Statistics
| Branch: | Revision:

root / hw / pxa2xx.c @ b5ea9327

History | View | Annotate | Download (67.8 kB)

1
/*
2
 * Intel XScale PXA255/270 processor support.
3
 *
4
 * Copyright (c) 2006 Openedhand Ltd.
5
 * Written by Andrzej Zaborowski <balrog@zabor.org>
6
 *
7
 * This code is licensed under the GPL.
8
 */
9

    
10
#include "sysbus.h"
11
#include "pxa.h"
12
#include "sysemu.h"
13
#include "pc.h"
14
#include "i2c.h"
15
#include "ssi.h"
16
#include "qemu-char.h"
17
#include "blockdev.h"
18

    
19
static struct {
20
    target_phys_addr_t io_base;
21
    int irqn;
22
} pxa255_serial[] = {
23
    { 0x40100000, PXA2XX_PIC_FFUART },
24
    { 0x40200000, PXA2XX_PIC_BTUART },
25
    { 0x40700000, PXA2XX_PIC_STUART },
26
    { 0x41600000, PXA25X_PIC_HWUART },
27
    { 0, 0 }
28
}, pxa270_serial[] = {
29
    { 0x40100000, PXA2XX_PIC_FFUART },
30
    { 0x40200000, PXA2XX_PIC_BTUART },
31
    { 0x40700000, PXA2XX_PIC_STUART },
32
    { 0, 0 }
33
};
34

    
35
typedef struct PXASSPDef {
36
    target_phys_addr_t io_base;
37
    int irqn;
38
} PXASSPDef;
39

    
40
#if 0
41
static PXASSPDef pxa250_ssp[] = {
42
    { 0x41000000, PXA2XX_PIC_SSP },
43
    { 0, 0 }
44
};
45
#endif
46

    
47
static PXASSPDef pxa255_ssp[] = {
48
    { 0x41000000, PXA2XX_PIC_SSP },
49
    { 0x41400000, PXA25X_PIC_NSSP },
50
    { 0, 0 }
51
};
52

    
53
#if 0
54
static PXASSPDef pxa26x_ssp[] = {
55
    { 0x41000000, PXA2XX_PIC_SSP },
56
    { 0x41400000, PXA25X_PIC_NSSP },
57
    { 0x41500000, PXA26X_PIC_ASSP },
58
    { 0, 0 }
59
};
60
#endif
61

    
62
static PXASSPDef pxa27x_ssp[] = {
63
    { 0x41000000, PXA2XX_PIC_SSP },
64
    { 0x41700000, PXA27X_PIC_SSP2 },
65
    { 0x41900000, PXA2XX_PIC_SSP3 },
66
    { 0, 0 }
67
};
68

    
69
#define PMCR        0x00        /* Power Manager Control register */
70
#define PSSR        0x04        /* Power Manager Sleep Status register */
71
#define PSPR        0x08        /* Power Manager Scratch-Pad register */
72
#define PWER        0x0c        /* Power Manager Wake-Up Enable register */
73
#define PRER        0x10        /* Power Manager Rising-Edge Detect Enable register */
74
#define PFER        0x14        /* Power Manager Falling-Edge Detect Enable register */
75
#define PEDR        0x18        /* Power Manager Edge-Detect Status register */
76
#define PCFR        0x1c        /* Power Manager General Configuration register */
77
#define PGSR0        0x20        /* Power Manager GPIO Sleep-State register 0 */
78
#define PGSR1        0x24        /* Power Manager GPIO Sleep-State register 1 */
79
#define PGSR2        0x28        /* Power Manager GPIO Sleep-State register 2 */
80
#define PGSR3        0x2c        /* Power Manager GPIO Sleep-State register 3 */
81
#define RCSR        0x30        /* Reset Controller Status register */
82
#define PSLR        0x34        /* Power Manager Sleep Configuration register */
83
#define PTSR        0x38        /* Power Manager Standby Configuration register */
84
#define PVCR        0x40        /* Power Manager Voltage Change Control register */
85
#define PUCR        0x4c        /* Power Manager USIM Card Control/Status register */
86
#define PKWR        0x50        /* Power Manager Keyboard Wake-Up Enable register */
87
#define PKSR        0x54        /* Power Manager Keyboard Level-Detect Status */
88
#define PCMD0        0x80        /* Power Manager I2C Command register File 0 */
89
#define PCMD31        0xfc        /* Power Manager I2C Command register File 31 */
90

    
91
static uint64_t pxa2xx_pm_read(void *opaque, target_phys_addr_t addr,
92
                               unsigned size)
93
{
94
    PXA2xxState *s = (PXA2xxState *) opaque;
95

    
96
    switch (addr) {
97
    case PMCR ... PCMD31:
98
        if (addr & 3)
99
            goto fail;
100

    
101
        return s->pm_regs[addr >> 2];
102
    default:
103
    fail:
104
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
105
        break;
106
    }
107
    return 0;
108
}
109

    
110
static void pxa2xx_pm_write(void *opaque, target_phys_addr_t addr,
111
                            uint64_t value, unsigned size)
112
{
113
    PXA2xxState *s = (PXA2xxState *) opaque;
114

    
115
    switch (addr) {
116
    case PMCR:
117
        /* Clear the write-one-to-clear bits... */
118
        s->pm_regs[addr >> 2] &= ~(value & 0x2a);
119
        /* ...and set the plain r/w bits */
120
        s->pm_regs[addr >> 2] &= ~0x15;
121
        s->pm_regs[addr >> 2] |= value & 0x15;
122
        break;
123

    
124
    case PSSR:        /* Read-clean registers */
125
    case RCSR:
126
    case PKSR:
127
        s->pm_regs[addr >> 2] &= ~value;
128
        break;
129

    
130
    default:        /* Read-write registers */
131
        if (!(addr & 3)) {
132
            s->pm_regs[addr >> 2] = value;
133
            break;
134
        }
135

    
136
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
137
        break;
138
    }
139
}
140

    
141
static const MemoryRegionOps pxa2xx_pm_ops = {
142
    .read = pxa2xx_pm_read,
143
    .write = pxa2xx_pm_write,
144
    .endianness = DEVICE_NATIVE_ENDIAN,
145
};
146

    
147
static const VMStateDescription vmstate_pxa2xx_pm = {
148
    .name = "pxa2xx_pm",
149
    .version_id = 0,
150
    .minimum_version_id = 0,
151
    .minimum_version_id_old = 0,
152
    .fields      = (VMStateField[]) {
153
        VMSTATE_UINT32_ARRAY(pm_regs, PXA2xxState, 0x40),
154
        VMSTATE_END_OF_LIST()
155
    }
156
};
157

    
158
#define CCCR        0x00        /* Core Clock Configuration register */
159
#define CKEN        0x04        /* Clock Enable register */
160
#define OSCC        0x08        /* Oscillator Configuration register */
161
#define CCSR        0x0c        /* Core Clock Status register */
162

    
163
static uint64_t pxa2xx_cm_read(void *opaque, target_phys_addr_t addr,
164
                               unsigned size)
165
{
166
    PXA2xxState *s = (PXA2xxState *) opaque;
167

    
168
    switch (addr) {
169
    case CCCR:
170
    case CKEN:
171
    case OSCC:
172
        return s->cm_regs[addr >> 2];
173

    
174
    case CCSR:
175
        return s->cm_regs[CCCR >> 2] | (3 << 28);
176

    
177
    default:
178
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
179
        break;
180
    }
181
    return 0;
182
}
183

    
184
static void pxa2xx_cm_write(void *opaque, target_phys_addr_t addr,
185
                            uint64_t value, unsigned size)
186
{
187
    PXA2xxState *s = (PXA2xxState *) opaque;
188

    
189
    switch (addr) {
190
    case CCCR:
191
    case CKEN:
192
        s->cm_regs[addr >> 2] = value;
193
        break;
194

    
195
    case OSCC:
196
        s->cm_regs[addr >> 2] &= ~0x6c;
197
        s->cm_regs[addr >> 2] |= value & 0x6e;
198
        if ((value >> 1) & 1)                        /* OON */
199
            s->cm_regs[addr >> 2] |= 1 << 0;        /* Oscillator is now stable */
200
        break;
201

    
202
    default:
203
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
204
        break;
205
    }
206
}
207

    
208
static const MemoryRegionOps pxa2xx_cm_ops = {
209
    .read = pxa2xx_cm_read,
210
    .write = pxa2xx_cm_write,
211
    .endianness = DEVICE_NATIVE_ENDIAN,
212
};
213

    
214
static const VMStateDescription vmstate_pxa2xx_cm = {
215
    .name = "pxa2xx_cm",
216
    .version_id = 0,
217
    .minimum_version_id = 0,
218
    .minimum_version_id_old = 0,
219
    .fields      = (VMStateField[]) {
220
        VMSTATE_UINT32_ARRAY(cm_regs, PXA2xxState, 4),
221
        VMSTATE_UINT32(clkcfg, PXA2xxState),
222
        VMSTATE_UINT32(pmnc, PXA2xxState),
223
        VMSTATE_END_OF_LIST()
224
    }
225
};
226

    
227
static uint32_t pxa2xx_clkpwr_read(void *opaque, int op2, int reg, int crm)
228
{
229
    PXA2xxState *s = (PXA2xxState *) opaque;
230

    
231
    switch (reg) {
232
    case 6:        /* Clock Configuration register */
233
        return s->clkcfg;
234

    
235
    case 7:        /* Power Mode register */
236
        return 0;
237

    
238
    default:
239
        printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
240
        break;
241
    }
242
    return 0;
243
}
244

    
245
static void pxa2xx_clkpwr_write(void *opaque, int op2, int reg, int crm,
246
                uint32_t value)
247
{
248
    PXA2xxState *s = (PXA2xxState *) opaque;
249
    static const char *pwrmode[8] = {
250
        "Normal", "Idle", "Deep-idle", "Standby",
251
        "Sleep", "reserved (!)", "reserved (!)", "Deep-sleep",
252
    };
253

    
254
    switch (reg) {
255
    case 6:        /* Clock Configuration register */
256
        s->clkcfg = value & 0xf;
257
        if (value & 2)
258
            printf("%s: CPU frequency change attempt\n", __FUNCTION__);
259
        break;
260

    
261
    case 7:        /* Power Mode register */
262
        if (value & 8)
263
            printf("%s: CPU voltage change attempt\n", __FUNCTION__);
264
        switch (value & 7) {
265
        case 0:
266
            /* Do nothing */
267
            break;
268

    
269
        case 1:
270
            /* Idle */
271
            if (!(s->cm_regs[CCCR >> 2] & (1 << 31))) {        /* CPDIS */
272
                cpu_interrupt(s->env, CPU_INTERRUPT_HALT);
273
                break;
274
            }
275
            /* Fall through.  */
276

    
277
        case 2:
278
            /* Deep-Idle */
279
            cpu_interrupt(s->env, CPU_INTERRUPT_HALT);
280
            s->pm_regs[RCSR >> 2] |= 0x8;        /* Set GPR */
281
            goto message;
282

    
283
        case 3:
284
            s->env->uncached_cpsr =
285
                    ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
286
            s->env->cp15.c1_sys = 0;
287
            s->env->cp15.c1_coproc = 0;
288
            s->env->cp15.c2_base0 = 0;
289
            s->env->cp15.c3 = 0;
290
            s->pm_regs[PSSR >> 2] |= 0x8;        /* Set STS */
291
            s->pm_regs[RCSR >> 2] |= 0x8;        /* Set GPR */
292

    
293
            /*
294
             * The scratch-pad register is almost universally used
295
             * for storing the return address on suspend.  For the
296
             * lack of a resuming bootloader, perform a jump
297
             * directly to that address.
298
             */
299
            memset(s->env->regs, 0, 4 * 15);
300
            s->env->regs[15] = s->pm_regs[PSPR >> 2];
301

    
302
#if 0
303
            buffer = 0xe59ff000;        /* ldr     pc, [pc, #0] */
304
            cpu_physical_memory_write(0, &buffer, 4);
305
            buffer = s->pm_regs[PSPR >> 2];
306
            cpu_physical_memory_write(8, &buffer, 4);
307
#endif
308

