bits} [@var{channels}]]]
1149 a3c25997 bellard
Capture audio into @var{filename}. Using sample rate @var{frequency}
1150 a3c25997 bellard
bits per sample @var{bits} and number of channels @var{channels}.
1151 a3c25997 bellard
1152 a3c25997 bellard
Defaults:
1153 a3c25997 bellard
@itemize @minus
1154 a3c25997 bellard
@item Sample rate = 44100 Hz - CD quality
1155 a3c25997 bellard
@item Bits = 16
1156 a3c25997 bellard
@item Number of channels = 2 - Stereo
1157 a3c25997 bellard
@end itemize
1158 a3c25997 bellard
1159 89dfe898 ths
@item stopcapture @var{index}
1160 a3c25997 bellard
Stop capture with a given @var{index}, index can be obtained with
1161 a3c25997 bellard
@example
1162 a3c25997 bellard
info capture
1163 a3c25997 bellard
@end example
1164 a3c25997 bellard
1165 89dfe898 ths
@item log @var{item1}[,...]
1166 1f673135 bellard
Activate logging of the specified items to @file{/tmp/qemu.log}.
1167 1f673135 bellard
1168 89dfe898 ths
@item savevm [@var{tag}|@var{id}]
1169 13a2e80f bellard
Create a snapshot of the whole virtual machine. If @var{tag} is
1170 13a2e80f bellard
provided, it is used as human readable identifier. If there is already
1171 13a2e80f bellard
a snapshot with the same tag or ID, it is replaced. More info at
1172 13a2e80f bellard
@ref{vm_snapshots}.
1173 1f673135 bellard
1174 89dfe898 ths
@item loadvm @var{tag}|@var{id}
1175 13a2e80f bellard
Set the whole virtual machine to the snapshot identified by the tag
1176 13a2e80f bellard
@var{tag} or the unique snapshot ID @var{id}.
1177 13a2e80f bellard
1178 89dfe898 ths
@item delvm @var{tag}|@var{id}
1179 13a2e80f bellard
Delete the snapshot identified by @var{tag} or @var{id}.
1180 1f673135 bellard
1181 1f673135 bellard
@item stop
1182 1f673135 bellard
Stop emulation.
1183 1f673135 bellard
1184 1f673135 bellard
@item c or cont
1185 1f673135 bellard
Resume emulation.
1186 1f673135 bellard
1187 89dfe898 ths
@item gdbserver [@var{port}]
1188 89dfe898 ths
Start gdbserver session (default @var{port}=1234)
1189 1f673135 bellard
1190 89dfe898 ths
@item x/fmt @var{addr}
1191 1f673135 bellard
Virtual memory dump starting at @var{addr}.
1192 1f673135 bellard
1193 89dfe898 ths
@item xp /@var{fmt} @var{addr}
1194 1f673135 bellard
Physical memory dump starting at @var{addr}.
1195 1f673135 bellard
1196 1f673135 bellard
@var{fmt} is a format which tells the command how to format the
1197 1f673135 bellard
data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
1198 1f673135 bellard
1199 1f673135 bellard
@table @var
1200 5fafdf24 ths
@item count
1201 1f673135 bellard
is the number of items to be dumped.
1202 1f673135 bellard
1203 1f673135 bellard
@item format
1204 4be456f1 ths
can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
1205 1f673135 bellard
c (char) or i (asm instruction).
1206 1f673135 bellard
1207 1f673135 bellard
@item size
1208 52c00a5f bellard
can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
1209 52c00a5f bellard
@code{h} or @code{w} can be specified with the @code{i} format to
1210 52c00a5f bellard
respectively select 16 or 32 bit code instruction size.
1211 1f673135 bellard
1212 1f673135 bellard
@end table
1213 1f673135 bellard
1214 5fafdf24 ths
Examples:
1215 1f673135 bellard
@itemize
1216 1f673135 bellard
@item
1217 1f673135 bellard
Dump 10 instructions at the current instruction pointer:
1218 5fafdf24 ths
@example
1219 1f673135 bellard
(qemu) x/10i $eip
1220 1f673135 bellard
0x90107063:  ret
1221 1f673135 bellard
0x90107064:  sti
1222 1f673135 bellard
0x90107065:  lea    0x0(%esi,1),%esi
1223 1f673135 bellard
0x90107069:  lea    0x0(%edi,1),%edi
1224 1f673135 bellard
0x90107070:  ret
1225 1f673135 bellard
0x90107071:  jmp    0x90107080
1226 1f673135 bellard
0x90107073:  nop
1227 1f673135 bellard
0x90107074:  nop
1228 1f673135 bellard
0x90107075:  nop
1229 1f673135 bellard
0x90107076:  nop
1230 1f673135 bellard
@end example
1231 1f673135 bellard
1232 1f673135 bellard
@item
1233 1f673135 bellard
Dump 80 16 bit values at the start of the video memory.
1234 5fafdf24 ths
@smallexample
1235 1f673135 bellard
(qemu) xp/80hx 0xb8000
1236 1f673135 bellard
0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
1237 1f673135 bellard
0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
1238 1f673135 bellard
0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
1239 1f673135 bellard
0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
1240 1f673135 bellard
0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
1241 1f673135 bellard
0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
1242 1f673135 bellard
0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1243 1f673135 bellard
0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1244 1f673135 bellard
0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1245 1f673135 bellard
0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1246 debc7065 bellard
@end smallexample
1247 1f673135 bellard
@end itemize
1248 1f673135 bellard
1249 89dfe898 ths
@item p or print/@var{fmt} @var{expr}
1250 1f673135 bellard
1251 1f673135 bellard
Print expression value. Only the @var{format} part of @var{fmt} is
1252 1f673135 bellard
used.
1253 0806e3f6 bellard
1254 89dfe898 ths
@item sendkey @var{keys}
1255 a3a91a35 bellard
1256 a3a91a35 bellard
Send @var{keys} to the emulator. Use @code{-} to press several keys
1257 a3a91a35 bellard
simultaneously. Example:
1258 a3a91a35 bellard
@example
1259 a3a91a35 bellard
sendkey ctrl-alt-f1
1260 a3a91a35 bellard
@end example
1261 a3a91a35 bellard
1262 a3a91a35 bellard
This command is useful to send keys that your graphical user interface
1263 a3a91a35 bellard
intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
1264 a3a91a35 bellard
1265 15a34c63 bellard
@item system_reset
1266 15a34c63 bellard
1267 15a34c63 bellard
Reset the system.
1268 15a34c63 bellard
1269 0ecdffbb aurel32
@item boot_set @var{bootdevicelist}
1270 0ecdffbb aurel32
1271 0ecdffbb aurel32
Define new values for the boot device list. Those values will override
1272 0ecdffbb aurel32
the values specified on the command line through the @code{-boot} option.
1273 0ecdffbb aurel32
1274 0ecdffbb aurel32
The values that can be specified here depend on the machine type, but are
1275 0ecdffbb aurel32
the same that can be specified in the @code{-boot} command line option.
1276 0ecdffbb aurel32
1277 89dfe898 ths
@item usb_add @var{devname}
1278 b389dbfb bellard
1279 0aff66b5 pbrook
Add the USB device @var{devname}.  For details of available devices see
1280 0aff66b5 pbrook
@ref{usb_devices}
1281 b389dbfb bellard
1282 89dfe898 ths
@item usb_del @var{devname}
1283 b389dbfb bellard
1284 b389dbfb bellard
Remove the USB device @var{devname} from the QEMU virtual USB
1285 b389dbfb bellard
hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
1286 b389dbfb bellard
command @code{info usb} to see the devices you can remove.
1287 b389dbfb bellard
1288 1f673135 bellard
@end table
1289 0806e3f6 bellard
1290 1f673135 bellard
@subsection Integer expressions
1291 1f673135 bellard
1292 1f673135 bellard
The monitor understands integers expressions for every integer
1293 1f673135 bellard
argument. You can use register names to get the value of specifics
1294 1f673135 bellard
CPU registers by prefixing them with @emph{$}.
1295 ec410fc9 bellard
1296 1f47a922 bellard
@node disk_images
1297 1f47a922 bellard
@section Disk Images
1298 1f47a922 bellard
1299 acd935ef bellard
Since version 0.6.1, QEMU supports many disk image formats, including
1300 acd935ef bellard
growable disk images (their size increase as non empty sectors are
1301 13a2e80f bellard
written), compressed and encrypted disk images. Version 0.8.3 added
1302 13a2e80f bellard
the new qcow2 disk image format which is essential to support VM
1303 13a2e80f bellard
snapshots.
1304 1f47a922 bellard
1305 debc7065 bellard
@menu
1306 debc7065 bellard
* disk_images_quickstart::    Quick start for disk image creation
1307 debc7065 bellard
* disk_images_snapshot_mode:: Snapshot mode
1308 13a2e80f bellard
* vm_snapshots::              VM snapshots
1309 debc7065 bellard
* qemu_img_invocation::       qemu-img Invocation
1310 19cb3738 bellard
* host_drives::               Using host drives
1311 debc7065 bellard
* disk_images_fat_images::    Virtual FAT disk images
1312 debc7065 bellard
@end menu
1313 debc7065 bellard
1314 debc7065 bellard
@node disk_images_quickstart
1315 acd935ef bellard
@subsection Quick start for disk image creation
1316 acd935ef bellard
1317 acd935ef bellard
You can create a disk image with the command:
1318 1f47a922 bellard
@example
1319 acd935ef bellard
qemu-img create myimage.img mysize
1320 1f47a922 bellard
@end example
1321 acd935ef bellard
where @var{myimage.img} is the disk image filename and @var{mysize} is its
1322 acd935ef bellard
size in kilobytes. You can add an @code{M} suffix to give the size in
1323 acd935ef bellard
megabytes and a @code{G} suffix for gigabytes.
1324 acd935ef bellard
1325 debc7065 bellard
See @ref{qemu_img_invocation} for more information.
1326 1f47a922 bellard
1327 debc7065 bellard
@node disk_images_snapshot_mode
1328 1f47a922 bellard
@subsection Snapshot mode
1329 1f47a922 bellard
1330 1f47a922 bellard
If you use the option @option{-snapshot}, all disk images are
1331 1f47a922 bellard
considered as read only. When sectors in written, they are written in
1332 1f47a922 bellard
a temporary file created in @file{/tmp}. You can however force the
1333 acd935ef bellard
write back to the raw disk images by using the @code{commit} monitor
1334 acd935ef bellard
command (or @key{C-a s} in the serial console).
1335 1f47a922 bellard
1336 13a2e80f bellard
@node vm_snapshots
1337 13a2e80f bellard
@subsection VM snapshots
1338 13a2e80f bellard
1339 13a2e80f bellard
VM snapshots are snapshots of the complete virtual machine including
1340 13a2e80f bellard
CPU state, RAM, device state and the content of all the writable
1341 13a2e80f bellard
disks. In order to use VM snapshots, you must have at least one non
1342 13a2e80f bellard
removable and writable block device using the @code{qcow2} disk image
1343 13a2e80f bellard
format. Normally this device is the first virtual hard drive.
1344 13a2e80f bellard
1345 13a2e80f bellard
Use the monitor command @code{savevm} to create a new VM snapshot or
1346 13a2e80f bellard
replace an existing one. A human readable name can be assigned to each
1347 19d36792 bellard
snapshot in addition to its numerical ID.
1348 13a2e80f bellard
1349 13a2e80f bellard
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1350 13a2e80f bellard
a VM snapshot. @code{info snapshots} lists the available snapshots
1351 13a2e80f bellard
with their associated information:
1352 13a2e80f bellard
1353 13a2e80f bellard
@example
1354 13a2e80f bellard
(qemu) info snapshots
1355 13a2e80f bellard
Snapshot devices: hda
1356 13a2e80f bellard
Snapshot list (from hda):
1357 13a2e80f bellard
ID        TAG                 VM SIZE                DATE       VM CLOCK
1358 13a2e80f bellard
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
1359 13a2e80f bellard
2                                 40M 2006-08-06 12:43:29   00:00:18.633
1360 13a2e80f bellard
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
1361 13a2e80f bellard
@end example
1362 13a2e80f bellard
1363 13a2e80f bellard
A VM snapshot is made of a VM state info (its size is shown in
1364 13a2e80f bellard
@code{info snapshots}) and a snapshot of every writable disk image.
1365 13a2e80f bellard
The VM state info is stored in the first @code{qcow2} non removable
1366 13a2e80f bellard
and writable block device. The disk image snapshots are stored in
1367 13a2e80f bellard
every disk image. The size of a snapshot in a disk image is difficult
1368 13a2e80f bellard
to evaluate and is not shown by @code{info snapshots} because the
1369 13a2e80f bellard
associated disk sectors are shared among all the snapshots to save
1370 19d36792 bellard
disk space (otherwise each snapshot would need a full copy of all the
1371 19d36792 bellard
disk images).
1372 13a2e80f bellard
1373 13a2e80f bellard
When using the (unrelated) @code{-snapshot} option
1374 13a2e80f bellard
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1375 13a2e80f bellard
but they are deleted as soon as you exit QEMU.
1376 13a2e80f bellard
1377 13a2e80f bellard
VM snapshots currently have the following known limitations:
1378 13a2e80f bellard
@itemize
1379 5fafdf24 ths
@item
1380 13a2e80f bellard
They cannot cope with removable devices if they are removed or
1381 13a2e80f bellard
inserted after a snapshot is done.
1382 5fafdf24 ths
@item
1383 13a2e80f bellard
A few device drivers still have incomplete snapshot support so their
1384 13a2e80f bellard
state is not saved or restored properly (in particular USB).
1385 13a2e80f bellard
@end itemize
1386 13a2e80f bellard
1387 acd935ef bellard
@node qemu_img_invocation
1388 acd935ef bellard
@subsection @code{qemu-img} Invocation
1389 1f47a922 bellard
1390 acd935ef bellard
@include qemu-img.texi
1391 05efe46e bellard
1392 19cb3738 bellard
@node host_drives
1393 19cb3738 bellard
@subsection Using host drives
1394 19cb3738 bellard
1395 19cb3738 bellard
In addition to disk image files, QEMU can directly access host
1396 19cb3738 bellard
devices. We describe here the usage for QEMU version >= 0.8.3.
1397 19cb3738 bellard
1398 19cb3738 bellard
@subsubsection Linux
1399 19cb3738 bellard
1400 19cb3738 bellard
On Linux, you can directly use the host device filename instead of a
1401 4be456f1 ths
disk image filename provided you have enough privileges to access
1402 19cb3738 bellard
it. For example, use @file{/dev/cdrom} to access to the CDROM or
1403 19cb3738 bellard
@file{/dev/fd0} for the floppy.
1404 19cb3738 bellard
1405 f542086d bellard
@table @code
1406 19cb3738 bellard
@item CD
1407 19cb3738 bellard
You can specify a CDROM device even if no CDROM is loaded. QEMU has
1408 19cb3738 bellard
specific code to detect CDROM insertion or removal. CDROM ejection by
1409 19cb3738 bellard
the guest OS is supported. Currently only data CDs are supported.
1410 19cb3738 bellard
@item Floppy
1411 19cb3738 bellard
You can specify a floppy device even if no floppy is loaded. Floppy
1412 19cb3738 bellard
removal is currently not detected accurately (if you change floppy
1413 19cb3738 bellard
without doing floppy access while the floppy is not loaded, the guest
1414 19cb3738 bellard
OS will think that the same floppy is loaded).
1415 19cb3738 bellard
@item Hard disks
1416 19cb3738 bellard
Hard disks can be used. Normally you must specify the whole disk
1417 19cb3738 bellard
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1418 19cb3738 bellard
see it as a partitioned disk. WARNING: unless you know what you do, it
1419 19cb3738 bellard
is better to only make READ-ONLY accesses to the hard disk otherwise
1420 19cb3738 bellard
you may corrupt your host data (use the @option{-snapshot} command
1421 19cb3738 bellard
line option or modify the device permissions accordingly).
1422 19cb3738 bellard
@end table
1423 19cb3738 bellard
1424 19cb3738 bellard
@subsubsection Windows
1425 19cb3738 bellard
1426 01781963 bellard
@table @code
1427 01781963 bellard
@item CD
1428 4be456f1 ths
The preferred syntax is the drive letter (e.g. @file{d:}). The
1429 01781963 bellard
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1430 01781963 bellard
supported as an alias to the first CDROM drive.
1431 19cb3738 bellard
1432 e598752a ths
Currently there is no specific code to handle removable media, so it
1433 19cb3738 bellard
is better to use the @code{change} or @code{eject} monitor commands to
1434 19cb3738 bellard
change or eject media.
1435 01781963 bellard
@item Hard disks
1436 89dfe898 ths
Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
1437 01781963 bellard
where @var{N} is the drive number (0 is the first hard disk).
1438 01781963 bellard
1439 01781963 bellard
WARNING: unless you know what you do, it is better to only make
1440 01781963 bellard
READ-ONLY accesses to the hard disk otherwise you may corrupt your
1441 01781963 bellard
host data (use the @option{-snapshot} command line so that the
1442 01781963 bellard
modifications are written in a temporary file).
1443 01781963 bellard
@end table
1444 01781963 bellard
1445 19cb3738 bellard
1446 19cb3738 bellard
@subsubsection Mac OS X
1447 19cb3738 bellard
1448 5fafdf24 ths
@file{/dev/cdrom} is an alias to the first CDROM.
1449 19cb3738 bellard
1450 e598752a ths
Currently there is no specific code to handle removable media, so it
1451 19cb3738 bellard
is better to use the @code{change} or @code{eject} monitor commands to
1452 19cb3738 bellard
change or eject media.
1453 19cb3738 bellard
1454 debc7065 bellard
@node disk_images_fat_images
1455 2c6cadd4 bellard
@subsection Virtual FAT disk images
1456 2c6cadd4 bellard
1457 2c6cadd4 bellard
QEMU can automatically create a virtual FAT disk image from a
1458 2c6cadd4 bellard
directory tree. In order to use it, just type:
1459 2c6cadd4 bellard
1460 5fafdf24 ths
@example
1461 2c6cadd4 bellard
qemu linux.img -hdb fat:/my_directory
1462 2c6cadd4 bellard
@end example
1463 2c6cadd4 bellard
1464 2c6cadd4 bellard
Then you access access to all the files in the @file{/my_directory}
1465 2c6cadd4 bellard
directory without having to copy them in a disk image or to export
1466 2c6cadd4 bellard
them via SAMBA or NFS. The default access is @emph{read-only}.
1467 2c6cadd4 bellard
1468 2c6cadd4 bellard
Floppies can be emulated with the @code{:floppy:} option:
1469 2c6cadd4 bellard
1470 5fafdf24 ths
@example
1471 2c6cadd4 bellard
qemu linux.img -fda fat:floppy:/my_directory
1472 2c6cadd4 bellard
@end example
1473 2c6cadd4 bellard
1474 2c6cadd4 bellard
A read/write support is available for testing (beta stage) with the
1475 2c6cadd4 bellard
@code{:rw:} option:
1476 2c6cadd4 bellard
1477 5fafdf24 ths
@example
1478 2c6cadd4 bellard
qemu linux.img -fda fat:floppy:rw:/my_directory
1479 2c6cadd4 bellard
@end example
1480 2c6cadd4 bellard
1481 2c6cadd4 bellard
What you should @emph{never} do:
1482 2c6cadd4 bellard
@itemize
1483 2c6cadd4 bellard
@item use non-ASCII filenames ;
1484 2c6cadd4 bellard
@item use "-snapshot" together with ":rw:" ;
1485 85b2c688 bellard
@item expect it to work when loadvm'ing ;
1486 85b2c688 bellard
@item write to the FAT directory on the host system while accessing it with the guest system.
1487 2c6cadd4 bellard
@end itemize
1488 2c6cadd4 bellard
1489 debc7065 bellard
@node pcsys_network
1490 9d4fb82e bellard
@section Network emulation
1491 9d4fb82e bellard
1492 4be456f1 ths
QEMU can simulate several network cards (PCI or ISA cards on the PC
1493 41d03949 bellard
target) and can connect them to an arbitrary number of Virtual Local
1494 41d03949 bellard
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1495 41d03949 bellard
VLAN. VLAN can be connected between separate instances of QEMU to
1496 4be456f1 ths
simulate large networks. For simpler usage, a non privileged user mode
1497 41d03949 bellard
network stack can replace the TAP device to have a basic network
1498 41d03949 bellard
connection.
1499 41d03949 bellard
1500 41d03949 bellard
@subsection VLANs
1501 9d4fb82e bellard
1502 41d03949 bellard
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1503 41d03949 bellard
connection between several network devices. These devices can be for
1504 41d03949 bellard
example QEMU virtual Ethernet cards or virtual Host ethernet devices
1505 41d03949 bellard
(TAP devices).
1506 9d4fb82e bellard
1507 41d03949 bellard
@subsection Using TAP network interfaces
1508 41d03949 bellard
1509 41d03949 bellard
This is the standard way to connect QEMU to a real network. QEMU adds
1510 41d03949 bellard
a virtual network device on your host (called @code{tapN}), and you
1511 41d03949 bellard
can then configure it as if it was a real ethernet card.
1512 9d4fb82e bellard
1513 8f40c388 bellard
@subsubsection Linux host
1514 8f40c388 bellard
1515 9d4fb82e bellard
As an example, you can download the @file{linux-test-xxx.tar.gz}
1516 9d4fb82e bellard
archive and copy the script @file{qemu-ifup} in @file{/etc} and
1517 9d4fb82e bellard
configure properly @code{sudo} so that the command @code{ifconfig}
1518 9d4fb82e bellard
contained in @file{qemu-ifup} can be executed as root. You must verify
1519 41d03949 bellard
that your host kernel supports the TAP network interfaces: the
1520 9d4fb82e bellard
device @file{/dev/net/tun} must be present.
1521 9d4fb82e bellard
1522 ee0f4751 bellard
See @ref{sec_invocation} to have examples of command lines using the
1523 ee0f4751 bellard
TAP network interfaces.
1524 9d4fb82e bellard
1525 8f40c388 bellard
@subsubsection Windows host
1526 8f40c388 bellard
1527 8f40c388 bellard
There is a virtual ethernet driver for Windows 2000/XP systems, called
1528 8f40c388 bellard
TAP-Win32. But it is not included in standard QEMU for Windows,
1529 8f40c388 bellard
so you will need to get it separately. It is part of OpenVPN package,
1530 8f40c388 bellard
so download OpenVPN from : @url{http://openvpn.net/}.
1531 8f40c388 bellard
1532 9d4fb82e bellard
@subsection Using the user mode network stack
1533 9d4fb82e bellard
1534 41d03949 bellard
By using the option @option{-net user} (default configuration if no
1535 41d03949 bellard
@option{-net} option is specified), QEMU uses a completely user mode
1536 4be456f1 ths
network stack (you don't need root privilege to use the virtual
1537 41d03949 bellard
network). The virtual network configuration is the following:
1538 9d4fb82e bellard
1539 9d4fb82e bellard
@example
1540 9d4fb82e bellard
1541 41d03949 bellard
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1542 41d03949 bellard
                           |          (10.0.2.2)
1543 9d4fb82e bellard
                           |
1544 2518bd0d bellard
                           ---->  DNS server (10.0.2.3)
1545 3b46e624 ths
                           |
1546 2518bd0d bellard
                           ---->  SMB server (10.0.2.4)
1547 9d4fb82e bellard
@end example
1548 9d4fb82e bellard
1549 9d4fb82e bellard
The QEMU VM behaves as if it was behind a firewall which blocks all
1550 9d4fb82e bellard
incoming connections. You can use a DHCP client to automatically
1551 41d03949 bellard
configure the network in the QEMU VM. The DHCP server assign addresses
1552 41d03949 bellard
to the hosts starting from 10.0.2.15.
1553 9d4fb82e bellard
1554 9d4fb82e bellard
In order to check that the user mode network is working, you can ping
1555 9d4fb82e bellard
the address 10.0.2.2 and verify that you got an address in the range
1556 9d4fb82e bellard
10.0.2.x from the QEMU virtual DHCP server.
1557 9d4fb82e bellard
1558 b415a407 bellard
Note that @code{ping} is not supported reliably to the internet as it
1559 4be456f1 ths
would require root privileges. It means you can only ping the local
1560 b415a407 bellard
router (10.0.2.2).
1561 b415a407 bellard
1562 9bf05444 bellard
When using the built-in TFTP server, the router is also the TFTP
1563 9bf05444 bellard
server.
1564 9bf05444 bellard
1565 9bf05444 bellard
When using the @option{-redir} option, TCP or UDP connections can be
1566 9bf05444 bellard
redirected from the host to the guest. It allows for example to
1567 9bf05444 bellard
redirect X11, telnet or SSH connections.