    
309
            /* Suspend */
310
            cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HALT);
311

    
312
            goto message;
313

    
314
        default:
315
        message:
316
            printf("%s: machine entered %s mode\n", __FUNCTION__,
317
                            pwrmode[value & 7]);
318
        }
319
        break;
320

    
321
    default:
322
        printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
323
        break;
324
    }
325
}
326

    
327
/* Performace Monitoring Registers */
328
#define CPPMNC                0        /* Performance Monitor Control register */
329
#define CPCCNT                1        /* Clock Counter register */
330
#define CPINTEN                4        /* Interrupt Enable register */
331
#define CPFLAG                5        /* Overflow Flag register */
332
#define CPEVTSEL        8        /* Event Selection register */
333

    
334
#define CPPMN0                0        /* Performance Count register 0 */
335
#define CPPMN1                1        /* Performance Count register 1 */
336
#define CPPMN2                2        /* Performance Count register 2 */
337
#define CPPMN3                3        /* Performance Count register 3 */
338

    
339
static uint32_t pxa2xx_perf_read(void *opaque, int op2, int reg, int crm)
340
{
341
    PXA2xxState *s = (PXA2xxState *) opaque;
342

    
343
    switch (reg) {
344
    case CPPMNC:
345
        return s->pmnc;
346
    case CPCCNT:
347
        if (s->pmnc & 1)
348
            return qemu_get_clock_ns(vm_clock);
349
        else
350
            return 0;
351
    case CPINTEN:
352
    case CPFLAG:
353
    case CPEVTSEL:
354
        return 0;
355

    
356
    default:
357
        printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
358
        break;
359
    }
360
    return 0;
361
}
362

    
363
static void pxa2xx_perf_write(void *opaque, int op2, int reg, int crm,
364
                uint32_t value)
365
{
366
    PXA2xxState *s = (PXA2xxState *) opaque;
367

    
368
    switch (reg) {
369
    case CPPMNC:
370
        s->pmnc = value;
371
        break;
372

    
373
    case CPCCNT:
374
    case CPINTEN:
375
    case CPFLAG:
376
    case CPEVTSEL:
377
        break;
378

    
379
    default:
380
        printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
381
        break;
382
    }
383
}
384

    
385
static uint32_t pxa2xx_cp14_read(void *opaque, int op2, int reg, int crm)
386
{
387
    switch (crm) {
388
    case 0:
389
        return pxa2xx_clkpwr_read(opaque, op2, reg, crm);
390
    case 1:
391
        return pxa2xx_perf_read(opaque, op2, reg, crm);
392
    case 2:
393
        switch (reg) {
394
        case CPPMN0:
395
        case CPPMN1:
396
        case CPPMN2:
397
        case CPPMN3:
398
            return 0;
399
        }
400
        /* Fall through */
401
    default:
402
        printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
403
        break;
404
    }
405
    return 0;
406
}
407

    
408
static void pxa2xx_cp14_write(void *opaque, int op2, int reg, int crm,
409
                uint32_t value)
410
{
411
    switch (crm) {
412
    case 0:
413
        pxa2xx_clkpwr_write(opaque, op2, reg, crm, value);
414
        break;
415
    case 1:
416
        pxa2xx_perf_write(opaque, op2, reg, crm, value);
417
        break;
418
    case 2:
419
        switch (reg) {
420
        case CPPMN0:
421
        case CPPMN1:
422
        case CPPMN2:
423
        case CPPMN3:
424
            return;
425
        }
426
        /* Fall through */
427
    default:
428
        printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
429
        break;
430
    }
431
}
432

    
433
#define MDCNFG                0x00        /* SDRAM Configuration register */
434
#define MDREFR                0x04        /* SDRAM Refresh Control register */
435
#define MSC0                0x08        /* Static Memory Control register 0 */
436
#define MSC1                0x0c        /* Static Memory Control register 1 */
437
#define MSC2                0x10        /* Static Memory Control register 2 */
438
#define MECR                0x14        /* Expansion Memory Bus Config register */
439
#define SXCNFG                0x1c        /* Synchronous Static Memory Config register */
440
#define MCMEM0                0x28        /* PC Card Memory Socket 0 Timing register */
441
#define MCMEM1                0x2c        /* PC Card Memory Socket 1 Timing register */
442
#define MCATT0                0x30        /* PC Card Attribute Socket 0 register */
443
#define MCATT1                0x34        /* PC Card Attribute Socket 1 register */
444
#define MCIO0                0x38        /* PC Card I/O Socket 0 Timing register */
445
#define MCIO1                0x3c        /* PC Card I/O Socket 1 Timing register */
446
#define MDMRS                0x40        /* SDRAM Mode Register Set Config register */
447
#define BOOT_DEF        0x44        /* Boot-time Default Configuration register */
448
#define ARB_CNTL        0x48        /* Arbiter Control register */
449
#define BSCNTR0                0x4c        /* Memory Buffer Strength Control register 0 */
450
#define BSCNTR1                0x50        /* Memory Buffer Strength Control register 1 */
451
#define LCDBSCNTR        0x54        /* LCD Buffer Strength Control register */
452
#define MDMRSLP                0x58        /* Low Power SDRAM Mode Set Config register */
453
#define BSCNTR2                0x5c        /* Memory Buffer Strength Control register 2 */
454
#define BSCNTR3                0x60        /* Memory Buffer Strength Control register 3 */
455
#define SA1110                0x64        /* SA-1110 Memory Compatibility register */
456

    
457
static uint64_t pxa2xx_mm_read(void *opaque, target_phys_addr_t addr,
458
                               unsigned size)
459
{
460
    PXA2xxState *s = (PXA2xxState *) opaque;
461

    
462
    switch (addr) {
463
    case MDCNFG ... SA1110:
464
        if ((addr & 3) == 0)
465
            return s->mm_regs[addr >> 2];
466

    
467
    default:
468
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
469
        break;
470
    }
471
    return 0;
472
}
473

    
474
static void pxa2xx_mm_write(void *opaque, target_phys_addr_t addr,
475
                            uint64_t value, unsigned size)
476
{
477
    PXA2xxState *s = (PXA2xxState *) opaque;
478

    
479
    switch (addr) {
480
    case MDCNFG ... SA1110:
481
        if ((addr & 3) == 0) {
482
            s->mm_regs[addr >> 2] = value;
483
            break;
484
        }
485

    
486
    default:
487
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
488
        break;
489
    }
490
}
491

    
492
static const MemoryRegionOps pxa2xx_mm_ops = {
493
    .read = pxa2xx_mm_read,
494
    .write = pxa2xx_mm_write,
495
    .endianness = DEVICE_NATIVE_ENDIAN,
496
};
497

    
498
static const VMStateDescription vmstate_pxa2xx_mm = {
499
    .name = "pxa2xx_mm",
500
    .version_id = 0,
501
    .minimum_version_id = 0,
502
    .minimum_version_id_old = 0,
503
    .fields      = (VMStateField[]) {
504
        VMSTATE_UINT32_ARRAY(mm_regs, PXA2xxState, 0x1a),
505
        VMSTATE_END_OF_LIST()
506
    }
507
};
508

    
509
/* Synchronous Serial Ports */
510
typedef struct {
511
    SysBusDevice busdev;
512
    MemoryRegion iomem;
513
    qemu_irq irq;
514
    int enable;
515
    SSIBus *bus;
516

    
517
    uint32_t sscr[2];
518
    uint32_t sspsp;
519
    uint32_t ssto;
520
    uint32_t ssitr;
521
    uint32_t sssr;
522
    uint8_t sstsa;
523
    uint8_t ssrsa;
524
    uint8_t ssacd;
525

    
526
    uint32_t rx_fifo[16];
527
    int rx_level;
528
    int rx_start;
529
} PXA2xxSSPState;
530

    
531
#define SSCR0        0x00        /* SSP Control register 0 */
532
#define SSCR1        0x04        /* SSP Control register 1 */
533
#define SSSR        0x08        /* SSP Status register */
534
#define SSITR        0x0c        /* SSP Interrupt Test register */
535
#define SSDR        0x10        /* SSP Data register */
536
#define SSTO        0x28        /* SSP Time-Out register */
537
#define SSPSP        0x2c        /* SSP Programmable Serial Protocol register */
538
#define SSTSA        0x30        /* SSP TX Time Slot Active register */
539
#define SSRSA        0x34        /* SSP RX Time Slot Active register */
540
#define SSTSS        0x38        /* SSP Time Slot Status register */
541
#define SSACD        0x3c        /* SSP Audio Clock Divider register */
542

    
543
/* Bitfields for above registers */
544
#define SSCR0_SPI(x)        (((x) & 0x30) == 0x00)
545
#define SSCR0_SSP(x)        (((x) & 0x30) == 0x10)
546
#define SSCR0_UWIRE(x)        (((x) & 0x30) == 0x20)
547
#define SSCR0_PSP(x)        (((x) & 0x30) == 0x30)
548
#define SSCR0_SSE        (1 << 7)
549
#define SSCR0_RIM        (1 << 22)
550
#define SSCR0_TIM        (1 << 23)
551
#define SSCR0_MOD        (1 << 31)
552
#define SSCR0_DSS(x)        (((((x) >> 16) & 0x10) | ((x) & 0xf)) + 1)
553
#define SSCR1_RIE        (1 << 0)
554
#define SSCR1_TIE        (1 << 1)
555
#define SSCR1_LBM        (1 << 2)
556
#define SSCR1_MWDS        (1 << 5)
557
#define SSCR1_TFT(x)        ((((x) >> 6) & 0xf) + 1)
558
#define SSCR1_RFT(x)        ((((x) >> 10) & 0xf) + 1)
559
#define SSCR1_EFWR        (1 << 14)
560
#define SSCR1_PINTE        (1 << 18)
561
#define SSCR1_TINTE        (1 << 19)
562
#define SSCR1_RSRE        (1 << 20)
563
#define SSCR1_TSRE        (1 << 21)
564
#define SSCR1_EBCEI        (1 << 29)
565
#define SSITR_INT        (7 << 5)
566
#define SSSR_TNF        (1 << 2)
567
#define SSSR_RNE        (1 << 3)
568
#define SSSR_TFS        (1 << 5)
569
#define SSSR_RFS        (1 << 6)
570
#define SSSR_ROR        (1 << 7)
571
#define SSSR_PINT        (1 << 18)
572
#define SSSR_TINT        (1 << 19)
573
#define SSSR_EOC        (1 << 20)
574
#define SSSR_TUR        (1 << 21)
575
#define SSSR_BCE        (1 << 23)
576
#define SSSR_RW                0x00bc0080
577

    
578
static void pxa2xx_ssp_int_update(PXA2xxSSPState *s)
579
{
580
    int level = 0;
581

    
582
    level |= s->ssitr & SSITR_INT;
583
    level |= (s->sssr & SSSR_BCE)  &&  (s->sscr[1] & SSCR1_EBCEI);
584
    level |= (s->sssr & SSSR_TUR)  && !(s->sscr[0] & SSCR0_TIM);
585
    level |= (s->sssr & SSSR_EOC)  &&  (s->sssr & (SSSR_TINT | SSSR_PINT));
586
    level |= (s->sssr & SSSR_TINT) &&  (s->sscr[1] & SSCR1_TINTE);
587
    level |= (s->sssr & SSSR_PINT) &&  (s->sscr[1] & SSCR1_PINTE);
588
    level |= (s->sssr & SSSR_ROR)  && !(s->sscr[0] & SSCR0_RIM);
589
    level |= (s->sssr & SSSR_RFS)  &&  (s->sscr[1] & SSCR1_RIE);
590
    level |= (s->sssr & SSSR_TFS)  &&  (s->sscr[1] & SSCR1_TIE);
591
    qemu_set_irq(s->irq, !!level);
592
}
593

    
594
static void pxa2xx_ssp_fifo_update(PXA2xxSSPState *s)
595
{
596
    s->sssr &= ~(0xf << 12);        /* Clear RFL */
597
    s->sssr &= ~(0xf << 8);        /* Clear TFL */
598
    s->sssr &= ~SSSR_TFS;
599
    s->sssr &= ~SSSR_TNF;
600
    if (s->enable) {
601
        s->sssr |= ((s->rx_level - 1) & 0xf) << 12;
602
        if (s->rx_level >= SSCR1_RFT(s->sscr[1]))
603
            s->sssr |= SSSR_RFS;
604
        else
605
            s->sssr &= ~SSSR_RFS;
606
        if (s->rx_level)
607
            s->sssr |= SSSR_RNE;
608
        else
609
            s->sssr &= ~SSSR_RNE;
610
        /* TX FIFO is never filled, so it is always in underrun
611
           condition if SSP is enabled */
612
        s->sssr |= SSSR_TFS;
613
        s->sssr |= SSSR_TNF;
614
    }
615

    
616
    pxa2xx_ssp_int_update(s);
617
}
618

    
619
static uint64_t pxa2xx_ssp_read(void *opaque, target_phys_addr_t addr,
620
                                unsigned size)
621
{
622
    PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
623
    uint32_t retval;
624

    
625
    switch (addr) {
626
    case SSCR0:
627
        return s->sscr[0];
628
    case SSCR1:
629
        return s->sscr[1];
630
    case SSPSP:
631
        return s->sspsp;
632
    case SSTO:
633
        return s->ssto;
634
    case SSITR:
635
        return s->ssitr;
636
    case SSSR:
637
        return s->sssr | s->ssitr;
638
    case SSDR:
639
        if (!s->enable)
640
            return 0xffffffff;
641
        if (s->rx_level < 1) {
642
            printf("%s: SSP Rx Underrun\n", __FUNCTION__);
643
            return 0xffffffff;
644
        }
645
        s->rx_level --;
646
        retval = s->rx_fifo[s->rx_start ++];
647
        s->rx_start &= 0xf;
648
        pxa2xx_ssp_fifo_update(s);
649
        return retval;
650
    case SSTSA:
651
        return s->sstsa;
652
    case SSRSA:
653
        return s->ssrsa;
654
    case SSTSS:
655
        return 0;
656
    case SSACD:
657
        return s->ssacd;
658
    default:
659
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
660
        break;
661
    }
662
    return 0;
663
}
664

    
665
static void pxa2xx_ssp_write(void *opaque, target_phys_addr_t addr,
666
                             uint64_t value64, unsigned size)
667
{
668
    PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
669
    uint32_t value = value64;
670

    
671
    switch (addr) {
672
    case SSCR0:
673
        s->sscr[0] = value & 0xc7ffffff;
674
        s->enable = value & SSCR0_SSE;
675
        if (value & SSCR0_MOD)
676
            printf("%s: Attempt to use network mode\n", __FUNCTION__);
677
        if (s->enable && SSCR0_DSS(value) < 4)
678
            printf("%s: Wrong data size: %i bits\n", __FUNCTION__,
679
                            SSCR0_DSS(value));
680
        if (!(value & SSCR0_SSE)) {
681
            s->sssr = 0;
682
            s->ssitr = 0;
683
            s->rx_level = 0;
684
        }
685
        pxa2xx_ssp_fifo_update(s);
686
        break;
687

    
688
    case SSCR1:
689
        s->sscr[1] = value;
690
        if (value & (SSCR1_LBM | SSCR1_EFWR))
691
            printf("%s: Attempt to use SSP test mode\n", __FUNCTION__);
692
        pxa2xx_ssp_fifo_update(s);
693
        break;
694

    
695
    case SSPSP:
696
        s->sspsp = value;
697
        break;
698

    
699
    case SSTO:
700
        s->ssto = value;
701
        break;
702

    
703
    case SSITR:
704
        s->ssitr = value & SSITR_INT;
705
        pxa2xx_ssp_int_update(s);
706
        break;
707

    
708
    case SSSR:
709
        s->sssr &= ~(value & SSSR_RW);
710
        pxa2xx_ssp_int_update(s);
711
        break;
712

    
713
    case SSDR:
714
        if (SSCR0_UWIRE(s->sscr[0])) {
715
            if (s->sscr[1] & SSCR1_MWDS)
716
                value &= 0xffff;
717
            else
718
                value &= 0xff;
719
        } else
720
            /* Note how 32bits overflow does no harm here */
721
            value &= (1 << SSCR0_DSS(s->sscr[0])) - 1;
722

    
723
        /* Data goes from here to the Tx FIFO and is shifted out from
724
         * there directly to the slave, no need to buffer it.
725
         */
726
        if (s->enable) {
727
            uint32_t readval;
728
            readval = ssi_transfer(s->bus, value);
729
            if (s->rx_level < 0x10) {
730
                s->rx_fifo[(s->rx_start + s->rx_level ++) & 0xf] = readval;
731
            } else {
732
                s->sssr |= SSSR_ROR;
733
            }
734
        }
735
        pxa2xx_ssp_fifo_update(s);
736
        break;
737

    
738
    case SSTSA:
739
        s->sstsa = value;
740
        break;
741

    
742
    case SSRSA:
743
        s->ssrsa = value;
744
        break;
745

    
746
    case SSACD:
747
        s->ssacd = value;
748
        break;
749

    
750
    default:
751
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
752
        break;
753
    }
754
}
755

    
756
static const MemoryRegionOps pxa2xx_ssp_ops = {
757
    .read = pxa2xx_ssp_read,
758
    .write = pxa2xx_ssp_write,
759
    .endianness = DEVICE_NATIVE_ENDIAN,
760
};
761

    
762
static void pxa2xx_ssp_save(QEMUFile *f, void *opaque)
763
{
764
    PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
765
    int i;
766

    
767
    qemu_put_be32(f, s->enable);
768

    
769
    qemu_put_be32s(f, &s->sscr[0]);
770
    qemu_put_be32s(f, &s->sscr[1]);
771
    qemu_put_be32s(f, &s->sspsp);
772
    qemu_put_be32s(f, &s->ssto);
773
    qemu_put_be32s(f, &s->ssitr);
774
    qemu_put_be32s(f, &s->sssr);
775
    qemu_put_8s(f, &s->sstsa);
776
    qemu_put_8s(f, &s->ssrsa);
777
    qemu_put_8s(f, &s->ssacd);
778

    
779
    qemu_put_byte(f, s->rx_level);
780
    for (i = 0; i < s->rx_level; i ++)
781
        qemu_put_byte(f, s->rx_fifo[(s->rx_start + i) & 0xf]);
782
}
783

    
784
static int pxa2xx_ssp_load(QEMUFile *f, void *opaque, int version_id)
785
{
786
    PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
787
    int i;
788

    
789
    s->enable = qemu_get_be32(f);
790

    
791
    qemu_get_be32s(f, &s->sscr[0]);
792
    qemu_get_be32s(f, &s->sscr[1]);
793
    qemu_get_be32s(f, &s->sspsp);
794
    qemu_get_be32s(f, &s->ssto);
795
    qemu_get_be32s(f, &s->ssitr);
796
    qemu_get_be32s(f, &s->sssr);
797
    qemu_get_8s(f, &s->sstsa);
798
    qemu_get_8s(f, &s->ssrsa);
799
    qemu_get_8s(f, &s->ssacd);
800

    
801
    s->rx_level = qemu_get_byte(f);
802
    s->rx_start = 0;
803
    for (i = 0; i < s->rx_level; i ++)
804
        s->rx_fifo[i] = qemu_get_byte(f);
805

    
806
    return 0;
807
}
808

    
809
static int pxa2xx_ssp_init(SysBusDevice *dev)
810
{
811
    PXA2xxSSPState *s = FROM_SYSBUS(PXA2xxSSPState, dev);
812

    
813
    sysbus_init_irq(dev, &s->irq);
814

    
815
    memory_region_init_io(&s->iomem, &pxa2xx_ssp_ops, s, "pxa2xx-ssp", 0x1000);
816
    sysbus_init_mmio(dev, &s->iomem);
817
    register_savevm(&dev->qdev, "pxa2xx_ssp", -1, 0,
818
                    pxa2xx_ssp_save, pxa2xx_ssp_load, s);
819

    
820
    s->bus = ssi_create_bus(&dev->qdev, "ssi");
821
    return 0;
822
}
823

    
824
/* Real-Time Clock */
825
#define RCNR                0x00        /* RTC Counter register */
826
#define RTAR                0x04        /* RTC Alarm register */
827
#define RTSR                0x08        /* RTC Status register */
828
#define RTTR                0x0c        /* RTC Timer Trim register */
829
#define RDCR                0x10        /* RTC Day Counter register */
830
#define RYCR                0x14        /* RTC Year Counter register */
831
#define RDAR1                0x18        /* RTC Wristwatch Day Alarm register 1 */
832
#define RYAR1                0x1c        /* RTC Wristwatch Year Alarm register 1 */
833
#define RDAR2                0x20        /* RTC Wristwatch Day Alarm register 2 */
834
#define RYAR2                0x24        /* RTC Wristwatch Year Alarm register 2 */
835
#define SWCR                0x28        /* RTC Stopwatch Counter register */
836
#define SWAR1                0x2c        /* RTC Stopwatch Alarm register 1 */
837
#define SWAR2                0x30        /* RTC Stopwatch Alarm register 2 */
838
#define RTCPICR                0x34        /* RTC Periodic Interrupt Counter register */
839
#define PIAR                0x38        /* RTC Periodic Interrupt Alarm register */
840

    
841
typedef struct {
842
    SysBusDevice busdev;
843
    MemoryRegion iomem;
844
    uint32_t rttr;
845
    uint32_t rtsr;
846
    uint32_t rtar;
847
    uint32_t rdar1;
848
    uint32_t rdar2;
849
    uint32_t ryar1;
850
    uint32_t ryar2;
851
    uint32_t swar1;
852
    uint32_t swar2;
853
    uint32_t piar;
854
    uint32_t last_rcnr;
855
    uint32_t last_rdcr;
856
    uint32_t last_rycr;
857
    uint32_t last_swcr;
858
    uint32_t last_rtcpicr;
859
    int64_t last_hz;
860
    int64_t last_sw;
861
    int64_t last_pi;
862
    QEMUTimer *rtc_hz;
863
    QEMUTimer *rtc_rdal1;
864
    QEMUTimer *rtc_rdal2;
865
    QEMUTimer *rtc_swal1;
866
    QEMUTimer *rtc_swal2;
867
    QEMUTimer *rtc_pi;
868
    qemu_irq rtc_irq;
869
} PXA2xxRTCState;
870

    
871
static inline void pxa2xx_rtc_int_update(PXA2xxRTCState *s)
872
{
873
    qemu_set_irq(s->rtc_irq, !!(s->rtsr & 0x2553));
874
}
875

    
876
static void pxa2xx_rtc_hzupdate(PXA2xxRTCState *s)
877
{
878
    int64_t rt = qemu_get_clock_ms(rt_clock);
879
    s->last_rcnr += ((rt - s->last_hz) << 15) /
880
            (1000 * ((s->rttr & 0xffff) + 1));
881
    s->last_rdcr += ((rt - s->last_hz) << 15) /
882
            (1000 * ((s->rttr & 0xffff) + 1));
883
    s->last_hz = rt;
884
}
885

    
886
static void pxa2xx_rtc_swupdate(PXA2xxRTCState *s)
887
{
888
    int64_t rt = qemu_get_clock_ms(rt_clock);
889
    if (s->rtsr & (1 << 12))
890
        s->last_swcr += (rt - s->last_sw) / 10;
891
    s->last_sw = rt;
892
}
893

    
894
static void pxa2xx_rtc_piupdate(PXA2xxRTCState *s)
895
{
896
    int64_t rt = qemu_get_clock_ms(rt_clock);
897
    if (s->rtsr & (1 << 15))
898
        s->last_swcr += rt - s->last_pi;
899
    s->last_pi = rt;
900
}
901

    
902
static inline void pxa2xx_rtc_alarm_update(PXA2xxRTCState *s,
903
                uint32_t rtsr)
904
{
905
    if ((rtsr & (1 << 2)) && !(rtsr & (1 << 0)))
906
        qemu_mod_timer(s->rtc_hz, s->last_hz +
907
                (((s->rtar - s->last_rcnr) * 1000 *
908
                  ((s->rttr & 0xffff) + 1)) >> 15));
909
    else
910
        qemu_del_timer(s->rtc_hz);
911