1568 443f1376 bellard
1569 41d03949 bellard
@subsection Connecting VLANs between QEMU instances
1570 41d03949 bellard
1571 41d03949 bellard
Using the @option{-net socket} option, it is possible to make VLANs
1572 41d03949 bellard
that span several QEMU instances. See @ref{sec_invocation} to have a
1573 41d03949 bellard
basic example.
1574 41d03949 bellard
1575 9d4fb82e bellard
@node direct_linux_boot
1576 9d4fb82e bellard
@section Direct Linux Boot
1577 1f673135 bellard
1578 1f673135 bellard
This section explains how to launch a Linux kernel inside QEMU without
1579 1f673135 bellard
having to make a full bootable image. It is very useful for fast Linux
1580 ee0f4751 bellard
kernel testing.
1581 1f673135 bellard
1582 ee0f4751 bellard
The syntax is:
1583 1f673135 bellard
@example
1584 ee0f4751 bellard
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1585 1f673135 bellard
@end example
1586 1f673135 bellard
1587 ee0f4751 bellard
Use @option{-kernel} to provide the Linux kernel image and
1588 ee0f4751 bellard
@option{-append} to give the kernel command line arguments. The
1589 ee0f4751 bellard
@option{-initrd} option can be used to provide an INITRD image.
1590 1f673135 bellard
1591 ee0f4751 bellard
When using the direct Linux boot, a disk image for the first hard disk
1592 ee0f4751 bellard
@file{hda} is required because its boot sector is used to launch the
1593 ee0f4751 bellard
Linux kernel.
1594 1f673135 bellard
1595 ee0f4751 bellard
If you do not need graphical output, you can disable it and redirect
1596 ee0f4751 bellard
the virtual serial port and the QEMU monitor to the console with the
1597 ee0f4751 bellard
@option{-nographic} option. The typical command line is:
1598 1f673135 bellard
@example
1599 ee0f4751 bellard
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1600 ee0f4751 bellard
     -append "root=/dev/hda console=ttyS0" -nographic
1601 1f673135 bellard
@end example
1602 1f673135 bellard
1603 ee0f4751 bellard
Use @key{Ctrl-a c} to switch between the serial console and the
1604 ee0f4751 bellard
monitor (@pxref{pcsys_keys}).
1605 1f673135 bellard
1606 debc7065 bellard
@node pcsys_usb
1607 b389dbfb bellard
@section USB emulation
1608 b389dbfb bellard
1609 0aff66b5 pbrook
QEMU emulates a PCI UHCI USB controller. You can virtually plug
1610 0aff66b5 pbrook
virtual USB devices or real host USB devices (experimental, works only
1611 0aff66b5 pbrook
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1612 f542086d bellard
as necessary to connect multiple USB devices.
1613 b389dbfb bellard
1614 0aff66b5 pbrook
@menu
1615 0aff66b5 pbrook
* usb_devices::
1616 0aff66b5 pbrook
* host_usb_devices::
1617 0aff66b5 pbrook
@end menu
1618 0aff66b5 pbrook
@node usb_devices
1619 0aff66b5 pbrook
@subsection Connecting USB devices
1620 b389dbfb bellard
1621 0aff66b5 pbrook
USB devices can be connected with the @option{-usbdevice} commandline option
1622 0aff66b5 pbrook
or the @code{usb_add} monitor command.  Available devices are:
1623 b389dbfb bellard
1624 db380c06 balrog
@table @code
1625 db380c06 balrog
@item mouse
1626 0aff66b5 pbrook
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1627 db380c06 balrog
@item tablet
1628 c6d46c20 bellard
Pointer device that uses absolute coordinates (like a touchscreen).
1629 0aff66b5 pbrook
This means qemu is able to report the mouse position without having
1630 0aff66b5 pbrook
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1631 db380c06 balrog
@item disk:@var{file}
1632 0aff66b5 pbrook
Mass storage device based on @var{file} (@pxref{disk_images})
1633 db380c06 balrog
@item host:@var{bus.addr}
1634 0aff66b5 pbrook
Pass through the host device identified by @var{bus.addr}
1635 0aff66b5 pbrook
(Linux only)
1636 db380c06 balrog
@item host:@var{vendor_id:product_id}
1637 0aff66b5 pbrook
Pass through the host device identified by @var{vendor_id:product_id}
1638 0aff66b5 pbrook
(Linux only)
1639 db380c06 balrog
@item wacom-tablet
1640 f6d2a316 balrog
Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
1641 f6d2a316 balrog
above but it can be used with the tslib library because in addition to touch
1642 f6d2a316 balrog
coordinates it reports touch pressure.
1643 db380c06 balrog
@item keyboard
1644 47b2d338 balrog
Standard USB keyboard.  Will override the PS/2 keyboard (if present).
1645 db380c06 balrog
@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1646 db380c06 balrog
Serial converter. This emulates an FTDI FT232BM chip connected to host character
1647 db380c06 balrog
device @var{dev}. The available character devices are the same as for the
1648 db380c06 balrog
@code{-serial} option. The @code{vendorid} and @code{productid} options can be
1649 a11d070e balrog
used to override the default 0403:6001. For instance, 
1650 db380c06 balrog
@example
1651 db380c06 balrog
usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1652 db380c06 balrog
@end example
1653 db380c06 balrog
will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1654 db380c06 balrog
serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
1655 2e4d9fb1 aurel32
@item braille
1656 2e4d9fb1 aurel32
Braille device.  This will use BrlAPI to display the braille output on a real
1657 2e4d9fb1 aurel32
or fake device.
1658 0aff66b5 pbrook
@end table
1659 b389dbfb bellard
1660 0aff66b5 pbrook
@node host_usb_devices
1661 b389dbfb bellard
@subsection Using host USB devices on a Linux host
1662 b389dbfb bellard
1663 b389dbfb bellard
WARNING: this is an experimental feature. QEMU will slow down when
1664 b389dbfb bellard
using it. USB devices requiring real time streaming (i.e. USB Video
1665 b389dbfb bellard
Cameras) are not supported yet.
1666 b389dbfb bellard
1667 b389dbfb bellard
@enumerate
1668 5fafdf24 ths
@item If you use an early Linux 2.4 kernel, verify that no Linux driver
1669 b389dbfb bellard
is actually using the USB device. A simple way to do that is simply to
1670 b389dbfb bellard
disable the corresponding kernel module by renaming it from @file{mydriver.o}
1671 b389dbfb bellard
to @file{mydriver.o.disabled}.
1672 b389dbfb bellard
1673 b389dbfb bellard
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1674 b389dbfb bellard
@example
1675 b389dbfb bellard
ls /proc/bus/usb
1676 b389dbfb bellard
001  devices  drivers
1677 b389dbfb bellard
@end example
1678 b389dbfb bellard
1679 b389dbfb bellard
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1680 b389dbfb bellard
@example
1681 b389dbfb bellard
chown -R myuid /proc/bus/usb
1682 b389dbfb bellard
@end example
1683 b389dbfb bellard
1684 b389dbfb bellard
@item Launch QEMU and do in the monitor:
1685 5fafdf24 ths
@example
1686 b389dbfb bellard
info usbhost
1687 b389dbfb bellard
  Device 1.2, speed 480 Mb/s
1688 b389dbfb bellard
    Class 00: USB device 1234:5678, USB DISK
1689 b389dbfb bellard
@end example
1690 b389dbfb bellard
You should see the list of the devices you can use (Never try to use
1691 b389dbfb bellard
hubs, it won't work).
1692 b389dbfb bellard
1693 b389dbfb bellard
@item Add the device in QEMU by using:
1694 5fafdf24 ths
@example
1695 b389dbfb bellard
usb_add host:1234:5678
1696 b389dbfb bellard
@end example
1697 b389dbfb bellard
1698 b389dbfb bellard
Normally the guest OS should report that a new USB device is
1699 b389dbfb bellard
plugged. You can use the option @option{-usbdevice} to do the same.
1700 b389dbfb bellard
1701 b389dbfb bellard
@item Now you can try to use the host USB device in QEMU.
1702 b389dbfb bellard
1703 b389dbfb bellard
@end enumerate
1704 b389dbfb bellard
1705 b389dbfb bellard
When relaunching QEMU, you may have to unplug and plug again the USB
1706 b389dbfb bellard
device to make it work again (this is a bug).
1707 b389dbfb bellard
1708 f858dcae ths
@node vnc_security
1709 f858dcae ths
@section VNC security
1710 f858dcae ths
1711 f858dcae ths
The VNC server capability provides access to the graphical console
1712 f858dcae ths
of the guest VM across the network. This has a number of security
1713 f858dcae ths
considerations depending on the deployment scenarios.
1714 f858dcae ths
1715 f858dcae ths
@menu
1716 f858dcae ths
* vnc_sec_none::
1717 f858dcae ths
* vnc_sec_password::
1718 f858dcae ths
* vnc_sec_certificate::
1719 f858dcae ths
* vnc_sec_certificate_verify::
1720 f858dcae ths
* vnc_sec_certificate_pw::
1721 f858dcae ths
* vnc_generate_cert::
1722 f858dcae ths
@end menu
1723 f858dcae ths
@node vnc_sec_none
1724 f858dcae ths
@subsection Without passwords
1725 f858dcae ths
1726 f858dcae ths
The simplest VNC server setup does not include any form of authentication.
1727 f858dcae ths
For this setup it is recommended to restrict it to listen on a UNIX domain
1728 f858dcae ths
socket only. For example
1729 f858dcae ths
1730 f858dcae ths
@example
1731 f858dcae ths
qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1732 f858dcae ths
@end example
1733 f858dcae ths
1734 f858dcae ths
This ensures that only users on local box with read/write access to that
1735 f858dcae ths
path can access the VNC server. To securely access the VNC server from a
1736 f858dcae ths
remote machine, a combination of netcat+ssh can be used to provide a secure
1737 f858dcae ths
tunnel.
1738 f858dcae ths
1739 f858dcae ths
@node vnc_sec_password
1740 f858dcae ths
@subsection With passwords
1741 f858dcae ths
1742 f858dcae ths
The VNC protocol has limited support for password based authentication. Since
1743 f858dcae ths
the protocol limits passwords to 8 characters it should not be considered
1744 f858dcae ths
to provide high security. The password can be fairly easily brute-forced by
1745 f858dcae ths
a client making repeat connections. For this reason, a VNC server using password
1746 f858dcae ths
authentication should be restricted to only listen on the loopback interface
1747 f858dcae ths
or UNIX domain sockets. Password ayuthentication is requested with the @code{password}
1748 f858dcae ths
option, and then once QEMU is running the password is set with the monitor. Until
1749 f858dcae ths
the monitor is used to set the password all clients will be rejected.
1750 f858dcae ths
1751 f858dcae ths
@example
1752 f858dcae ths
qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1753 f858dcae ths
(qemu) change vnc password
1754 f858dcae ths
Password: ********
1755 f858dcae ths
(qemu)
1756 f858dcae ths
@end example
1757 f858dcae ths
1758 f858dcae ths
@node vnc_sec_certificate
1759 f858dcae ths
@subsection With x509 certificates
1760 f858dcae ths
1761 f858dcae ths
The QEMU VNC server also implements the VeNCrypt extension allowing use of
1762 f858dcae ths
TLS for encryption of the session, and x509 certificates for authentication.
1763 f858dcae ths
The use of x509 certificates is strongly recommended, because TLS on its
1764 f858dcae ths
own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1765 f858dcae ths
support provides a secure session, but no authentication. This allows any
1766 f858dcae ths
client to connect, and provides an encrypted session.
1767 f858dcae ths
1768 f858dcae ths
@example
1769 f858dcae ths
qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1770 f858dcae ths
@end example
1771 f858dcae ths
1772 f858dcae ths
In the above example @code{/etc/pki/qemu} should contain at least three files,
1773 f858dcae ths
@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1774 f858dcae ths
users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1775 f858dcae ths
NB the @code{server-key.pem} file should be protected with file mode 0600 to
1776 f858dcae ths
only be readable by the user owning it.
1777 f858dcae ths
1778 f858dcae ths
@node vnc_sec_certificate_verify
1779 f858dcae ths
@subsection With x509 certificates and client verification
1780 f858dcae ths
1781 f858dcae ths
Certificates can also provide a means to authenticate the client connecting.
1782 f858dcae ths
The server will request that the client provide a certificate, which it will
1783 f858dcae ths
then validate against the CA certificate. This is a good choice if deploying
1784 f858dcae ths
in an environment with a private internal certificate authority.