    
912
    if ((rtsr & (1 << 5)) && !(rtsr & (1 << 4)))
913
        qemu_mod_timer(s->rtc_rdal1, s->last_hz +
914
                (((s->rdar1 - s->last_rdcr) * 1000 *
915
                  ((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */
916
    else
917
        qemu_del_timer(s->rtc_rdal1);
918

    
919
    if ((rtsr & (1 << 7)) && !(rtsr & (1 << 6)))
920
        qemu_mod_timer(s->rtc_rdal2, s->last_hz +
921
                (((s->rdar2 - s->last_rdcr) * 1000 *
922
                  ((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */
923
    else
924
        qemu_del_timer(s->rtc_rdal2);
925

    
926
    if ((rtsr & 0x1200) == 0x1200 && !(rtsr & (1 << 8)))
927
        qemu_mod_timer(s->rtc_swal1, s->last_sw +
928
                        (s->swar1 - s->last_swcr) * 10); /* TODO: fixup */
929
    else
930
        qemu_del_timer(s->rtc_swal1);
931

    
932
    if ((rtsr & 0x1800) == 0x1800 && !(rtsr & (1 << 10)))
933
        qemu_mod_timer(s->rtc_swal2, s->last_sw +
934
                        (s->swar2 - s->last_swcr) * 10); /* TODO: fixup */
935
    else
936
        qemu_del_timer(s->rtc_swal2);
937

    
938
    if ((rtsr & 0xc000) == 0xc000 && !(rtsr & (1 << 13)))
939
        qemu_mod_timer(s->rtc_pi, s->last_pi +
940
                        (s->piar & 0xffff) - s->last_rtcpicr);
941
    else
942
        qemu_del_timer(s->rtc_pi);
943
}
944

    
945
static inline void pxa2xx_rtc_hz_tick(void *opaque)
946
{
947
    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
948
    s->rtsr |= (1 << 0);
949
    pxa2xx_rtc_alarm_update(s, s->rtsr);
950
    pxa2xx_rtc_int_update(s);
951
}
952

    
953
static inline void pxa2xx_rtc_rdal1_tick(void *opaque)
954
{
955
    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
956
    s->rtsr |= (1 << 4);
957
    pxa2xx_rtc_alarm_update(s, s->rtsr);
958
    pxa2xx_rtc_int_update(s);
959
}
960

    
961
static inline void pxa2xx_rtc_rdal2_tick(void *opaque)
962
{
963
    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
964
    s->rtsr |= (1 << 6);
965
    pxa2xx_rtc_alarm_update(s, s->rtsr);
966
    pxa2xx_rtc_int_update(s);
967
}
968

    
969
static inline void pxa2xx_rtc_swal1_tick(void *opaque)
970
{
971
    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
972
    s->rtsr |= (1 << 8);
973
    pxa2xx_rtc_alarm_update(s, s->rtsr);
974
    pxa2xx_rtc_int_update(s);
975
}
976

    
977
static inline void pxa2xx_rtc_swal2_tick(void *opaque)
978
{
979
    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
980
    s->rtsr |= (1 << 10);
981
    pxa2xx_rtc_alarm_update(s, s->rtsr);
982
    pxa2xx_rtc_int_update(s);
983
}
984

    
985
static inline void pxa2xx_rtc_pi_tick(void *opaque)
986
{
987
    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
988
    s->rtsr |= (1 << 13);
989
    pxa2xx_rtc_piupdate(s);
990
    s->last_rtcpicr = 0;
991
    pxa2xx_rtc_alarm_update(s, s->rtsr);
992
    pxa2xx_rtc_int_update(s);
993
}
994

    
995
static uint64_t pxa2xx_rtc_read(void *opaque, target_phys_addr_t addr,
996
                                unsigned size)
997
{
998
    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
999

    
1000
    switch (addr) {
1001
    case RTTR:
1002
        return s->rttr;
1003
    case RTSR:
1004
        return s->rtsr;
1005
    case RTAR:
1006
        return s->rtar;
1007
    case RDAR1:
1008
        return s->rdar1;
1009
    case RDAR2:
1010
        return s->rdar2;
1011
    case RYAR1:
1012
        return s->ryar1;
1013
    case RYAR2:
1014
        return s->ryar2;
1015
    case SWAR1:
1016
        return s->swar1;
1017
    case SWAR2:
1018
        return s->swar2;
1019
    case PIAR:
1020
        return s->piar;
1021
    case RCNR:
1022
        return s->last_rcnr + ((qemu_get_clock_ms(rt_clock) - s->last_hz) << 15) /
1023
                (1000 * ((s->rttr & 0xffff) + 1));
1024
    case RDCR:
1025
        return s->last_rdcr + ((qemu_get_clock_ms(rt_clock) - s->last_hz) << 15) /
1026
                (1000 * ((s->rttr & 0xffff) + 1));
1027
    case RYCR:
1028
        return s->last_rycr;
1029
    case SWCR:
1030
        if (s->rtsr & (1 << 12))
1031
            return s->last_swcr + (qemu_get_clock_ms(rt_clock) - s->last_sw) / 10;
1032
        else
1033
            return s->last_swcr;
1034
    default:
1035
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1036
        break;
1037
    }
1038
    return 0;
1039
}
1040

    
1041
static void pxa2xx_rtc_write(void *opaque, target_phys_addr_t addr,
1042
                             uint64_t value64, unsigned size)
1043
{
1044
    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
1045
    uint32_t value = value64;
1046

    
1047
    switch (addr) {
1048
    case RTTR:
1049
        if (!(s->rttr & (1 << 31))) {
1050
            pxa2xx_rtc_hzupdate(s);
1051
            s->rttr = value;
1052
            pxa2xx_rtc_alarm_update(s, s->rtsr);
1053
        }
1054
        break;
1055

    
1056
    case RTSR:
1057
        if ((s->rtsr ^ value) & (1 << 15))
1058
            pxa2xx_rtc_piupdate(s);
1059

    
1060
        if ((s->rtsr ^ value) & (1 << 12))
1061
            pxa2xx_rtc_swupdate(s);
1062

    
1063
        if (((s->rtsr ^ value) & 0x4aac) | (value & ~0xdaac))
1064
            pxa2xx_rtc_alarm_update(s, value);
1065

    
1066
        s->rtsr = (value & 0xdaac) | (s->rtsr & ~(value & ~0xdaac));
1067
        pxa2xx_rtc_int_update(s);
1068
        break;
1069

    
1070
    case RTAR:
1071
        s->rtar = value;
1072
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1073
        break;
1074

    
1075
    case RDAR1:
1076
        s->rdar1 = value;
1077
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1078
        break;
1079

    
1080
    case RDAR2:
1081
        s->rdar2 = value;
1082
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1083
        break;
1084

    
1085
    case RYAR1:
1086
        s->ryar1 = value;
1087
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1088
        break;
1089

    
1090
    case RYAR2:
1091
        s->ryar2 = value;
1092
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1093
        break;
1094

    
1095
    case SWAR1:
1096
        pxa2xx_rtc_swupdate(s);
1097
        s->swar1 = value;
1098
        s->last_swcr = 0;
1099
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1100
        break;
1101

    
1102
    case SWAR2:
1103
        s->swar2 = value;
1104
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1105
        break;
1106

    
1107
    case PIAR:
1108
        s->piar = value;
1109
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1110
        break;
1111

    
1112
    case RCNR:
1113
        pxa2xx_rtc_hzupdate(s);
1114
        s->last_rcnr = value;
1115
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1116
        break;
1117

    
1118
    case RDCR:
1119
        pxa2xx_rtc_hzupdate(s);
1120
        s->last_rdcr = value;
1121
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1122
        break;
1123

    
1124
    case RYCR:
1125
        s->last_rycr = value;
1126
        break;
1127

    
1128
    case SWCR:
1129
        pxa2xx_rtc_swupdate(s);
1130
        s->last_swcr = value;
1131
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1132
        break;
1133

    
1134
    case RTCPICR:
1135
        pxa2xx_rtc_piupdate(s);
1136
        s->last_rtcpicr = value & 0xffff;
1137
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1138
        break;
1139

    
1140
    default:
1141
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1142
    }
1143
}
1144

    
1145
static const MemoryRegionOps pxa2xx_rtc_ops = {
1146
    .read = pxa2xx_rtc_read,
1147
    .write = pxa2xx_rtc_write,
1148
    .endianness = DEVICE_NATIVE_ENDIAN,
1149
};
1150

    
1151
static int pxa2xx_rtc_init(SysBusDevice *dev)
1152
{
1153
    PXA2xxRTCState *s = FROM_SYSBUS(PXA2xxRTCState, dev);
1154
    struct tm tm;
1155
    int wom;
1156

    
1157
    s->rttr = 0x7fff;
1158
    s->rtsr = 0;
1159

    
1160
    qemu_get_timedate(&tm, 0);
1161
    wom = ((tm.tm_mday - 1) / 7) + 1;
1162

    
1163
    s->last_rcnr = (uint32_t) mktimegm(&tm);
1164
    s->last_rdcr = (wom << 20) | ((tm.tm_wday + 1) << 17) |
1165
            (tm.tm_hour << 12) | (tm.tm_min << 6) | tm.tm_sec;
1166
    s->last_rycr = ((tm.tm_year + 1900) << 9) |
1167
            ((tm.tm_mon + 1) << 5) | tm.tm_mday;
1168
    s->last_swcr = (tm.tm_hour << 19) |
1169
            (tm.tm_min << 13) | (tm.tm_sec << 7);
1170
    s->last_rtcpicr = 0;
1171
    s->last_hz = s->last_sw = s->last_pi = qemu_get_clock_ms(rt_clock);
1172

    
1173
    s->rtc_hz    = qemu_new_timer_ms(rt_clock, pxa2xx_rtc_hz_tick,    s);
1174
    s->rtc_rdal1 = qemu_new_timer_ms(rt_clock, pxa2xx_rtc_rdal1_tick, s);
1175
    s->rtc_rdal2 = qemu_new_timer_ms(rt_clock, pxa2xx_rtc_rdal2_tick, s);
1176
    s->rtc_swal1 = qemu_new_timer_ms(rt_clock, pxa2xx_rtc_swal1_tick, s);
1177
    s->rtc_swal2 = qemu_new_timer_ms(rt_clock, pxa2xx_rtc_swal2_tick, s);
1178
    s->rtc_pi    = qemu_new_timer_ms(rt_clock, pxa2xx_rtc_pi_tick,    s);
1179

    
1180
    sysbus_init_irq(dev, &s->rtc_irq);
1181

    
1182
    memory_region_init_io(&s->iomem, &pxa2xx_rtc_ops, s, "pxa2xx-rtc", 0x10000);
1183
    sysbus_init_mmio(dev, &s->iomem);
1184

    
1185
    return 0;
1186
}
1187

    
1188
static void pxa2xx_rtc_pre_save(void *opaque)
1189
{
1190
    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
1191

    
1192
    pxa2xx_rtc_hzupdate(s);
1193
    pxa2xx_rtc_piupdate(s);
1194
    pxa2xx_rtc_swupdate(s);
1195
}
1196

    
1197
static int pxa2xx_rtc_post_load(void *opaque, int version_id)
1198
{
1199
    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
1200