1785 f858dcae ths
1786 f858dcae ths
@example
1787 f858dcae ths
qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1788 f858dcae ths
@end example
1789 f858dcae ths
1790 f858dcae ths
1791 f858dcae ths
@node vnc_sec_certificate_pw
1792 f858dcae ths
@subsection With x509 certificates, client verification and passwords
1793 f858dcae ths
1794 f858dcae ths
Finally, the previous method can be combined with VNC password authentication
1795 f858dcae ths
to provide two layers of authentication for clients.
1796 f858dcae ths
1797 f858dcae ths
@example
1798 f858dcae ths
qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1799 f858dcae ths
(qemu) change vnc password
1800 f858dcae ths
Password: ********
1801 f858dcae ths
(qemu)
1802 f858dcae ths
@end example
1803 f858dcae ths
1804 f858dcae ths
@node vnc_generate_cert
1805 f858dcae ths
@subsection Generating certificates for VNC
1806 f858dcae ths
1807 f858dcae ths
The GNU TLS packages provides a command called @code{certtool} which can
1808 f858dcae ths
be used to generate certificates and keys in PEM format. At a minimum it
1809 f858dcae ths
is neccessary to setup a certificate authority, and issue certificates to
1810 f858dcae ths
each server. If using certificates for authentication, then each client
1811 f858dcae ths
will also need to be issued a certificate. The recommendation is for the
1812 f858dcae ths
server to keep its certificates in either @code{/etc/pki/qemu} or for
1813 f858dcae ths
unprivileged users in @code{$HOME/.pki/qemu}.
1814 f858dcae ths
1815 f858dcae ths
@menu
1816 f858dcae ths
* vnc_generate_ca::
1817 f858dcae ths
* vnc_generate_server::
1818 f858dcae ths
* vnc_generate_client::
1819 f858dcae ths
@end menu
1820 f858dcae ths
@node vnc_generate_ca
1821 f858dcae ths
@subsubsection Setup the Certificate Authority
1822 f858dcae ths
1823 f858dcae ths
This step only needs to be performed once per organization / organizational
1824 f858dcae ths
unit. First the CA needs a private key. This key must be kept VERY secret
1825 f858dcae ths
and secure. If this key is compromised the entire trust chain of the certificates
1826 f858dcae ths
issued with it is lost.
1827 f858dcae ths
1828 f858dcae ths
@example
1829 f858dcae ths
# certtool --generate-privkey > ca-key.pem
1830 f858dcae ths
@end example
1831 f858dcae ths
1832 f858dcae ths
A CA needs to have a public certificate. For simplicity it can be a self-signed
1833 f858dcae ths
certificate, or one issue by a commercial certificate issuing authority. To
1834 f858dcae ths
generate a self-signed certificate requires one core piece of information, the
1835 f858dcae ths
name of the organization.
1836 f858dcae ths
1837 f858dcae ths
@example
1838 f858dcae ths
# cat > ca.info <<EOF
1839 f858dcae ths
cn = Name of your organization
1840 f858dcae ths
ca
1841 f858dcae ths
cert_signing_key
1842 f858dcae ths
EOF
1843 f858dcae ths
# certtool --generate-self-signed \
1844 f858dcae ths
           --load-privkey ca-key.pem
1845 f858dcae ths
           --template ca.info \
1846 f858dcae ths
           --outfile ca-cert.pem
1847 f858dcae ths
@end example
1848 f858dcae ths
1849 f858dcae ths
The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1850 f858dcae ths
TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1851 f858dcae ths
1852 f858dcae ths
@node vnc_generate_server
1853 f858dcae ths
@subsubsection Issuing server certificates
1854 f858dcae ths
1855 f858dcae ths
Each server (or host) needs to be issued with a key and certificate. When connecting
1856 f858dcae ths
the certificate is sent to the client which validates it against the CA certificate.
1857 f858dcae ths
The core piece of information for a server certificate is the hostname. This should
1858 f858dcae ths
be the fully qualified hostname that the client will connect with, since the client
1859 f858dcae ths
will typically also verify the hostname in the certificate. On the host holding the
1860 f858dcae ths
secure CA private key:
1861 f858dcae ths
1862 f858dcae ths
@example
1863 f858dcae ths
# cat > server.info <<EOF
1864 f858dcae ths
organization = Name  of your organization
1865 f858dcae ths
cn = server.foo.example.com
1866 f858dcae ths
tls_www_server
1867 f858dcae ths
encryption_key
1868 f858dcae ths
signing_key
1869 f858dcae ths
EOF
1870 f858dcae ths
# certtool --generate-privkey > server-key.pem
1871 f858dcae ths
# certtool --generate-certificate \
1872 f858dcae ths
           --load-ca-certificate ca-cert.pem \
1873 f858dcae ths
           --load-ca-privkey ca-key.pem \
1874 f858dcae ths
           --load-privkey server server-key.pem \
1875 f858dcae ths
           --template server.info \
1876 f858dcae ths
           --outfile server-cert.pem
1877 f858dcae ths
@end example
1878 f858dcae ths
1879 f858dcae ths
The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1880 f858dcae ths
to the server for which they were generated. The @code{server-key.pem} is security
1881 f858dcae ths
sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1882 f858dcae ths
1883 f858dcae ths
@node vnc_generate_client
1884 f858dcae ths
@subsubsection Issuing client certificates
1885 f858dcae ths
1886 f858dcae ths
If the QEMU VNC server is to use the @code{x509verify} option to validate client
1887 f858dcae ths
certificates as its authentication mechanism, each client also needs to be issued
1888 f858dcae ths
a certificate. The client certificate contains enough metadata to uniquely identify
1889 f858dcae ths
the client, typically organization, state, city, building, etc. On the host holding
1890 f858dcae ths
the secure CA private key:
1891 f858dcae ths
1892 f858dcae ths
@example
1893 f858dcae ths
# cat > client.info <<EOF
1894 f858dcae ths
country = GB
1895 f858dcae ths
state = London
1896 f858dcae ths
locality = London
1897 f858dcae ths
organiazation = Name of your organization
1898 f858dcae ths
cn = client.foo.example.com
1899 f858dcae ths
tls_www_client
1900 f858dcae ths
encryption_key
1901 f858dcae ths
signing_key
1902 f858dcae ths
EOF
1903 f858dcae ths
# certtool --generate-privkey > client-key.pem
1904 f858dcae ths
# certtool --generate-certificate \
1905 f858dcae ths
           --load-ca-certificate ca-cert.pem \
1906 f858dcae ths
           --load-ca-privkey ca-key.pem \
1907 f858dcae ths
           --load-privkey client-key.pem \
1908 f858dcae ths
           --template client.info \
1909 f858dcae ths
           --outfile client-cert.pem
1910 f858dcae ths
@end example
1911 f858dcae ths
1912 f858dcae ths
The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1913 f858dcae ths
copied to the client for which they were generated.
1914 f858dcae ths
1915 0806e3f6 bellard
@node gdb_usage
1916 da415d54 bellard
@section GDB usage
1917 da415d54 bellard
1918 da415d54 bellard
QEMU has a primitive support to work with gdb, so that you can do
1919 0806e3f6 bellard
'Ctrl-C' while the virtual machine is running and inspect its state.
1920 da415d54 bellard
1921 9d4520d0 bellard
In order to use gdb, launch qemu with the '-s' option. It will wait for a
1922 da415d54 bellard
gdb connection:
1923 da415d54 bellard
@example
1924 debc7065 bellard
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1925 debc7065 bellard
       -append "root=/dev/hda"
1926 da415d54 bellard
Connected to host network interface: tun0
1927 da415d54 bellard
Waiting gdb connection on port 1234
1928 da415d54 bellard
@end example
1929 da415d54 bellard
1930 da415d54 bellard
Then launch gdb on the 'vmlinux' executable:
1931 da415d54 bellard
@example
1932 da415d54 bellard
> gdb vmlinux
1933 da415d54 bellard
@end example
1934 da415d54 bellard
1935 da415d54 bellard
In gdb, connect to QEMU:
1936 da415d54 bellard
@example
1937 6c9bf893 bellard
(gdb) target remote localhost:1234
1938 da415d54 bellard
@end example
1939 da415d54 bellard
1940 da415d54 bellard
Then you can use gdb normally. For example, type 'c' to launch the kernel:
1941 da415d54 bellard
@example
1942 da415d54 bellard
(gdb) c
1943 da415d54 bellard
@end example
1944 da415d54 bellard
1945 0806e3f6 bellard
Here are some useful tips in order to use gdb on system code:
1946 0806e3f6 bellard
1947 0806e3f6 bellard
@enumerate
1948 0806e3f6 bellard
@item
1949 0806e3f6 bellard
Use @code{info reg} to display all the CPU registers.
1950 0806e3f6 bellard
@item
1951 0806e3f6 bellard
Use @code{x/10i $eip} to display the code at the PC position.
1952 0806e3f6 bellard
@item
1953 0806e3f6 bellard
Use @code{set architecture i8086} to dump 16 bit code. Then use
1954 294e8637 bellard
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1955 0806e3f6 bellard
@end enumerate
1956 0806e3f6 bellard
1957 60897d36 edgar_igl
Advanced debugging options:
1958 60897d36 edgar_igl
1959 60897d36 edgar_igl
The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
1960 94d45e44 edgar_igl
@table @code
1961 60897d36 edgar_igl
@item maintenance packet qqemu.sstepbits
1962 60897d36 edgar_igl
1963 60897d36 edgar_igl
This will display the MASK bits used to control the single stepping IE:
1964 60897d36 edgar_igl
@example
1965 60897d36 edgar_igl
(gdb) maintenance packet qqemu.sstepbits
1966 60897d36 edgar_igl
sending: "qqemu.sstepbits"
1967 60897d36 edgar_igl
received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1968 60897d36 edgar_igl
@end example
1969 60897d36 edgar_igl
@item maintenance packet qqemu.sstep
1970 60897d36 edgar_igl
1971 60897d36 edgar_igl
This will display the current value of the mask used when single stepping IE:
1972 60897d36 edgar_igl
@example
1973 60897d36 edgar_igl
(gdb) maintenance packet qqemu.sstep
1974 60897d36 edgar_igl
sending: "qqemu.sstep"
1975 60897d36 edgar_igl
received: "0x7"
1976 60897d36 edgar_igl
@end example
1977 60897d36 edgar_igl
@item maintenance packet Qqemu.sstep=HEX_VALUE
1978 60897d36 edgar_igl
1979 60897d36 edgar_igl
This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1980 60897d36 edgar_igl
@example
1981 60897d36 edgar_igl
(gdb) maintenance packet Qqemu.sstep=0x5
1982 60897d36 edgar_igl
sending: "qemu.sstep=0x5"
1983 60897d36 edgar_igl
received: "OK"
1984 60897d36 edgar_igl
@end example
1985 94d45e44 edgar_igl
@end table
1986 60897d36 edgar_igl
1987 debc7065 bellard
@node pcsys_os_specific
1988 1a084f3d bellard
@section Target OS specific information
1989 1a084f3d bellard
1990 1a084f3d bellard
@subsection Linux
1991 1a084f3d bellard
1992 15a34c63 bellard
To have access to SVGA graphic modes under X11, use the @code{vesa} or
1993 15a34c63 bellard
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1994 15a34c63 bellard
color depth in the guest and the host OS.
1995 1a084f3d bellard
1996 e3371e62 bellard
When using a 2.6 guest Linux kernel, you should add the option
1997 e3371e62 bellard
@code{clock=pit} on the kernel command line because the 2.6 Linux
1998 e3371e62 bellard
kernels make very strict real time clock checks by default that QEMU
1999 e3371e62 bellard
cannot simulate exactly.
2000 e3371e62 bellard
2001 7c3fc84d bellard
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
2002 7c3fc84d bellard
not activated because QEMU is slower with this patch. The QEMU
2003 7c3fc84d bellard
Accelerator Module is also much slower in this case. Earlier Fedora
2004 4be456f1 ths
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
2005 7c3fc84d bellard
patch by default. Newer kernels don't have it.
2006 7c3fc84d bellard
2007 1a084f3d bellard
@subsection Windows
2008 1a084f3d bellard
2009 1a084f3d bellard
If you have a slow host, using Windows 95 is better as it gives the
2010 1a084f3d bellard
best speed. Windows 2000 is also a good choice.
2011 1a084f3d bellard
2012 e3371e62 bellard
@subsubsection SVGA graphic modes support
2013 e3371e62 bellard
2014 e3371e62 bellard
QEMU emulates a Cirrus Logic GD5446 Video
2015 15a34c63 bellard
card. All Windows versions starting from Windows 95 should recognize
2016 15a34c63 bellard
and use this graphic card. For optimal performances, use 16 bit color
2017 15a34c63 bellard
depth in the guest and the host OS.