    
1201
    pxa2xx_rtc_alarm_update(s, s->rtsr);
1202

    
1203
    return 0;
1204
}
1205

    
1206
static const VMStateDescription vmstate_pxa2xx_rtc_regs = {
1207
    .name = "pxa2xx_rtc",
1208
    .version_id = 0,
1209
    .minimum_version_id = 0,
1210
    .minimum_version_id_old = 0,
1211
    .pre_save = pxa2xx_rtc_pre_save,
1212
    .post_load = pxa2xx_rtc_post_load,
1213
    .fields = (VMStateField[]) {
1214
        VMSTATE_UINT32(rttr, PXA2xxRTCState),
1215
        VMSTATE_UINT32(rtsr, PXA2xxRTCState),
1216
        VMSTATE_UINT32(rtar, PXA2xxRTCState),
1217
        VMSTATE_UINT32(rdar1, PXA2xxRTCState),
1218
        VMSTATE_UINT32(rdar2, PXA2xxRTCState),
1219
        VMSTATE_UINT32(ryar1, PXA2xxRTCState),
1220
        VMSTATE_UINT32(ryar2, PXA2xxRTCState),
1221
        VMSTATE_UINT32(swar1, PXA2xxRTCState),
1222
        VMSTATE_UINT32(swar2, PXA2xxRTCState),
1223
        VMSTATE_UINT32(piar, PXA2xxRTCState),
1224
        VMSTATE_UINT32(last_rcnr, PXA2xxRTCState),
1225
        VMSTATE_UINT32(last_rdcr, PXA2xxRTCState),
1226
        VMSTATE_UINT32(last_rycr, PXA2xxRTCState),
1227
        VMSTATE_UINT32(last_swcr, PXA2xxRTCState),
1228
        VMSTATE_UINT32(last_rtcpicr, PXA2xxRTCState),
1229
        VMSTATE_INT64(last_hz, PXA2xxRTCState),
1230
        VMSTATE_INT64(last_sw, PXA2xxRTCState),
1231
        VMSTATE_INT64(last_pi, PXA2xxRTCState),
1232
        VMSTATE_END_OF_LIST(),
1233
    },
1234
};
1235

    
1236
static SysBusDeviceInfo pxa2xx_rtc_sysbus_info = {
1237
    .init       = pxa2xx_rtc_init,
1238
    .qdev.name  = "pxa2xx_rtc",
1239
    .qdev.desc  = "PXA2xx RTC Controller",
1240
    .qdev.size  = sizeof(PXA2xxRTCState),
1241
    .qdev.vmsd  = &vmstate_pxa2xx_rtc_regs,
1242
};
1243

    
1244
/* I2C Interface */
1245
typedef struct {
1246
    I2CSlave i2c;
1247
    PXA2xxI2CState *host;
1248
} PXA2xxI2CSlaveState;
1249

    
1250
struct PXA2xxI2CState {
1251
    SysBusDevice busdev;
1252
    MemoryRegion iomem;
1253
    PXA2xxI2CSlaveState *slave;
1254
    i2c_bus *bus;
1255
    qemu_irq irq;
1256
    uint32_t offset;
1257
    uint32_t region_size;
1258

    
1259
    uint16_t control;
1260
    uint16_t status;
1261
    uint8_t ibmr;
1262
    uint8_t data;
1263
};
1264

    
1265
#define IBMR        0x80        /* I2C Bus Monitor register */
1266
#define IDBR        0x88        /* I2C Data Buffer register */
1267
#define ICR        0x90        /* I2C Control register */
1268
#define ISR        0x98        /* I2C Status register */
1269
#define ISAR        0xa0        /* I2C Slave Address register */
1270

    
1271
static void pxa2xx_i2c_update(PXA2xxI2CState *s)
1272
{
1273
    uint16_t level = 0;
1274
    level |= s->status & s->control & (1 << 10);                /* BED */
1275
    level |= (s->status & (1 << 7)) && (s->control & (1 << 9));        /* IRF */
1276
    level |= (s->status & (1 << 6)) && (s->control & (1 << 8));        /* ITE */
1277
    level |= s->status & (1 << 9);                                /* SAD */
1278
    qemu_set_irq(s->irq, !!level);
1279
}
1280

    
1281
/* These are only stubs now.  */
1282
static void pxa2xx_i2c_event(I2CSlave *i2c, enum i2c_event event)
1283
{
1284
    PXA2xxI2CSlaveState *slave = FROM_I2C_SLAVE(PXA2xxI2CSlaveState, i2c);
1285
    PXA2xxI2CState *s = slave->host;
1286

    
1287
    switch (event) {
1288
    case I2C_START_SEND:
1289
        s->status |= (1 << 9);                                /* set SAD */
1290
        s->status &= ~(1 << 0);                                /* clear RWM */
1291
        break;
1292
    case I2C_START_RECV:
1293
        s->status |= (1 << 9);                                /* set SAD */
1294
        s->status |= 1 << 0;                                /* set RWM */
1295
        break;
1296
    case I2C_FINISH:
1297
        s->status |= (1 << 4);                                /* set SSD */
1298
        break;
1299
    case I2C_NACK:
1300
        s->status |= 1 << 1;                                /* set ACKNAK */
1301
        break;
1302
    }
1303
    pxa2xx_i2c_update(s);
1304
}
1305

    
1306
static int pxa2xx_i2c_rx(I2CSlave *i2c)
1307
{
1308
    PXA2xxI2CSlaveState *slave = FROM_I2C_SLAVE(PXA2xxI2CSlaveState, i2c);
1309
    PXA2xxI2CState *s = slave->host;
1310
    if ((s->control & (1 << 14)) || !(s->control & (1 << 6)))
1311
        return 0;
1312

    
1313
    if (s->status & (1 << 0)) {                        /* RWM */
1314
        s->status |= 1 << 6;                        /* set ITE */
1315
    }
1316
    pxa2xx_i2c_update(s);
1317

    
1318
    return s->data;
1319
}
1320

    
1321
static int pxa2xx_i2c_tx(I2CSlave *i2c, uint8_t data)
1322
{
1323
    PXA2xxI2CSlaveState *slave = FROM_I2C_SLAVE(PXA2xxI2CSlaveState, i2c);
1324
    PXA2xxI2CState *s = slave->host;
1325
    if ((s->control & (1 << 14)) || !(s->control & (1 << 6)))
1326
        return 1;
1327

    
1328
    if (!(s->status & (1 << 0))) {                /* RWM */
1329
        s->status |= 1 << 7;                        /* set IRF */
1330
        s->data = data;
1331
    }
1332
    pxa2xx_i2c_update(s);
1333

    
1334
    return 1;
1335
}
1336

    
1337
static uint64_t pxa2xx_i2c_read(void *opaque, target_phys_addr_t addr,
1338
                                unsigned size)
1339
{
1340
    PXA2xxI2CState *s = (PXA2xxI2CState *) opaque;
1341

    
1342
    addr -= s->offset;
1343
    switch (addr) {
1344
    case ICR:
1345
        return s->control;
1346
    case ISR:
1347
        return s->status | (i2c_bus_busy(s->bus) << 2);
1348
    case ISAR:
1349
        return s->slave->i2c.address;
1350
    case IDBR:
1351
        return s->data;
1352
    case IBMR:
1353
        if (s->status & (1 << 2))
1354
            s->ibmr ^= 3;        /* Fake SCL and SDA pin changes */
1355
        else
1356
            s->ibmr = 0;
1357
        return s->ibmr;
1358
    default:
1359
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1360
        break;
1361
    }
1362
    return 0;
1363
}
1364

    
1365
static void pxa2xx_i2c_write(void *opaque, target_phys_addr_t addr,
1366
                             uint64_t value64, unsigned size)
1367
{
1368
    PXA2xxI2CState *s = (PXA2xxI2CState *) opaque;
1369
    uint32_t value = value64;
1370
    int ack;
1371

    
1372
    addr -= s->offset;
1373
    switch (addr) {
1374
    case ICR:
1375
        s->control = value & 0xfff7;
1376
        if ((value & (1 << 3)) && (value & (1 << 6))) {        /* TB and IUE */
1377
            /* TODO: slave mode */
1378
            if (value & (1 << 0)) {                        /* START condition */
1379
                if (s->data & 1)
1380
                    s->status |= 1 << 0;                /* set RWM */
1381
                else
1382
                    s->status &= ~(1 << 0);                /* clear RWM */
1383
                ack = !i2c_start_transfer(s->bus, s->data >> 1, s->data & 1);
1384
            } else {
1385
                if (s->status & (1 << 0)) {                /* RWM */
1386
                    s->data = i2c_recv(s->bus);
1387
                    if (value & (1 << 2))                /* ACKNAK */
1388
                        i2c_nack(s->bus);
1389
                    ack = 1;
1390
                } else
1391
                    ack = !i2c_send(s->bus, s->data);
1392
            }
1393

    
1394
            if (value & (1 << 1))                        /* STOP condition */
1395
                i2c_end_transfer(s->bus);
1396

    
1397
            if (ack) {
1398
                if (value & (1 << 0))                        /* START condition */
1399
                    s->status |= 1 << 6;                /* set ITE */
1400
                else
1401
                    if (s->status & (1 << 0))                /* RWM */
1402
                        s->status |= 1 << 7;                /* set IRF */
1403
                    else
1404
                        s->status |= 1 << 6;                /* set ITE */
1405
                s->status &= ~(1 << 1);                        /* clear ACKNAK */
1406
            } else {
1407
                s->status |= 1 << 6;                        /* set ITE */
1408
                s->status |= 1 << 10;                        /* set BED */
1409
                s->status |= 1 << 1;                        /* set ACKNAK */
1410
            }
1411
        }
1412
        if (!(value & (1 << 3)) && (value & (1 << 6)))        /* !TB and IUE */
1413
            if (value & (1 << 4))                        /* MA */
1414
                i2c_end_transfer(s->bus);
1415
        pxa2xx_i2c_update(s);
1416
        break;
1417

    
1418
    case ISR:
1419
        s->status &= ~(value & 0x07f0);
1420
        pxa2xx_i2c_update(s);
1421
        break;
1422

    
1423
    case ISAR:
1424
        i2c_set_slave_address(&s->slave->i2c, value & 0x7f);
1425
        break;
1426

    
1427
    case IDBR:
1428
        s->data = value & 0xff;
1429
        break;
1430

    
1431
    default:
1432
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1433
    }
1434
}
1435

    
1436
static const MemoryRegionOps pxa2xx_i2c_ops = {
1437
    .read = pxa2xx_i2c_read,
1438
    .write = pxa2xx_i2c_write,
1439
    .endianness = DEVICE_NATIVE_ENDIAN,
1440
};
1441

    
1442
static const VMStateDescription vmstate_pxa2xx_i2c_slave = {
1443
    .name = "pxa2xx_i2c_slave",
1444
    .version_id = 1,
1445
    .minimum_version_id = 1,
1446
    .minimum_version_id_old = 1,
1447
    .fields      = (VMStateField []) {
1448
        VMSTATE_I2C_SLAVE(i2c, PXA2xxI2CSlaveState),
1449
        VMSTATE_END_OF_LIST()
1450
    }
1451
};
1452

    
1453
static const VMStateDescription vmstate_pxa2xx_i2c = {
1454
    .name = "pxa2xx_i2c",
1455
    .version_id = 1,
1456
    .minimum_version_id = 1,
1457
    .minimum_version_id_old = 1,
1458
    .fields      = (VMStateField []) {
1459
        VMSTATE_UINT16(control, PXA2xxI2CState),
1460
        VMSTATE_UINT16(status, PXA2xxI2CState),
1461
        VMSTATE_UINT8(ibmr, PXA2xxI2CState),
1462
        VMSTATE_UINT8(data, PXA2xxI2CState),
1463
        VMSTATE_STRUCT_POINTER(slave, PXA2xxI2CState,
1464
                               vmstate_pxa2xx_i2c_slave, PXA2xxI2CSlaveState *),
1465
        VMSTATE_END_OF_LIST()
1466
    }
1467
};
1468

    
1469
static int pxa2xx_i2c_slave_init(I2CSlave *i2c)
1470
{
1471
    /* Nothing to do.  */
1472
    return 0;
1473
}
1474

    
1475
static void pxapxa2xx_i2c_slave_class_init(ObjectClass *klass, void *data)
1476
{
1477
    I2CSlaveClass *k = I2C_SLAVE_CLASS(klass);
1478

    
1479
    k->init = pxa2xx_i2c_slave_init;
1480
    k->event = pxa2xx_i2c_event;
1481
    k->recv = pxa2xx_i2c_rx;
1482
    k->send = pxa2xx_i2c_tx;
1483
}
1484

    
1485
static DeviceInfo pxa2xx_i2c_slave_info = {
1486
    .name = "pxa2xx-i2c-slave",
1487
    .size = sizeof(PXA2xxI2CSlaveState),
1488
    .class_init = pxapxa2xx_i2c_slave_class_init,
1489
};
1490