2018 1a084f3d bellard
2019 3cb0853a bellard
If you are using Windows XP as guest OS and if you want to use high
2020 3cb0853a bellard
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
2021 3cb0853a bellard
1280x1024x16), then you should use the VESA VBE virtual graphic card
2022 3cb0853a bellard
(option @option{-std-vga}).
2023 3cb0853a bellard
2024 e3371e62 bellard
@subsubsection CPU usage reduction
2025 e3371e62 bellard
2026 e3371e62 bellard
Windows 9x does not correctly use the CPU HLT
2027 15a34c63 bellard
instruction. The result is that it takes host CPU cycles even when
2028 15a34c63 bellard
idle. You can install the utility from
2029 15a34c63 bellard
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
2030 15a34c63 bellard
problem. Note that no such tool is needed for NT, 2000 or XP.
2031 1a084f3d bellard
2032 9d0a8e6f bellard
@subsubsection Windows 2000 disk full problem
2033 e3371e62 bellard
2034 9d0a8e6f bellard
Windows 2000 has a bug which gives a disk full problem during its
2035 9d0a8e6f bellard
installation. When installing it, use the @option{-win2k-hack} QEMU
2036 9d0a8e6f bellard
option to enable a specific workaround. After Windows 2000 is
2037 9d0a8e6f bellard
installed, you no longer need this option (this option slows down the
2038 9d0a8e6f bellard
IDE transfers).
2039 e3371e62 bellard
2040 6cc721cf bellard
@subsubsection Windows 2000 shutdown
2041 6cc721cf bellard
2042 6cc721cf bellard
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
2043 6cc721cf bellard
can. It comes from the fact that Windows 2000 does not automatically
2044 6cc721cf bellard
use the APM driver provided by the BIOS.
2045 6cc721cf bellard
2046 6cc721cf bellard
In order to correct that, do the following (thanks to Struan
2047 6cc721cf bellard
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
2048 6cc721cf bellard
Add/Troubleshoot a device => Add a new device & Next => No, select the
2049 6cc721cf bellard
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
2050 6cc721cf bellard
(again) a few times. Now the driver is installed and Windows 2000 now
2051 5fafdf24 ths
correctly instructs QEMU to shutdown at the appropriate moment.
2052 6cc721cf bellard
2053 6cc721cf bellard
@subsubsection Share a directory between Unix and Windows
2054 6cc721cf bellard
2055 6cc721cf bellard
See @ref{sec_invocation} about the help of the option @option{-smb}.
2056 6cc721cf bellard
2057 2192c332 bellard
@subsubsection Windows XP security problem
2058 e3371e62 bellard
2059 e3371e62 bellard
Some releases of Windows XP install correctly but give a security
2060 e3371e62 bellard
error when booting:
2061 e3371e62 bellard
@example
2062 e3371e62 bellard
A problem is preventing Windows from accurately checking the
2063 e3371e62 bellard
license for this computer. Error code: 0x800703e6.
2064 e3371e62 bellard
@end example
2065 e3371e62 bellard
2066 2192c332 bellard
The workaround is to install a service pack for XP after a boot in safe
2067 2192c332 bellard
mode. Then reboot, and the problem should go away. Since there is no
2068 2192c332 bellard
network while in safe mode, its recommended to download the full
2069 2192c332 bellard
installation of SP1 or SP2 and transfer that via an ISO or using the
2070 2192c332 bellard
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
2071 e3371e62 bellard
2072 a0a821a4 bellard
@subsection MS-DOS and FreeDOS
2073 a0a821a4 bellard
2074 a0a821a4 bellard
@subsubsection CPU usage reduction
2075 a0a821a4 bellard
2076 a0a821a4 bellard
DOS does not correctly use the CPU HLT instruction. The result is that
2077 a0a821a4 bellard
it takes host CPU cycles even when idle. You can install the utility
2078 a0a821a4 bellard
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
2079 a0a821a4 bellard
problem.
2080 a0a821a4 bellard
2081 debc7065 bellard
@node QEMU System emulator for non PC targets
2082 3f9f3aa1 bellard
@chapter QEMU System emulator for non PC targets
2083 3f9f3aa1 bellard
2084 3f9f3aa1 bellard
QEMU is a generic emulator and it emulates many non PC
2085 3f9f3aa1 bellard
machines. Most of the options are similar to the PC emulator. The
2086 4be456f1 ths
differences are mentioned in the following sections.
2087 3f9f3aa1 bellard
2088 debc7065 bellard
@menu
2089 debc7065 bellard
* QEMU PowerPC System emulator::
2090 24d4de45 ths
* Sparc32 System emulator::
2091 24d4de45 ths
* Sparc64 System emulator::
2092 24d4de45 ths
* MIPS System emulator::
2093 24d4de45 ths
* ARM System emulator::
2094 24d4de45 ths
* ColdFire System emulator::
2095 debc7065 bellard
@end menu
2096 debc7065 bellard
2097 debc7065 bellard
@node QEMU PowerPC System emulator
2098 3f9f3aa1 bellard
@section QEMU PowerPC System emulator
2099 1a084f3d bellard
2100 15a34c63 bellard
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
2101 15a34c63 bellard
or PowerMac PowerPC system.
2102 1a084f3d bellard
2103 b671f9ed bellard
QEMU emulates the following PowerMac peripherals:
2104 1a084f3d bellard
2105 15a34c63 bellard
@itemize @minus
2106 5fafdf24 ths
@item
2107 5fafdf24 ths
UniNorth PCI Bridge
2108 15a34c63 bellard
@item
2109 15a34c63 bellard
PCI VGA compatible card with VESA Bochs Extensions
2110 5fafdf24 ths
@item
2111 15a34c63 bellard
2 PMAC IDE interfaces with hard disk and CD-ROM support
2112 5fafdf24 ths
@item
2113 15a34c63 bellard
NE2000 PCI adapters
2114 15a34c63 bellard
@item
2115 15a34c63 bellard
Non Volatile RAM
2116 15a34c63 bellard
@item
2117 15a34c63 bellard
VIA-CUDA with ADB keyboard and mouse.
2118 1a084f3d bellard
@end itemize
2119 1a084f3d bellard
2120 b671f9ed bellard
QEMU emulates the following PREP peripherals:
2121 52c00a5f bellard
2122 52c00a5f bellard
@itemize @minus
2123 5fafdf24 ths
@item
2124 15a34c63 bellard
PCI Bridge
2125 15a34c63 bellard
@item
2126 15a34c63 bellard
PCI VGA compatible card with VESA Bochs Extensions
2127 5fafdf24 ths
@item
2128 52c00a5f bellard
2 IDE interfaces with hard disk and CD-ROM support
2129 52c00a5f bellard
@item
2130 52c00a5f bellard
Floppy disk
2131 5fafdf24 ths
@item
2132 15a34c63 bellard
NE2000 network adapters
2133 52c00a5f bellard
@item
2134 52c00a5f bellard
Serial port
2135 52c00a5f bellard
@item
2136 52c00a5f bellard
PREP Non Volatile RAM
2137 15a34c63 bellard
@item
2138 15a34c63 bellard
PC compatible keyboard and mouse.
2139 52c00a5f bellard
@end itemize
2140 52c00a5f bellard
2141 15a34c63 bellard
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
2142 3f9f3aa1 bellard
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
2143 52c00a5f bellard
2144 15a34c63 bellard
@c man begin OPTIONS
2145 15a34c63 bellard
2146 15a34c63 bellard
The following options are specific to the PowerPC emulation:
2147 15a34c63 bellard
2148 15a34c63 bellard
@table @option
2149 15a34c63 bellard
2150 3b46e624 ths
@item -g WxH[xDEPTH]
2151 15a34c63 bellard
2152 15a34c63 bellard
Set the initial VGA graphic mode. The default is 800x600x15.
2153 15a34c63 bellard
2154 15a34c63 bellard
@end table
2155 15a34c63 bellard
2156 5fafdf24 ths
@c man end
2157 15a34c63 bellard
2158 15a34c63 bellard
2159 52c00a5f bellard
More information is available at
2160 3f9f3aa1 bellard
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
2161 52c00a5f bellard
2162 24d4de45 ths
@node Sparc32 System emulator
2163 24d4de45 ths
@section Sparc32 System emulator
2164 e80cfcfc bellard
2165 6a3b9cc9 blueswir1
Use the executable @file{qemu-system-sparc} to simulate a SPARCstation
2166 ee76f82e blueswir1
5, SPARCstation 10, SPARCstation 20, SPARCserver 600MP (sun4m
2167 ee76f82e blueswir1
architecture), SPARCstation 2 (sun4c architecture), SPARCserver 1000,
2168 ee76f82e blueswir1
or SPARCcenter 2000 (sun4d architecture). The emulation is somewhat
2169 ee76f82e blueswir1
complete.  SMP up to 16 CPUs is supported, but Linux limits the number
2170 ee76f82e blueswir1
of usable CPUs to 4.
2171 e80cfcfc bellard
2172 7d85892b blueswir1
QEMU emulates the following sun4m/sun4d peripherals:
2173 e80cfcfc bellard
2174 e80cfcfc bellard
@itemize @minus
2175 3475187d bellard
@item
2176 7d85892b blueswir1
IOMMU or IO-UNITs
2177 e80cfcfc bellard
@item
2178 e80cfcfc bellard
TCX Frame buffer
2179 5fafdf24 ths
@item
2180 e80cfcfc bellard
Lance (Am7990) Ethernet
2181 e80cfcfc bellard
@item
2182 e80cfcfc bellard
Non Volatile RAM M48T08
2183 e80cfcfc bellard
@item
2184 3475187d bellard
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2185 3475187d bellard
and power/reset logic
2186 3475187d bellard
@item
2187 3475187d bellard
ESP SCSI controller with hard disk and CD-ROM support
2188 3475187d bellard
@item
2189 6a3b9cc9 blueswir1
Floppy drive (not on SS-600MP)
2190 a2502b58 blueswir1
@item
2191 a2502b58 blueswir1
CS4231 sound device (only on SS-5, not working yet)
2192 e80cfcfc bellard
@end itemize
2193 e80cfcfc bellard
2194 6a3b9cc9 blueswir1
The number of peripherals is fixed in the architecture.  Maximum
2195 6a3b9cc9 blueswir1
memory size depends on the machine type, for SS-5 it is 256MB and for
2196 7d85892b blueswir1
others 2047MB.
2197 3475187d bellard
2198 30a604f3 bellard
Since version 0.8.2, QEMU uses OpenBIOS
2199 0986ac3b bellard
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2200 0986ac3b bellard
firmware implementation. The goal is to implement a 100% IEEE
2201 0986ac3b bellard
1275-1994 (referred to as Open Firmware) compliant firmware.
2202 3475187d bellard
2203 3475187d bellard
A sample Linux 2.6 series kernel and ram disk image are available on
2204 0986ac3b bellard
the QEMU web site. Please note that currently NetBSD, OpenBSD or
2205 0986ac3b bellard
Solaris kernels don't work.
2206 3475187d bellard
2207 3475187d bellard
@c man begin OPTIONS
2208 3475187d bellard
2209 a2502b58 blueswir1
The following options are specific to the Sparc32 emulation:
2210 3475187d bellard
2211 3475187d bellard
@table @option
2212 3475187d bellard
2213 a2502b58 blueswir1
@item -g WxHx[xDEPTH]
2214 3475187d bellard
2215 a2502b58 blueswir1
Set the initial TCX graphic mode. The default is 1024x768x8, currently
2216 a2502b58 blueswir1
the only other possible mode is 1024x768x24.
2217 3475187d bellard
2218 66508601 blueswir1
@item -prom-env string
2219 66508601 blueswir1
2220 66508601 blueswir1
Set OpenBIOS variables in NVRAM, for example:
2221 66508601 blueswir1
2222 66508601 blueswir1
@example
2223 66508601 blueswir1
qemu-system-sparc -prom-env 'auto-boot?=false' \
2224 66508601 blueswir1
 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2225 66508601 blueswir1
@end example
2226 66508601 blueswir1
2227 ee76f82e blueswir1
@item -M [SS-5|SS-10|SS-20|SS-600MP|SS-2|SS-1000|SS-2000]
2228 a2502b58 blueswir1
2229 a2502b58 blueswir1
Set the emulated machine type. Default is SS-5.