    
1491
PXA2xxI2CState *pxa2xx_i2c_init(target_phys_addr_t base,
1492
                qemu_irq irq, uint32_t region_size)
1493
{
1494
    DeviceState *dev;
1495
    SysBusDevice *i2c_dev;
1496
    PXA2xxI2CState *s;
1497

    
1498
    i2c_dev = sysbus_from_qdev(qdev_create(NULL, "pxa2xx_i2c"));
1499
    qdev_prop_set_uint32(&i2c_dev->qdev, "size", region_size + 1);
1500
    qdev_prop_set_uint32(&i2c_dev->qdev, "offset",
1501
            base - (base & (~region_size) & TARGET_PAGE_MASK));
1502

    
1503
    qdev_init_nofail(&i2c_dev->qdev);
1504

    
1505
    sysbus_mmio_map(i2c_dev, 0, base & ~region_size);
1506
    sysbus_connect_irq(i2c_dev, 0, irq);
1507

    
1508
    s = FROM_SYSBUS(PXA2xxI2CState, i2c_dev);
1509
    /* FIXME: Should the slave device really be on a separate bus?  */
1510
    dev = i2c_create_slave(i2c_init_bus(NULL, "dummy"), "pxa2xx-i2c-slave", 0);
1511
    s->slave = FROM_I2C_SLAVE(PXA2xxI2CSlaveState, I2C_SLAVE_FROM_QDEV(dev));
1512
    s->slave->host = s;
1513

    
1514
    return s;
1515
}
1516

    
1517
static int pxa2xx_i2c_initfn(SysBusDevice *dev)
1518
{
1519
    PXA2xxI2CState *s = FROM_SYSBUS(PXA2xxI2CState, dev);
1520

    
1521
    s->bus = i2c_init_bus(&dev->qdev, "i2c");
1522

    
1523
    memory_region_init_io(&s->iomem, &pxa2xx_i2c_ops, s,
1524
                          "pxa2xx-i2x", s->region_size);
1525
    sysbus_init_mmio(dev, &s->iomem);
1526
    sysbus_init_irq(dev, &s->irq);
1527

    
1528
    return 0;
1529
}
1530

    
1531
i2c_bus *pxa2xx_i2c_bus(PXA2xxI2CState *s)
1532
{
1533
    return s->bus;
1534
}
1535

    
1536
static SysBusDeviceInfo pxa2xx_i2c_info = {
1537
    .init       = pxa2xx_i2c_initfn,
1538
    .qdev.name  = "pxa2xx_i2c",
1539
    .qdev.desc  = "PXA2xx I2C Bus Controller",
1540
    .qdev.size  = sizeof(PXA2xxI2CState),
1541
    .qdev.vmsd  = &vmstate_pxa2xx_i2c,
1542
    .qdev.props = (Property[]) {
1543
        DEFINE_PROP_UINT32("size", PXA2xxI2CState, region_size, 0x10000),
1544
        DEFINE_PROP_UINT32("offset", PXA2xxI2CState, offset, 0),
1545
        DEFINE_PROP_END_OF_LIST(),
1546
    },
1547
};
1548

    
1549
/* PXA Inter-IC Sound Controller */
1550
static void pxa2xx_i2s_reset(PXA2xxI2SState *i2s)
1551
{
1552
    i2s->rx_len = 0;
1553
    i2s->tx_len = 0;
1554
    i2s->fifo_len = 0;
1555
    i2s->clk = 0x1a;
1556
    i2s->control[0] = 0x00;
1557
    i2s->control[1] = 0x00;
1558
    i2s->status = 0x00;
1559
    i2s->mask = 0x00;
1560
}
1561

    
1562
#define SACR_TFTH(val)        ((val >> 8) & 0xf)
1563
#define SACR_RFTH(val)        ((val >> 12) & 0xf)
1564
#define SACR_DREC(val)        (val & (1 << 3))
1565
#define SACR_DPRL(val)        (val & (1 << 4))
1566

    
1567
static inline void pxa2xx_i2s_update(PXA2xxI2SState *i2s)
1568
{
1569
    int rfs, tfs;
1570
    rfs = SACR_RFTH(i2s->control[0]) < i2s->rx_len &&
1571
            !SACR_DREC(i2s->control[1]);
1572
    tfs = (i2s->tx_len || i2s->fifo_len < SACR_TFTH(i2s->control[0])) &&
1573
            i2s->enable && !SACR_DPRL(i2s->control[1]);
1574

    
1575
    qemu_set_irq(i2s->rx_dma, rfs);
1576
    qemu_set_irq(i2s->tx_dma, tfs);
1577

    
1578
    i2s->status &= 0xe0;
1579
    if (i2s->fifo_len < 16 || !i2s->enable)
1580
        i2s->status |= 1 << 0;                        /* TNF */
1581
    if (i2s->rx_len)
1582
        i2s->status |= 1 << 1;                        /* RNE */
1583
    if (i2s->enable)
1584
        i2s->status |= 1 << 2;                        /* BSY */
1585
    if (tfs)
1586
        i2s->status |= 1 << 3;                        /* TFS */
1587
    if (rfs)
1588
        i2s->status |= 1 << 4;                        /* RFS */
1589
    if (!(i2s->tx_len && i2s->enable))
1590
        i2s->status |= i2s->fifo_len << 8;        /* TFL */
1591
    i2s->status |= MAX(i2s->rx_len, 0xf) << 12;        /* RFL */
1592

    
1593
    qemu_set_irq(i2s->irq, i2s->status & i2s->mask);
1594
}
1595

    
1596
#define SACR0        0x00        /* Serial Audio Global Control register */
1597
#define SACR1        0x04        /* Serial Audio I2S/MSB-Justified Control register */
1598
#define SASR0        0x0c        /* Serial Audio Interface and FIFO Status register */
1599
#define SAIMR        0x14        /* Serial Audio Interrupt Mask register */
1600
#define SAICR        0x18        /* Serial Audio Interrupt Clear register */
1601
#define SADIV        0x60        /* Serial Audio Clock Divider register */
1602
#define SADR        0x80        /* Serial Audio Data register */
1603

    
1604
static uint64_t pxa2xx_i2s_read(void *opaque, target_phys_addr_t addr,
1605
                                unsigned size)
1606
{
1607
    PXA2xxI2SState *s = (PXA2xxI2SState *) opaque;
1608

    
1609
    switch (addr) {
1610
    case SACR0:
1611
        return s->control[0];
1612
    case SACR1:
1613
        return s->control[1];
1614
    case SASR0:
1615
        return s->status;
1616
    case SAIMR:
1617
        return s->mask;
1618
    case SAICR:
1619
        return 0;
1620
    case SADIV:
1621
        return s->clk;
1622
    case SADR:
1623
        if (s->rx_len > 0) {
1624
            s->rx_len --;
1625
            pxa2xx_i2s_update(s);
1626
            return s->codec_in(s->opaque);
1627
        }
1628
        return 0;
1629
    default:
1630
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1631
        break;
1632
    }
1633
    return 0;
1634
}
1635

    
1636
static void pxa2xx_i2s_write(void *opaque, target_phys_addr_t addr,
1637
                             uint64_t value, unsigned size)
1638
{
1639
    PXA2xxI2SState *s = (PXA2xxI2SState *) opaque;
1640
    uint32_t *sample;
1641

    
1642
    switch (addr) {
1643
    case SACR0:
1644
        if (value & (1 << 3))                                /* RST */
1645
            pxa2xx_i2s_reset(s);
1646
        s->control[0] = value & 0xff3d;
1647
        if (!s->enable && (value & 1) && s->tx_len) {        /* ENB */
1648
            for (sample = s->fifo; s->fifo_len > 0; s->fifo_len --, sample ++)
1649
                s->codec_out(s->opaque, *sample);
1650
            s->status &= ~(1 << 7);                        /* I2SOFF */
1651
        }
1652
        if (value & (1 << 4))                                /* EFWR */
1653
            printf("%s: Attempt to use special function\n", __FUNCTION__);
1654
        s->enable = (value & 9) == 1;                        /* ENB && !RST*/
1655
        pxa2xx_i2s_update(s);
1656
        break;
1657
    case SACR1:
1658
        s->control[1] = value & 0x0039;
1659
        if (value & (1 << 5))                                /* ENLBF */
1660
            printf("%s: Attempt to use loopback function\n", __FUNCTION__);
1661
        if (value & (1 << 4))                                /* DPRL */
1662
            s->fifo_len = 0;
1663
        pxa2xx_i2s_update(s);
1664
        break;
1665
    case SAIMR:
1666
        s->mask = value & 0x0078;
1667
        pxa2xx_i2s_update(s);
1668
        break;
1669
    case SAICR:
1670
        s->status &= ~(value & (3 << 5));
1671
        pxa2xx_i2s_update(s);
1672
        break;
1673
    case SADIV:
1674
        s->clk = value & 0x007f;
1675
        break;
1676
    case SADR:
1677
        if (s->tx_len && s->enable) {
1678
            s->tx_len --;
1679
            pxa2xx_i2s_update(s);
1680
            s->codec_out(s->opaque, value);
1681
        } else if (s->fifo_len < 16) {
1682
            s->fifo[s->fifo_len ++] = value;
1683
            pxa2xx_i2s_update(s);
1684
        }
1685
        break;
1686
    default:
1687
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1688
    }
1689
}
1690

    
1691
static const MemoryRegionOps pxa2xx_i2s_ops = {
1692
    .read = pxa2xx_i2s_read,
1693
    .write = pxa2xx_i2s_write,
1694
    .endianness = DEVICE_NATIVE_ENDIAN,
1695
};
1696

    
1697
static const VMStateDescription vmstate_pxa2xx_i2s = {
1698
    .name = "pxa2xx_i2s",
1699
    .version_id = 0,
1700
    .minimum_version_id = 0,
1701
    .minimum_version_id_old = 0,
1702
    .fields      = (VMStateField[]) {
1703
        VMSTATE_UINT32_ARRAY(control, PXA2xxI2SState, 2),
1704
        VMSTATE_UINT32(status, PXA2xxI2SState),
1705
        VMSTATE_UINT32(mask, PXA2xxI2SState),
1706
        VMSTATE_UINT32(clk, PXA2xxI2SState),
1707
        VMSTATE_INT32(enable, PXA2xxI2SState),
1708
        VMSTATE_INT32(rx_len, PXA2xxI2SState),
1709
        VMSTATE_INT32(tx_len, PXA2xxI2SState),
1710
        VMSTATE_INT32(fifo_len, PXA2xxI2SState),
1711
        VMSTATE_END_OF_LIST()
1712
    }
1713
};
1714

    
1715
static void pxa2xx_i2s_data_req(void *opaque, int tx, int rx)
1716
{
1717
    PXA2xxI2SState *s = (PXA2xxI2SState *) opaque;
1718
    uint32_t *sample;
1719

    
1720
    /* Signal FIFO errors */
1721
    if (s->enable && s->tx_len)
1722
        s->status |= 1 << 5;                /* TUR */
1723
    if (s->enable && s->rx_len)
1724
        s->status |= 1 << 6;                /* ROR */
1725

    
1726
    /* Should be tx - MIN(tx, s->fifo_len) but we don't really need to
1727
     * handle the cases where it makes a difference.  */
1728
    s->tx_len = tx - s->fifo_len;
1729
    s->rx_len = rx;
1730
    /* Note that is s->codec_out wasn't set, we wouldn't get called.  */
1731
    if (s->enable)
1732
        for (sample = s->fifo; s->fifo_len; s->fifo_len --, sample ++)
1733
            s->codec_out(s->opaque, *sample);
1734
    pxa2xx_i2s_update(s);
1735
}
1736

    
1737
static PXA2xxI2SState *pxa2xx_i2s_init(MemoryRegion *sysmem,
1738
                target_phys_addr_t base,
1739
                qemu_irq irq, qemu_irq rx_dma, qemu_irq tx_dma)
1740
{
1741
    PXA2xxI2SState *s = (PXA2xxI2SState *)
1742
            g_malloc0(sizeof(PXA2xxI2SState));
1743

    
1744
    s->irq = irq;
1745
    s->rx_dma = rx_dma;
1746
    s->tx_dma = tx_dma;
1747
    s->data_req = pxa2xx_i2s_data_req;
1748