2230 a2502b58 blueswir1
2231 3475187d bellard
@end table
2232 3475187d bellard
2233 5fafdf24 ths
@c man end
2234 3475187d bellard
2235 24d4de45 ths
@node Sparc64 System emulator
2236 24d4de45 ths
@section Sparc64 System emulator
2237 e80cfcfc bellard
2238 3475187d bellard
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u machine.
2239 3475187d bellard
The emulator is not usable for anything yet.
2240 b756921a bellard
2241 83469015 bellard
QEMU emulates the following sun4u peripherals:
2242 83469015 bellard
2243 83469015 bellard
@itemize @minus
2244 83469015 bellard
@item
2245 5fafdf24 ths
UltraSparc IIi APB PCI Bridge
2246 83469015 bellard
@item
2247 83469015 bellard
PCI VGA compatible card with VESA Bochs Extensions
2248 83469015 bellard
@item
2249 83469015 bellard
Non Volatile RAM M48T59
2250 83469015 bellard
@item
2251 83469015 bellard
PC-compatible serial ports
2252 83469015 bellard
@end itemize
2253 83469015 bellard
2254 24d4de45 ths
@node MIPS System emulator
2255 24d4de45 ths
@section MIPS System emulator
2256 9d0a8e6f bellard
2257 d9aedc32 ths
Four executables cover simulation of 32 and 64-bit MIPS systems in
2258 d9aedc32 ths
both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2259 d9aedc32 ths
@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
2260 88cb0a02 aurel32
Five different machine types are emulated:
2261 24d4de45 ths
2262 24d4de45 ths
@itemize @minus
2263 24d4de45 ths
@item
2264 24d4de45 ths
A generic ISA PC-like machine "mips"
2265 24d4de45 ths
@item
2266 24d4de45 ths
The MIPS Malta prototype board "malta"
2267 24d4de45 ths
@item
2268 d9aedc32 ths
An ACER Pica "pica61". This machine needs the 64-bit emulator.
2269 6bf5b4e8 ths
@item
2270 f0fc6f8f ths
MIPS emulator pseudo board "mipssim"
2271 88cb0a02 aurel32
@item
2272 88cb0a02 aurel32
A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
2273 24d4de45 ths
@end itemize
2274 24d4de45 ths
2275 24d4de45 ths
The generic emulation is supported by Debian 'Etch' and is able to
2276 24d4de45 ths
install Debian into a virtual disk image. The following devices are
2277 24d4de45 ths
emulated:
2278 3f9f3aa1 bellard
2279 3f9f3aa1 bellard
@itemize @minus
2280 5fafdf24 ths
@item
2281 6bf5b4e8 ths
A range of MIPS CPUs, default is the 24Kf
2282 3f9f3aa1 bellard
@item
2283 3f9f3aa1 bellard
PC style serial port
2284 3f9f3aa1 bellard
@item
2285 24d4de45 ths
PC style IDE disk
2286 24d4de45 ths
@item
2287 3f9f3aa1 bellard
NE2000 network card
2288 3f9f3aa1 bellard
@end itemize
2289 3f9f3aa1 bellard
2290 24d4de45 ths
The Malta emulation supports the following devices:
2291 24d4de45 ths
2292 24d4de45 ths
@itemize @minus
2293 24d4de45 ths
@item
2294 0b64d008 ths
Core board with MIPS 24Kf CPU and Galileo system controller
2295 24d4de45 ths
@item
2296 24d4de45 ths
PIIX4 PCI/USB/SMbus controller
2297 24d4de45 ths
@item
2298 24d4de45 ths
The Multi-I/O chip's serial device
2299 24d4de45 ths
@item
2300 24d4de45 ths
PCnet32 PCI network card
2301 24d4de45 ths
@item
2302 24d4de45 ths
Malta FPGA serial device
2303 24d4de45 ths
@item
2304 24d4de45 ths
Cirrus VGA graphics card
2305 24d4de45 ths
@end itemize
2306 24d4de45 ths
2307 24d4de45 ths
The ACER Pica emulation supports:
2308 24d4de45 ths
2309 24d4de45 ths
@itemize @minus
2310 24d4de45 ths
@item
2311 24d4de45 ths
MIPS R4000 CPU
2312 24d4de45 ths
@item
2313 24d4de45 ths
PC-style IRQ and DMA controllers
2314 24d4de45 ths
@item
2315 24d4de45 ths
PC Keyboard
2316 24d4de45 ths
@item
2317 24d4de45 ths
IDE controller
2318 24d4de45 ths
@end itemize
2319 3f9f3aa1 bellard
2320 f0fc6f8f ths
The mipssim pseudo board emulation provides an environment similiar
2321 f0fc6f8f ths
to what the proprietary MIPS emulator uses for running Linux.
2322 f0fc6f8f ths
It supports:
2323 6bf5b4e8 ths
2324 6bf5b4e8 ths
@itemize @minus
2325 6bf5b4e8 ths
@item
2326 6bf5b4e8 ths
A range of MIPS CPUs, default is the 24Kf
2327 6bf5b4e8 ths
@item
2328 6bf5b4e8 ths
PC style serial port
2329 6bf5b4e8 ths
@item
2330 6bf5b4e8 ths
MIPSnet network emulation
2331 6bf5b4e8 ths
@end itemize
2332 6bf5b4e8 ths
2333 88cb0a02 aurel32
The MIPS Magnum R4000 emulation supports:
2334 88cb0a02 aurel32
2335 88cb0a02 aurel32
@itemize @minus
2336 88cb0a02 aurel32
@item
2337 88cb0a02 aurel32
MIPS R4000 CPU
2338 88cb0a02 aurel32
@item
2339 88cb0a02 aurel32
PC-style IRQ controller
2340 88cb0a02 aurel32
@item
2341 88cb0a02 aurel32
PC Keyboard
2342 88cb0a02 aurel32
@item
2343 88cb0a02 aurel32
SCSI controller
2344 88cb0a02 aurel32
@item
2345 88cb0a02 aurel32
G364 framebuffer
2346 88cb0a02 aurel32
@end itemize
2347 88cb0a02 aurel32
2348 88cb0a02 aurel32
2349 24d4de45 ths
@node ARM System emulator
2350 24d4de45 ths
@section ARM System emulator
2351 3f9f3aa1 bellard
2352 3f9f3aa1 bellard
Use the executable @file{qemu-system-arm} to simulate a ARM
2353 3f9f3aa1 bellard
machine. The ARM Integrator/CP board is emulated with the following
2354 3f9f3aa1 bellard
devices:
2355 3f9f3aa1 bellard
2356 3f9f3aa1 bellard
@itemize @minus
2357 3f9f3aa1 bellard
@item
2358 9ee6e8bb pbrook
ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2359 3f9f3aa1 bellard
@item
2360 3f9f3aa1 bellard
Two PL011 UARTs
2361 5fafdf24 ths
@item
2362 3f9f3aa1 bellard
SMC 91c111 Ethernet adapter
2363 00a9bf19 pbrook
@item
2364 00a9bf19 pbrook
PL110 LCD controller
2365 00a9bf19 pbrook
@item
2366 00a9bf19 pbrook
PL050 KMI with PS/2 keyboard and mouse.
2367 a1bb27b1 pbrook
@item
2368 a1bb27b1 pbrook
PL181 MultiMedia Card Interface with SD card.
2369 00a9bf19 pbrook
@end itemize
2370 00a9bf19 pbrook
2371 00a9bf19 pbrook
The ARM Versatile baseboard is emulated with the following devices:
2372 00a9bf19 pbrook
2373 00a9bf19 pbrook
@itemize @minus
2374 00a9bf19 pbrook
@item
2375 9ee6e8bb pbrook
ARM926E, ARM1136 or Cortex-A8 CPU
2376 00a9bf19 pbrook
@item
2377 00a9bf19 pbrook
PL190 Vectored Interrupt Controller
2378 00a9bf19 pbrook
@item
2379 00a9bf19 pbrook
Four PL011 UARTs
2380 5fafdf24 ths
@item
2381 00a9bf19 pbrook
SMC 91c111 Ethernet adapter
2382 00a9bf19 pbrook
@item
2383 00a9bf19 pbrook
PL110 LCD controller
2384 00a9bf19 pbrook
@item
2385 00a9bf19 pbrook
PL050 KMI with PS/2 keyboard and mouse.
2386 00a9bf19 pbrook
@item
2387 00a9bf19 pbrook
PCI host bridge.  Note the emulated PCI bridge only provides access to
2388 00a9bf19 pbrook
PCI memory space.  It does not provide access to PCI IO space.
2389 4be456f1 ths
This means some devices (eg. ne2k_pci NIC) are not usable, and others
2390 4be456f1 ths
(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2391 00a9bf19 pbrook
mapped control registers.
2392 e6de1bad pbrook
@item
2393 e6de1bad pbrook
PCI OHCI USB controller.
2394 e6de1bad pbrook
@item
2395 e6de1bad pbrook
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2396 a1bb27b1 pbrook
@item
2397 a1bb27b1 pbrook
PL181 MultiMedia Card Interface with SD card.
2398 3f9f3aa1 bellard
@end itemize
2399 3f9f3aa1 bellard
2400 d7739d75 pbrook
The ARM RealView Emulation baseboard is emulated with the following devices:
2401 d7739d75 pbrook
2402 d7739d75 pbrook
@itemize @minus
2403 d7739d75 pbrook
@item
2404 9ee6e8bb pbrook
ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU
2405 d7739d75 pbrook
@item
2406 d7739d75 pbrook
ARM AMBA Generic/Distributed Interrupt Controller
2407 d7739d75 pbrook
@item
2408 d7739d75 pbrook
Four PL011 UARTs
2409 5fafdf24 ths
@item
2410 d7739d75 pbrook
SMC 91c111 Ethernet adapter
2411 d7739d75 pbrook
@item
2412 d7739d75 pbrook
PL110 LCD controller
2413 d7739d75 pbrook
@item
2414 d7739d75 pbrook
PL050 KMI with PS/2 keyboard and mouse
2415 d7739d75 pbrook
@item
2416 d7739d75 pbrook
PCI host bridge
2417 d7739d75 pbrook
@item
2418 d7739d75 pbrook
PCI OHCI USB controller
2419 d7739d75 pbrook
@item
2420 d7739d75 pbrook
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2421 a1bb27b1 pbrook
@item
2422 a1bb27b1 pbrook
PL181 MultiMedia Card Interface with SD card.