    
1749
    pxa2xx_i2s_reset(s);
1750

    
1751
    memory_region_init_io(&s->iomem, &pxa2xx_i2s_ops, s,
1752
                          "pxa2xx-i2s", 0x100000);
1753
    memory_region_add_subregion(sysmem, base, &s->iomem);
1754

    
1755
    vmstate_register(NULL, base, &vmstate_pxa2xx_i2s, s);
1756

    
1757
    return s;
1758
}
1759

    
1760
/* PXA Fast Infra-red Communications Port */
1761
struct PXA2xxFIrState {
1762
    MemoryRegion iomem;
1763
    qemu_irq irq;
1764
    qemu_irq rx_dma;
1765
    qemu_irq tx_dma;
1766
    int enable;
1767
    CharDriverState *chr;
1768

    
1769
    uint8_t control[3];
1770
    uint8_t status[2];
1771

    
1772
    int rx_len;
1773
    int rx_start;
1774
    uint8_t rx_fifo[64];
1775
};
1776

    
1777
static void pxa2xx_fir_reset(PXA2xxFIrState *s)
1778
{
1779
    s->control[0] = 0x00;
1780
    s->control[1] = 0x00;
1781
    s->control[2] = 0x00;
1782
    s->status[0] = 0x00;
1783
    s->status[1] = 0x00;
1784
    s->enable = 0;
1785
}
1786

    
1787
static inline void pxa2xx_fir_update(PXA2xxFIrState *s)
1788
{
1789
    static const int tresh[4] = { 8, 16, 32, 0 };
1790
    int intr = 0;
1791
    if ((s->control[0] & (1 << 4)) &&                        /* RXE */
1792
                    s->rx_len >= tresh[s->control[2] & 3])        /* TRIG */
1793
        s->status[0] |= 1 << 4;                                /* RFS */
1794
    else
1795
        s->status[0] &= ~(1 << 4);                        /* RFS */
1796
    if (s->control[0] & (1 << 3))                        /* TXE */
1797
        s->status[0] |= 1 << 3;                                /* TFS */
1798
    else
1799
        s->status[0] &= ~(1 << 3);                        /* TFS */
1800
    if (s->rx_len)
1801
        s->status[1] |= 1 << 2;                                /* RNE */
1802
    else
1803
        s->status[1] &= ~(1 << 2);                        /* RNE */
1804
    if (s->control[0] & (1 << 4))                        /* RXE */
1805
        s->status[1] |= 1 << 0;                                /* RSY */
1806
    else
1807
        s->status[1] &= ~(1 << 0);                        /* RSY */
1808

    
1809
    intr |= (s->control[0] & (1 << 5)) &&                /* RIE */
1810
            (s->status[0] & (1 << 4));                        /* RFS */
1811
    intr |= (s->control[0] & (1 << 6)) &&                /* TIE */
1812
            (s->status[0] & (1 << 3));                        /* TFS */
1813
    intr |= (s->control[2] & (1 << 4)) &&                /* TRAIL */
1814
            (s->status[0] & (1 << 6));                        /* EOC */
1815
    intr |= (s->control[0] & (1 << 2)) &&                /* TUS */
1816
            (s->status[0] & (1 << 1));                        /* TUR */
1817
    intr |= s->status[0] & 0x25;                        /* FRE, RAB, EIF */
1818

    
1819
    qemu_set_irq(s->rx_dma, (s->status[0] >> 4) & 1);
1820
    qemu_set_irq(s->tx_dma, (s->status[0] >> 3) & 1);
1821

    
1822
    qemu_set_irq(s->irq, intr && s->enable);
1823
}
1824

    
1825
#define ICCR0        0x00        /* FICP Control register 0 */
1826
#define ICCR1        0x04        /* FICP Control register 1 */
1827
#define ICCR2        0x08        /* FICP Control register 2 */
1828
#define ICDR        0x0c        /* FICP Data register */
1829
#define ICSR0        0x14        /* FICP Status register 0 */
1830
#define ICSR1        0x18        /* FICP Status register 1 */
1831
#define ICFOR        0x1c        /* FICP FIFO Occupancy Status register */
1832

    
1833
static uint64_t pxa2xx_fir_read(void *opaque, target_phys_addr_t addr,
1834
                                unsigned size)
1835
{
1836
    PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1837
    uint8_t ret;
1838

    
1839
    switch (addr) {
1840
    case ICCR0:
1841
        return s->control[0];
1842
    case ICCR1:
1843
        return s->control[1];
1844
    case ICCR2:
1845
        return s->control[2];
1846
    case ICDR:
1847
        s->status[0] &= ~0x01;
1848
        s->status[1] &= ~0x72;
1849
        if (s->rx_len) {
1850
            s->rx_len --;
1851
            ret = s->rx_fifo[s->rx_start ++];
1852
            s->rx_start &= 63;
1853
            pxa2xx_fir_update(s);
1854
            return ret;
1855
        }
1856
        printf("%s: Rx FIFO underrun.\n", __FUNCTION__);
1857
        break;
1858
    case ICSR0:
1859
        return s->status[0];
1860
    case ICSR1:
1861
        return s->status[1] | (1 << 3);                        /* TNF */
1862
    case ICFOR:
1863
        return s->rx_len;
1864
    default:
1865
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1866
        break;
1867
    }
1868
    return 0;
1869
}
1870

    
1871
static void pxa2xx_fir_write(void *opaque, target_phys_addr_t addr,
1872
                             uint64_t value64, unsigned size)
1873
{
1874
    PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1875
    uint32_t value = value64;
1876
    uint8_t ch;
1877

    
1878
    switch (addr) {
1879
    case ICCR0:
1880
        s->control[0] = value;
1881
        if (!(value & (1 << 4)))                        /* RXE */
1882
            s->rx_len = s->rx_start = 0;
1883
        if (!(value & (1 << 3))) {                      /* TXE */
1884
            /* Nop */
1885
        }
1886
        s->enable = value & 1;                                /* ITR */
1887
        if (!s->enable)
1888
            s->status[0] = 0;
1889
        pxa2xx_fir_update(s);
1890
        break;
1891
    case ICCR1:
1892
        s->control[1] = value;
1893
        break;
1894
    case ICCR2:
1895
        s->control[2] = value & 0x3f;
1896
        pxa2xx_fir_update(s);
1897
        break;
1898
    case ICDR:
1899
        if (s->control[2] & (1 << 2))                        /* TXP */
1900
            ch = value;
1901
        else
1902
            ch = ~value;
1903
        if (s->chr && s->enable && (s->control[0] & (1 << 3)))        /* TXE */
1904
            qemu_chr_fe_write(s->chr, &ch, 1);
1905
        break;
1906
    case ICSR0:
1907
        s->status[0] &= ~(value & 0x66);
1908
        pxa2xx_fir_update(s);
1909
        break;
1910
    case ICFOR:
1911
        break;
1912
    default:
1913
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1914
    }
1915
}
1916

    
1917
static const MemoryRegionOps pxa2xx_fir_ops = {
1918
    .read = pxa2xx_fir_read,
1919
    .write = pxa2xx_fir_write,
1920
    .endianness = DEVICE_NATIVE_ENDIAN,
1921
};
1922

    
1923
static int pxa2xx_fir_is_empty(void *opaque)
1924
{
1925
    PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1926
    return (s->rx_len < 64);
1927
}
1928

    
1929
static void pxa2xx_fir_rx(void *opaque, const uint8_t *buf, int size)
1930
{
1931
    PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1932
    if (!(s->control[0] & (1 << 4)))                        /* RXE */
1933
        return;
1934

    
1935
    while (size --) {
1936
        s->status[1] |= 1 << 4;                                /* EOF */
1937
        if (s->rx_len >= 64) {
1938
            s->status[1] |= 1 << 6;                        /* ROR */
1939
            break;
1940
        }
1941

    
1942
        if (s->control[2] & (1 << 3))                        /* RXP */
1943
            s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = *(buf ++);
1944
        else
1945
            s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = ~*(buf ++);
1946
    }
1947

    
1948
    pxa2xx_fir_update(s);
1949
}
1950

    
1951
static void pxa2xx_fir_event(void *opaque, int event)
1952
{
1953
}
1954

    
1955
static void pxa2xx_fir_save(QEMUFile *f, void *opaque)
1956
{
1957
    PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1958
    int i;
1959

    
1960
    qemu_put_be32(f, s->enable);
1961

    
1962
    qemu_put_8s(f, &s->control[0]);
1963
    qemu_put_8s(f, &s->control[1]);
1964
    qemu_put_8s(f, &s->control[2]);
1965
    qemu_put_8s(f, &s->status[0]);
1966
    qemu_put_8s(f, &s->status[1]);
1967

    
1968
    qemu_put_byte(f, s->rx_len);
1969
    for (i = 0; i < s->rx_len; i ++)
1970
        qemu_put_byte(f, s->rx_fifo[(s->rx_start + i) & 63]);
1971
}
1972

    
1973
static int pxa2xx_fir_load(QEMUFile *f, void *opaque, int version_id)
1974
{
1975
    PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1976
    int i;
1977

    
1978
    s->enable = qemu_get_be32(f);
1979

    
1980
    qemu_get_8s(f, &s->control[0]);
1981
    qemu_get_8s(f, &s->control[1]);
1982
    qemu_get_8s(f, &s->control[2]);
1983
    qemu_get_8s(f, &s->status[0]);
1984
    qemu_get_8s(f, &s->status[1]);
1985

    
1986
    s->rx_len = qemu_get_byte(f);
1987
    s->rx_start = 0;
1988
    for (i = 0; i < s->rx_len; i ++)
1989
        s->rx_fifo[i] = qemu_get_byte(f);
1990

    
1991
    return 0;
1992
}
1993

    
1994
static PXA2xxFIrState *pxa2xx_fir_init(MemoryRegion *sysmem,
1995
                target_phys_addr_t base,
1996
                qemu_irq irq, qemu_irq rx_dma, qemu_irq tx_dma,
1997
                CharDriverState *chr)
1998
{
1999
    PXA2xxFIrState *s = (PXA2xxFIrState *)
2000
            g_malloc0(sizeof(PXA2xxFIrState));
2001

    
2002
    s->irq = irq;
2003
    s->rx_dma = rx_dma;
2004
    s->tx_dma = tx_dma;
2005
    s->chr = chr;
2006

    
2007
    pxa2xx_fir_reset(s);
2008

    
2009
    memory_region_init_io(&s->iomem, &pxa2xx_fir_ops, s, "pxa2xx-fir", 0x1000);
2010
    memory_region_add_subregion(sysmem, base, &s->iomem);
2011

    
2012
    if (chr)
2013
        qemu_chr_add_handlers(chr, pxa2xx_fir_is_empty,
2014
                        pxa2xx_fir_rx, pxa2xx_fir_event, s);
2015

    
2016
    register_savevm(NULL, "pxa2xx_fir", 0, 0, pxa2xx_fir_save,
2017
                    pxa2xx_fir_load, s);
2018

    
2019
    return s;
2020
}
2021

    
2022
static void pxa2xx_reset(void *opaque, int line, int level)
2023
{
2024
    PXA2xxState *s = (PXA2xxState *) opaque;
2025

    
2026
    if (level && (s->pm_regs[PCFR >> 2] & 0x10)) {        /* GPR_EN */
2027
        cpu_reset(s->env);
2028
        /* TODO: reset peripherals */
2029
    }
2030
}
2031

    
2032
/* Initialise a PXA270 integrated chip (ARM based core).  */
2033
PXA2xxState *pxa270_init(MemoryRegion *address_space,
2034
                         unsigned int sdram_size, const char *revision)
2035
{
2036
    PXA2xxState *s;
2037
    int i;
2038
    DriveInfo *dinfo;
2039
    s = (PXA2xxState *) g_malloc0(sizeof(PXA2xxState));
2040

    
2041
    if (revision && strncmp(revision, "pxa27", 5)) {
2042
        fprintf(stderr, "Machine requires a PXA27x processor.\n");
2043
        exit(1);
2044
    }
2045
    if (!revision)
2046
        revision = "pxa270";
2047
    