2423 d7739d75 pbrook
@end itemize
2424 d7739d75 pbrook
2425 b00052e4 balrog
The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2426 b00052e4 balrog
and "Terrier") emulation includes the following peripherals:
2427 b00052e4 balrog
2428 b00052e4 balrog
@itemize @minus
2429 b00052e4 balrog
@item
2430 b00052e4 balrog
Intel PXA270 System-on-chip (ARM V5TE core)
2431 b00052e4 balrog
@item
2432 b00052e4 balrog
NAND Flash memory
2433 b00052e4 balrog
@item
2434 b00052e4 balrog
IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2435 b00052e4 balrog
@item
2436 b00052e4 balrog
On-chip OHCI USB controller
2437 b00052e4 balrog
@item
2438 b00052e4 balrog
On-chip LCD controller
2439 b00052e4 balrog
@item
2440 b00052e4 balrog
On-chip Real Time Clock
2441 b00052e4 balrog
@item
2442 b00052e4 balrog
TI ADS7846 touchscreen controller on SSP bus
2443 b00052e4 balrog
@item
2444 b00052e4 balrog
Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2445 b00052e4 balrog
@item
2446 b00052e4 balrog
GPIO-connected keyboard controller and LEDs
2447 b00052e4 balrog
@item
2448 549444e1 balrog
Secure Digital card connected to PXA MMC/SD host
2449 b00052e4 balrog
@item
2450 b00052e4 balrog
Three on-chip UARTs
2451 b00052e4 balrog
@item
2452 b00052e4 balrog
WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2453 b00052e4 balrog
@end itemize
2454 b00052e4 balrog
2455 02645926 balrog
The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2456 02645926 balrog
following elements:
2457 02645926 balrog
2458 02645926 balrog
@itemize @minus
2459 02645926 balrog
@item
2460 02645926 balrog
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2461 02645926 balrog
@item
2462 02645926 balrog
ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2463 02645926 balrog
@item
2464 02645926 balrog
On-chip LCD controller
2465 02645926 balrog
@item
2466 02645926 balrog
On-chip Real Time Clock
2467 02645926 balrog
@item
2468 02645926 balrog
TI TSC2102i touchscreen controller / analog-digital converter / Audio
2469 02645926 balrog
CODEC, connected through MicroWire and I@math{^2}S busses
2470 02645926 balrog
@item
2471 02645926 balrog
GPIO-connected matrix keypad
2472 02645926 balrog
@item
2473 02645926 balrog
Secure Digital card connected to OMAP MMC/SD host
2474 02645926 balrog
@item
2475 02645926 balrog
Three on-chip UARTs
2476 02645926 balrog
@end itemize
2477 02645926 balrog
2478 c30bb264 balrog
Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2479 c30bb264 balrog
emulation supports the following elements:
2480 c30bb264 balrog
2481 c30bb264 balrog
@itemize @minus
2482 c30bb264 balrog
@item
2483 c30bb264 balrog
Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2484 c30bb264 balrog
@item
2485 c30bb264 balrog
RAM and non-volatile OneNAND Flash memories
2486 c30bb264 balrog
@item
2487 c30bb264 balrog
Display connected to EPSON remote framebuffer chip and OMAP on-chip
2488 c30bb264 balrog
display controller and a LS041y3 MIPI DBI-C controller
2489 c30bb264 balrog
@item
2490 c30bb264 balrog
TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2491 c30bb264 balrog
driven through SPI bus
2492 c30bb264 balrog
@item
2493 c30bb264 balrog
National Semiconductor LM8323-controlled qwerty keyboard driven
2494 c30bb264 balrog
through I@math{^2}C bus
2495 c30bb264 balrog
@item
2496 c30bb264 balrog
Secure Digital card connected to OMAP MMC/SD host
2497 c30bb264 balrog
@item
2498 c30bb264 balrog
Three OMAP on-chip UARTs and on-chip STI debugging console
2499 c30bb264 balrog
@item
2500 c30bb264 balrog
Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2501 c30bb264 balrog
TUSB6010 chip - only USB host mode is supported
2502 c30bb264 balrog
@item
2503 c30bb264 balrog
TI TMP105 temperature sensor driven through I@math{^2}C bus
2504 c30bb264 balrog
@item
2505 c30bb264 balrog
TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2506 c30bb264 balrog
@item
2507 c30bb264 balrog
Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2508 c30bb264 balrog
through CBUS
2509 c30bb264 balrog
@end itemize
2510 c30bb264 balrog
2511 9ee6e8bb pbrook
The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2512 9ee6e8bb pbrook
devices:
2513 9ee6e8bb pbrook
2514 9ee6e8bb pbrook
@itemize @minus
2515 9ee6e8bb pbrook
@item
2516 9ee6e8bb pbrook
Cortex-M3 CPU core.
2517 9ee6e8bb pbrook
@item
2518 9ee6e8bb pbrook
64k Flash and 8k SRAM.
2519 9ee6e8bb pbrook
@item
2520 9ee6e8bb pbrook
Timers, UARTs, ADC and I@math{^2}C interface.
2521 9ee6e8bb pbrook
@item
2522 9ee6e8bb pbrook
OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2523 9ee6e8bb pbrook
@end itemize
2524 9ee6e8bb pbrook
2525 9ee6e8bb pbrook
The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2526 9ee6e8bb pbrook
devices:
2527 9ee6e8bb pbrook
2528 9ee6e8bb pbrook
@itemize @minus
2529 9ee6e8bb pbrook
@item
2530 9ee6e8bb pbrook
Cortex-M3 CPU core.
2531 9ee6e8bb pbrook
@item
2532 9ee6e8bb pbrook
256k Flash and 64k SRAM.
2533 9ee6e8bb pbrook
@item
2534 9ee6e8bb pbrook
Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2535 9ee6e8bb pbrook
@item
2536 9ee6e8bb pbrook
OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2537 9ee6e8bb pbrook
@end itemize
2538 9ee6e8bb pbrook
2539 57cd6e97 balrog
The Freecom MusicPal internet radio emulation includes the following
2540 57cd6e97 balrog
elements:
2541 57cd6e97 balrog
2542 57cd6e97 balrog
@itemize @minus
2543 57cd6e97 balrog
@item
2544 57cd6e97 balrog
Marvell MV88W8618 ARM core.
2545 57cd6e97 balrog
@item
2546 57cd6e97 balrog
32 MB RAM, 256 KB SRAM, 8 MB flash.
2547 57cd6e97 balrog
@item
2548 57cd6e97 balrog
Up to 2 16550 UARTs
2549 57cd6e97 balrog
@item
2550 57cd6e97 balrog
MV88W8xx8 Ethernet controller
2551 57cd6e97 balrog
@item
2552 57cd6e97 balrog
MV88W8618 audio controller, WM8750 CODEC and mixer
2553 57cd6e97 balrog
@item
2554 57cd6e97 balrog
128?64 display with brightness control
2555 57cd6e97 balrog
@item
2556 57cd6e97 balrog
2 buttons, 2 navigation wheels with button function
2557 57cd6e97 balrog
@end itemize
2558 57cd6e97 balrog
2559 3f9f3aa1 bellard
A Linux 2.6 test image is available on the QEMU web site. More
2560 3f9f3aa1 bellard
information is available in the QEMU mailing-list archive.
2561 9d0a8e6f bellard
2562 24d4de45 ths
@node ColdFire System emulator
2563 24d4de45 ths
@section ColdFire System emulator
2564 209a4e69 pbrook
2565 209a4e69 pbrook
Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2566 209a4e69 pbrook
The emulator is able to boot a uClinux kernel.
2567 707e011b pbrook
2568 707e011b pbrook
The M5208EVB emulation includes the following devices:
2569 707e011b pbrook
2570 707e011b pbrook
@itemize @minus
2571 5fafdf24 ths
@item
2572 707e011b pbrook
MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2573 707e011b pbrook
@item
2574 707e011b pbrook
Three Two on-chip UARTs.
2575 707e011b pbrook
@item
2576 707e011b pbrook
Fast Ethernet Controller (FEC)
2577 707e011b pbrook
@end itemize
2578 707e011b pbrook
2579 707e011b pbrook
The AN5206 emulation includes the following devices:
2580 209a4e69 pbrook
2581 209a4e69 pbrook
@itemize @minus
2582 5fafdf24 ths
@item
2583 209a4e69 pbrook
MCF5206 ColdFire V2 Microprocessor.
2584 209a4e69 pbrook
@item
2585 209a4e69 pbrook
Two on-chip UARTs.
2586 209a4e69 pbrook
@end itemize
2587 209a4e69 pbrook
2588 5fafdf24 ths
@node QEMU User space emulator
2589 5fafdf24 ths
@chapter QEMU User space emulator
2590 83195237 bellard
2591 83195237 bellard
@menu
2592 83195237 bellard
* Supported Operating Systems ::
2593 83195237 bellard
* Linux User space emulator::
2594 83195237 bellard
* Mac OS X/Darwin User space emulator ::
2595 83195237 bellard
@end menu
2596 83195237 bellard
2597 83195237 bellard
@node Supported Operating Systems
2598 83195237 bellard
@section Supported Operating Systems
2599 83195237 bellard
2600 83195237 bellard
The following OS are supported in user space emulation:
2601 83195237 bellard
2602 83195237 bellard
@itemize @minus
2603 83195237 bellard
@item
2604 4be456f1 ths
Linux (referred as qemu-linux-user)
2605 83195237 bellard
@item
2606 4be456f1 ths
Mac OS X/Darwin (referred as qemu-darwin-user)
2607 83195237 bellard
@end itemize
2608 83195237 bellard
2609 83195237 bellard
@node Linux User space emulator
2610 83195237 bellard
@section Linux User space emulator
2611 386405f7 bellard
2612 debc7065 bellard
@menu
2613 debc7065 bellard
* Quick Start::
2614 debc7065 bellard
* Wine launch::
2615 debc7065 bellard
* Command line options::
2616 79737e4a pbrook
* Other binaries::
2617 debc7065 bellard
@end menu
2618 debc7065 bellard
2619 debc7065 bellard
@node Quick Start
2620 83195237 bellard
@subsection Quick Start
2621 df0f11a0 bellard
2622 1f673135 bellard
In order to launch a Linux process, QEMU needs the process executable
2623 5fafdf24 ths
itself and all the target (x86) dynamic libraries used by it.
2624 386405f7 bellard
2625 1f673135 bellard
@itemize
2626 386405f7 bellard
2627 1f673135 bellard
@item On x86, you can just try to launch any process by using the native
2628 1f673135 bellard
libraries:
2629 386405f7 bellard
2630 5fafdf24 ths
@example
2631 1f673135 bellard
qemu-i386 -L / /bin/ls
2632 1f673135 bellard
@end example
2633 386405f7 bellard
2634 1f673135 bellard
@code{-L /} tells that the x86 dynamic linker must be searched with a
2635 1f673135 bellard
@file{/} prefix.
2636 386405f7 bellard
2637 dbcf5e82 ths
@item Since QEMU is also a linux process, you can launch qemu with
2638 dbcf5e82 ths
qemu (NOTE: you can only do that if you compiled QEMU from the sources):
2639 386405f7 bellard
2640 5fafdf24 ths
@example
2641 1f673135 bellard
qemu-i386 -L / qemu-i386 -L / /bin/ls
2642 1f673135 bellard
@end example
2643 386405f7 bellard
2644 1f673135 bellard
@item On non x86 CPUs, you need first to download at least an x86 glibc
2645 1f673135 bellard
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2646 1f673135 bellard
@code{LD_LIBRARY_PATH} is not set:
2647 df0f11a0 bellard
2648 1f673135 bellard
@example
2649 5fafdf24 ths
unset LD_LIBRARY_PATH
2650 1f673135 bellard
@end example
2651 1eb87257 bellard
2652 1f673135 bellard
Then you can launch the precompiled @file{ls} x86 executable:
2653 1eb87257 bellard
2654 1f673135 bellard
@example
2655 1f673135 bellard
qemu-i386 tests/i386/ls
2656 1f673135 bellard
@end example
2657 1f673135 bellard
You can look at @file{qemu-binfmt-conf.sh} so that
2658 1f673135 bellard
QEMU is automatically launched by the Linux kernel when you try to
2659 1f673135 bellard
launch x86 executables. It requires the @code{binfmt_misc} module in the
2660 1f673135 bellard
Linux kernel.
2661 1eb87257 bellard
2662 1f673135 bellard
@item The x86 version of QEMU is also included. You can try weird things such as:
2663 1f673135 bellard
@example
2664 debc7065 bellard
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2665 debc7065 bellard
          /usr/local/qemu-i386/bin/ls-i386
2666 1f673135 bellard
@end example
2667 1eb20527 bellard
2668 1f673135 bellard
@end itemize
2669 1eb20527 bellard
2670 debc7065 bellard
@node Wine launch
2671 83195237 bellard
@subsection Wine launch
2672 1eb20527 bellard
2673 1f673135 bellard
@itemize
2674 386405f7 bellard
2675 1f673135 bellard
@item Ensure that you have a working QEMU with the x86 glibc
2676 1f673135 bellard
distribution (see previous section). In order to verify it, you must be
2677 1f673135 bellard
able to do:
2678 386405f7 bellard
2679 1f673135 bellard
@example
2680 1f673135 bellard
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2681 1f673135 bellard
@end example
2682 386405f7 bellard
2683 1f673135 bellard
@item Download the binary x86 Wine install
2684 5fafdf24 ths
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2685 386405f7 bellard
2686 1f673135 bellard
@item Configure Wine on your account. Look at the provided script
2687 debc7065 bellard
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2688 1f673135 bellard
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2689 386405f7 bellard
2690 1f673135 bellard
@item Then you can try the example @file{putty.exe}:
2691 386405f7 bellard
2692 1f673135 bellard
@example
2693 debc7065 bellard
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2694 debc7065 bellard
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2695 1f673135 bellard
@end example
2696 386405f7 bellard
2697 1f673135 bellard
@end itemize
2698 fd429f2f bellard
2699 debc7065 bellard
@node Command line options
2700 83195237 bellard
@subsection Command line options
2701 1eb20527 bellard
2702 1f673135 bellard
@example
2703 1f673135 bellard
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2704 1f673135 bellard
@end example
2705 1eb20527 bellard
2706 1f673135 bellard
@table @option
2707 1f673135 bellard
@item -h
2708 1f673135 bellard
Print the help
2709 3b46e624 ths
@item -L path
2710 1f673135 bellard
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2711 1f673135 bellard
@item -s size
2712 1f673135 bellard
Set the x86 stack size in bytes (default=524288)
2713 386405f7 bellard
@end table
2714 386405f7 bellard
2715 1f673135 bellard
Debug options:
2716 386405f7 bellard
2717 1f673135 bellard
@table @option
2718 1f673135 bellard
@item -d
2719 1f673135 bellard
Activate log (logfile=/tmp/qemu.log)
2720 1f673135 bellard
@item -p pagesize
2721 1f673135 bellard
Act as if the host page size was 'pagesize' bytes
2722 1f673135 bellard
@end table
2723 386405f7 bellard
2724 b01bcae6 balrog
Environment variables:
2725 b01bcae6 balrog
2726 b01bcae6 balrog
@table @env
2727 b01bcae6 balrog
@item QEMU_STRACE
2728 b01bcae6 balrog
Print system calls and arguments similar to the 'strace' program
2729 b01bcae6 balrog
(NOTE: the actual 'strace' program will not work because the user
2730 b01bcae6 balrog
space emulator hasn't implemented ptrace).  At the moment this is
2731 b01bcae6 balrog
incomplete.  All system calls that don't have a specific argument
2732 b01bcae6 balrog
format are printed with information for six arguments.  Many
2733 b01bcae6 balrog
flag-style arguments don't have decoders and will show up as numbers.
2734 5cfdf930 ths
@end table
2735 b01bcae6 balrog
2736 79737e4a pbrook
@node Other binaries
2737 83195237 bellard
@subsection Other binaries
2738 79737e4a pbrook
2739 79737e4a pbrook
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2740 79737e4a pbrook
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2741 79737e4a pbrook
configurations), and arm-uclinux bFLT format binaries.
2742 79737e4a pbrook
2743 e6e5906b pbrook
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2744 e6e5906b pbrook
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2745 e6e5906b pbrook
coldfire uClinux bFLT format binaries.
2746 e6e5906b pbrook
2747 79737e4a pbrook
The binary format is detected automatically.
2748 79737e4a pbrook
2749 a785e42e blueswir1
@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2750 a785e42e blueswir1
(Sparc64 CPU, 32 bit ABI).
2751 a785e42e blueswir1
2752 a785e42e blueswir1
@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2753 a785e42e blueswir1
SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2754 a785e42e blueswir1
2755 83195237 bellard
@node Mac OS X/Darwin User space emulator
2756 83195237 bellard
@section Mac OS X/Darwin User space emulator
2757 83195237 bellard
2758 83195237 bellard
@menu
2759 83195237 bellard
* Mac OS X/Darwin Status::
2760 83195237 bellard
* Mac OS X/Darwin Quick Start::
2761 83195237 bellard
* Mac OS X/Darwin Command line options::
2762 83195237 bellard
@end menu
2763 83195237 bellard
2764 83195237 bellard
@node Mac OS X/Darwin Status
2765 83195237 bellard
@subsection Mac OS X/Darwin Status
2766 83195237 bellard
2767 83195237 bellard
@itemize @minus
2768 83195237 bellard
@item
2769 83195237 bellard
target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2770 83195237 bellard
@item
2771 83195237 bellard
target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2772 83195237 bellard
@item
2773 dbcf5e82 ths
target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2774 83195237 bellard
@item
2775 83195237 bellard
target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2776 83195237 bellard
@end itemize
2777 83195237 bellard
2778 83195237 bellard
[1] If you're host commpage can be executed by qemu.
2779 83195237 bellard
2780 83195237 bellard
@node Mac OS X/Darwin Quick Start
2781 83195237 bellard
@subsection Quick Start
2782 83195237 bellard
2783 83195237 bellard
In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2784 83195237 bellard
itself and all the target dynamic libraries used by it. If you don't have the FAT
2785 83195237 bellard
libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2786 83195237 bellard
CD or compile them by hand.
2787 83195237 bellard
2788 83195237 bellard
@itemize
2789 83195237 bellard
2790 83195237 bellard
@item On x86, you can just try to launch any process by using the native
2791 83195237 bellard
libraries:
2792 83195237 bellard
2793 5fafdf24 ths
@example
2794 dbcf5e82 ths
qemu-i386 /bin/ls
2795 83195237 bellard
@end example
2796 83195237 bellard
2797 83195237 bellard
or to run the ppc version of the executable:
2798 83195237 bellard
2799 5fafdf24 ths
@example
2800 dbcf5e82 ths
qemu-ppc /bin/ls
2801 83195237 bellard
@end example
2802 83195237 bellard
2803 83195237 bellard
@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2804 83195237 bellard
are installed:
2805 83195237 bellard
2806 5fafdf24 ths
@example
2807 dbcf5e82 ths
qemu-i386 -L /opt/x86_root/ /bin/ls
2808 83195237 bellard
@end example
2809 83195237 bellard
2810 83195237 bellard
@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2811 83195237 bellard
@file{/opt/x86_root/usr/bin/dyld}.
2812 83195237 bellard
2813 83195237 bellard
@end itemize
2814 83195237 bellard
2815 83195237 bellard
@node Mac OS X/Darwin Command line options
2816 83195237 bellard
@subsection Command line options
2817 83195237 bellard
2818 83195237 bellard
@example
2819 dbcf5e82 ths
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2820 83195237 bellard
@end example
2821 83195237 bellard
2822 83195237 bellard
@table @option
2823 83195237 bellard
@item -h
2824 83195237 bellard
Print the help
2825 3b46e624 ths
@item -L path
2826 83195237 bellard
Set the library root path (default=/)
2827 83195237 bellard
@item -s size
2828 83195237 bellard
Set the stack size in bytes (default=524288)
2829 83195237 bellard
@end table
2830 83195237 bellard
2831 83195237 bellard
Debug options:
2832 83195237 bellard
2833 83195237 bellard
@table @option
2834 83195237 bellard
@item -d
2835 83195237 bellard
Activate log (logfile=/tmp/qemu.log)
2836 83195237 bellard
@item -p pagesize
2837 83195237 bellard
Act as if the host page size was 'pagesize' bytes
2838 83195237 bellard
@end table
2839 83195237 bellard
2840 15a34c63 bellard
@node compilation
2841 15a34c63 bellard
@chapter Compilation from the sources
2842 15a34c63 bellard
2843 debc7065 bellard
@menu
2844 debc7065 bellard
* Linux/Unix::
2845 debc7065 bellard
* Windows::
2846 debc7065 bellard
* Cross compilation for Windows with Linux::
2847 debc7065 bellard
* Mac OS X::
2848 debc7065 bellard
@end menu
2849 debc7065 bellard
2850 debc7065 bellard
@node Linux/Unix
2851 7c3fc84d bellard
@section Linux/Unix
2852 7c3fc84d bellard
2853 7c3fc84d bellard
@subsection Compilation
2854 7c3fc84d bellard
2855 7c3fc84d bellard
First you must decompress the sources:
2856 7c3fc84d bellard
@example
2857 7c3fc84d bellard
cd /tmp
2858 7c3fc84d bellard
tar zxvf qemu-x.y.z.tar.gz
2859 7c3fc84d bellard
cd qemu-x.y.z
2860 7c3fc84d bellard
@end example
2861 7c3fc84d bellard
2862 7c3fc84d bellard
Then you configure QEMU and build it (usually no options are needed):
2863 7c3fc84d bellard
@example
2864 7c3fc84d bellard
./configure
2865 7c3fc84d bellard
make
2866 7c3fc84d bellard
@end example
2867 7c3fc84d bellard
2868 7c3fc84d bellard
Then type as root user:
2869 7c3fc84d bellard
@example
2870 7c3fc84d bellard
make install
2871 7c3fc84d bellard
@end example
2872 7c3fc84d bellard
to install QEMU in @file{/usr/local}.
2873 7c3fc84d bellard
2874 4fe8b87a bellard
@subsection GCC version
2875 7c3fc84d bellard
2876 366dfc52 ths
In order to compile QEMU successfully, it is very important that you
2877 4fe8b87a bellard
have the right tools. The most important one is gcc. On most hosts and
2878 4fe8b87a bellard
in particular on x86 ones, @emph{gcc 4.x is not supported}. If your
2879 4fe8b87a bellard
Linux distribution includes a gcc 4.x compiler, you can usually
2880 4fe8b87a bellard
install an older version (it is invoked by @code{gcc32} or
2881 4fe8b87a bellard
@code{gcc34}). The QEMU configure script automatically probes for
2882 4be456f1 ths
these older versions so that usually you don't have to do anything.
2883 15a34c63 bellard
2884 debc7065 bellard
@node Windows
2885 15a34c63 bellard
@section Windows
2886 15a34c63 bellard
2887 15a34c63 bellard
@itemize
2888 15a34c63 bellard
@item Install the current versions of MSYS and MinGW from
2889 15a34c63 bellard
@url{http://www.mingw.org/}. You can find detailed installation
2890 15a34c63 bellard
instructions in the download section and the FAQ.
2891 15a34c63 bellard
2892 5fafdf24 ths
@item Download
2893 15a34c63 bellard
the MinGW development library of SDL 1.2.x
2894 debc7065 bellard
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2895 15a34c63 bellard
@url{http://www.libsdl.org}. Unpack it in a temporary place, and
2896 15a34c63 bellard
unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
2897 15a34c63 bellard
directory. Edit the @file{sdl-config} script so that it gives the
2898 15a34c63 bellard
correct SDL directory when invoked.
2899 15a34c63 bellard
2900 15a34c63 bellard
@item Extract the current version of QEMU.
2901 5fafdf24 ths
2902 15a34c63 bellard
@item Start the MSYS shell (file @file{msys.bat}).
2903 15a34c63 bellard
2904 5fafdf24 ths
@item Change to the QEMU directory. Launch @file{./configure} and
2905 15a34c63 bellard
@file{make}.  If you have problems using SDL, verify that
2906 15a34c63 bellard
@file{sdl-config} can be launched from the MSYS command line.
2907 15a34c63 bellard
2908 5fafdf24 ths
@item You can install QEMU in @file{Program Files/Qemu} by typing
2909 15a34c63 bellard
@file{make install}. Don't forget to copy @file{SDL.dll} in
2910 15a34c63 bellard
@file{Program Files/Qemu}.
2911 15a34c63 bellard
2912 15a34c63 bellard
@end itemize
2913 15a34c63 bellard
2914 debc7065 bellard
@node Cross compilation for Windows with Linux
2915 15a34c63 bellard
@section Cross compilation for Windows with Linux
2916 15a34c63 bellard
2917 15a34c63 bellard
@itemize
2918 15a34c63 bellard
@item
2919 15a34c63 bellard
Install the MinGW cross compilation tools available at
2920 15a34c63 bellard
@url{http://www.mingw.org/}.
2921 15a34c63 bellard
2922 5fafdf24 ths
@item
2923 15a34c63 bellard
Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
2924 15a34c63 bellard
unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
2925 15a34c63 bellard
variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
2926 15a34c63 bellard
the QEMU configuration script.
2927 15a34c63 bellard
2928 5fafdf24 ths
@item
2929 15a34c63 bellard
Configure QEMU for Windows cross compilation:
2930 15a34c63 bellard
@example
2931 15a34c63 bellard
./configure --enable-mingw32
2932 15a34c63 bellard
@end example
2933 15a34c63 bellard
If necessary, you can change the cross-prefix according to the prefix
2934 4be456f1 ths
chosen for the MinGW tools with --cross-prefix. You can also use
2935 15a34c63 bellard
--prefix to set the Win32 install path.
2936 15a34c63 bellard
2937 5fafdf24 ths
@item You can install QEMU in the installation directory by typing
2938 15a34c63 bellard
@file{make install}. Don't forget to copy @file{SDL.dll} in the
2939 5fafdf24 ths
installation directory.
2940 15a34c63 bellard
2941 15a34c63 bellard
@end itemize
2942 15a34c63 bellard
2943 15a34c63 bellard
Note: Currently, Wine does not seem able to launch
2944 15a34c63 bellard
QEMU for Win32.
2945 15a34c63 bellard
2946 debc7065 bellard
@node Mac OS X
2947 15a34c63 bellard
@section Mac OS X
2948 15a34c63 bellard
2949 15a34c63 bellard
The Mac OS X patches are not fully merged in QEMU, so you should look
2950 15a34c63 bellard
at the QEMU mailing list archive to have all the necessary
2951 15a34c63 bellard
information.
2952 15a34c63 bellard
2953 debc7065 bellard
@node Index
2954 debc7065 bellard
@chapter Index
2955 debc7065 bellard
@printindex cp
2956 debc7065 bellard
2957 debc7065 bellard
@bye