2048
    s->env = cpu_init(revision);
2049
    if (!s->env) {
2050
        fprintf(stderr, "Unable to find CPU definition\n");
2051
        exit(1);
2052
    }
2053
    s->reset = qemu_allocate_irqs(pxa2xx_reset, s, 1)[0];
2054

    
2055
    /* SDRAM & Internal Memory Storage */
2056
    memory_region_init_ram(&s->sdram, "pxa270.sdram", sdram_size);
2057
    vmstate_register_ram_global(&s->sdram);
2058
    memory_region_add_subregion(address_space, PXA2XX_SDRAM_BASE, &s->sdram);
2059
    memory_region_init_ram(&s->internal, "pxa270.internal", 0x40000);
2060
    vmstate_register_ram_global(&s->internal);
2061
    memory_region_add_subregion(address_space, PXA2XX_INTERNAL_BASE,
2062
                                &s->internal);
2063

    
2064
    s->pic = pxa2xx_pic_init(0x40d00000, s->env);
2065

    
2066
    s->dma = pxa27x_dma_init(0x40000000,
2067
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_DMA));
2068

    
2069
    sysbus_create_varargs("pxa27x-timer", 0x40a00000,
2070
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 0),
2071
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 1),
2072
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 2),
2073
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 3),
2074
                    qdev_get_gpio_in(s->pic, PXA27X_PIC_OST_4_11),
2075
                    NULL);
2076

    
2077
    s->gpio = pxa2xx_gpio_init(0x40e00000, s->env, s->pic, 121);
2078

    
2079
    dinfo = drive_get(IF_SD, 0, 0);
2080
    if (!dinfo) {
2081
        fprintf(stderr, "qemu: missing SecureDigital device\n");
2082
        exit(1);
2083
    }
2084
    s->mmc = pxa2xx_mmci_init(address_space, 0x41100000, dinfo->bdrv,
2085
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_MMC),
2086
                    qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_MMCI),
2087
                    qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_MMCI));
2088

    
2089
    for (i = 0; pxa270_serial[i].io_base; i++) {
2090
        if (serial_hds[i]) {
2091
            serial_mm_init(address_space, pxa270_serial[i].io_base, 2,
2092
                           qdev_get_gpio_in(s->pic, pxa270_serial[i].irqn),
2093
                           14857000 / 16, serial_hds[i],
2094
                           DEVICE_NATIVE_ENDIAN);
2095
        } else {
2096
            break;
2097
        }
2098
    }
2099
    if (serial_hds[i])
2100
        s->fir = pxa2xx_fir_init(address_space, 0x40800000,
2101
                        qdev_get_gpio_in(s->pic, PXA2XX_PIC_ICP),
2102
                        qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_ICP),
2103
                        qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_ICP),
2104
                        serial_hds[i]);
2105

    
2106
    s->lcd = pxa2xx_lcdc_init(address_space, 0x44000000,
2107
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_LCD));
2108

    
2109
    s->cm_base = 0x41300000;
2110
    s->cm_regs[CCCR >> 2] = 0x02000210;        /* 416.0 MHz */
2111
    s->clkcfg = 0x00000009;                /* Turbo mode active */
2112
    memory_region_init_io(&s->cm_iomem, &pxa2xx_cm_ops, s, "pxa2xx-cm", 0x1000);
2113
    memory_region_add_subregion(address_space, s->cm_base, &s->cm_iomem);
2114
    vmstate_register(NULL, 0, &vmstate_pxa2xx_cm, s);
2115

    
2116
    cpu_arm_set_cp_io(s->env, 14, pxa2xx_cp14_read, pxa2xx_cp14_write, s);
2117

    
2118
    s->mm_base = 0x48000000;
2119
    s->mm_regs[MDMRS >> 2] = 0x00020002;
2120
    s->mm_regs[MDREFR >> 2] = 0x03ca4000;
2121
    s->mm_regs[MECR >> 2] = 0x00000001;        /* Two PC Card sockets */
2122
    memory_region_init_io(&s->mm_iomem, &pxa2xx_mm_ops, s, "pxa2xx-mm", 0x1000);
2123
    memory_region_add_subregion(address_space, s->mm_base, &s->mm_iomem);
2124
    vmstate_register(NULL, 0, &vmstate_pxa2xx_mm, s);
2125

    
2126
    s->pm_base = 0x40f00000;
2127
    memory_region_init_io(&s->pm_iomem, &pxa2xx_pm_ops, s, "pxa2xx-pm", 0x100);
2128
    memory_region_add_subregion(address_space, s->pm_base, &s->pm_iomem);
2129
    vmstate_register(NULL, 0, &vmstate_pxa2xx_pm, s);
2130

    
2131
    for (i = 0; pxa27x_ssp[i].io_base; i ++);
2132
    s->ssp = (SSIBus **)g_malloc0(sizeof(SSIBus *) * i);
2133
    for (i = 0; pxa27x_ssp[i].io_base; i ++) {
2134
        DeviceState *dev;
2135
        dev = sysbus_create_simple("pxa2xx-ssp", pxa27x_ssp[i].io_base,
2136
                        qdev_get_gpio_in(s->pic, pxa27x_ssp[i].irqn));
2137
        s->ssp[i] = (SSIBus *)qdev_get_child_bus(dev, "ssi");
2138
    }
2139

    
2140
    if (usb_enabled) {
2141
        sysbus_create_simple("sysbus-ohci", 0x4c000000,
2142
                        qdev_get_gpio_in(s->pic, PXA2XX_PIC_USBH1));
2143
    }
2144

    
2145
    s->pcmcia[0] = pxa2xx_pcmcia_init(address_space, 0x20000000);
2146
    s->pcmcia[1] = pxa2xx_pcmcia_init(address_space, 0x30000000);
2147

    
2148
    sysbus_create_simple("pxa2xx_rtc", 0x40900000,
2149
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_RTCALARM));
2150

    
2151
    s->i2c[0] = pxa2xx_i2c_init(0x40301600,
2152
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2C), 0xffff);
2153
    s->i2c[1] = pxa2xx_i2c_init(0x40f00100,
2154
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_PWRI2C), 0xff);
2155

    
2156
    s->i2s = pxa2xx_i2s_init(address_space, 0x40400000,
2157
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2S),
2158
                    qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_I2S),
2159
                    qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_I2S));
2160

    
2161
    s->kp = pxa27x_keypad_init(address_space, 0x41500000,
2162
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_KEYPAD));
2163

    
2164
    /* GPIO1 resets the processor */
2165
    /* The handler can be overridden by board-specific code */
2166
    qdev_connect_gpio_out(s->gpio, 1, s->reset);
2167
    return s;
2168
}
2169

    
2170
/* Initialise a PXA255 integrated chip (ARM based core).  */
2171
PXA2xxState *pxa255_init(MemoryRegion *address_space, unsigned int sdram_size)
2172
{
2173
    PXA2xxState *s;
2174
    int i;
2175
    DriveInfo *dinfo;
2176

    
2177
    s = (PXA2xxState *) g_malloc0(sizeof(PXA2xxState));
2178

    
2179
    s->env = cpu_init("pxa255");
2180
    if (!s->env) {
2181
        fprintf(stderr, "Unable to find CPU definition\n");
2182
        exit(1);
2183
    }
2184
    s->reset = qemu_allocate_irqs(pxa2xx_reset, s, 1)[0];
2185

    
2186
    /* SDRAM & Internal Memory Storage */
2187
    memory_region_init_ram(&s->sdram, "pxa255.sdram", sdram_size);
2188
    vmstate_register_ram_global(&s->sdram);
2189
    memory_region_add_subregion(address_space, PXA2XX_SDRAM_BASE, &s->sdram);
2190
    memory_region_init_ram(&s->internal, "pxa255.internal",
2191
                           PXA2XX_INTERNAL_SIZE);
2192
    vmstate_register_ram_global(&s->internal);
2193
    memory_region_add_subregion(address_space, PXA2XX_INTERNAL_BASE,
2194
                                &s->internal);
2195

    
2196
    s->pic = pxa2xx_pic_init(0x40d00000, s->env);
2197

    
2198
    s->dma = pxa255_dma_init(0x40000000,
2199
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_DMA));
2200

    
2201
    sysbus_create_varargs("pxa25x-timer", 0x40a00000,
2202
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 0),
2203
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 1),
2204
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 2),
2205
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 3),
2206
                    NULL);
2207

    
2208
    s->gpio = pxa2xx_gpio_init(0x40e00000, s->env, s->pic, 85);
2209

    
2210
    dinfo = drive_get(IF_SD, 0, 0);
2211
    if (!dinfo) {
2212
        fprintf(stderr, "qemu: missing SecureDigital device\n");
2213
        exit(1);
2214
    }
2215
    s->mmc = pxa2xx_mmci_init(address_space, 0x41100000, dinfo->bdrv,
2216
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_MMC),
2217
                    qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_MMCI),
2218
                    qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_MMCI));
2219

    
2220
    for (i = 0; pxa255_serial[i].io_base; i++) {
2221
        if (serial_hds[i]) {
2222
            serial_mm_init(address_space, pxa255_serial[i].io_base, 2,
2223
                           qdev_get_gpio_in(s->pic, pxa255_serial[i].irqn),
2224
                           14745600 / 16, serial_hds[i],
2225
                           DEVICE_NATIVE_ENDIAN);
2226
        } else {
2227
            break;
2228
        }
2229
    }
2230
    if (serial_hds[i])
2231
        s->fir = pxa2xx_fir_init(address_space, 0x40800000,
2232
                        qdev_get_gpio_in(s->pic, PXA2XX_PIC_ICP),
2233
                        qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_ICP),
2234
                        qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_ICP),
2235
                        serial_hds[i]);
2236

    
2237
    s->lcd = pxa2xx_lcdc_init(address_space, 0x44000000,
2238
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_LCD));
2239

    
2240
    s->cm_base = 0x41300000;
2241
    s->cm_regs[CCCR >> 2] = 0x02000210;        /* 416.0 MHz */
2242
    s->clkcfg = 0x00000009;                /* Turbo mode active */
2243
    memory_region_init_io(&s->cm_iomem, &pxa2xx_cm_ops, s, "pxa2xx-cm", 0x1000);
2244
    memory_region_add_subregion(address_space, s->cm_base, &s->cm_iomem);
2245
    vmstate_register(NULL, 0, &vmstate_pxa2xx_cm, s);
2246

    
2247
    cpu_arm_set_cp_io(s->env, 14, pxa2xx_cp14_read, pxa2xx_cp14_write, s);
2248

    
2249
    s->mm_base = 0x48000000;
2250
    s->mm_regs[MDMRS >> 2] = 0x00020002;
2251
    s->mm_regs[MDREFR >> 2] = 0x03ca4000;
2252
    s->mm_regs[MECR >> 2] = 0x00000001;        /* Two PC Card sockets */
2253
    memory_region_init_io(&s->mm_iomem, &pxa2xx_mm_ops, s, "pxa2xx-mm", 0x1000);
2254
    memory_region_add_subregion(address_space, s->mm_base, &s->mm_iomem);
2255
    vmstate_register(NULL, 0, &vmstate_pxa2xx_mm, s);
2256

    
2257
    s->pm_base = 0x40f00000;
2258
    memory_region_init_io(&s->pm_iomem, &pxa2xx_pm_ops, s, "pxa2xx-pm", 0x100);
2259
    memory_region_add_subregion(address_space, s->pm_base, &s->pm_iomem);
2260
    vmstate_register(NULL, 0, &vmstate_pxa2xx_pm, s);
2261

    
2262
    for (i = 0; pxa255_ssp[i].io_base; i ++);
2263
    s->ssp = (SSIBus **)g_malloc0(sizeof(SSIBus *) * i);
2264
    for (i = 0; pxa255_ssp[i].io_base; i ++) {
2265
        DeviceState *dev;
2266
        dev = sysbus_create_simple("pxa2xx-ssp", pxa255_ssp[i].io_base,
2267
                        qdev_get_gpio_in(s->pic, pxa255_ssp[i].irqn));
2268
        s->ssp[i] = (SSIBus *)qdev_get_child_bus(dev, "ssi");
2269
    }
2270

    
2271
    if (usb_enabled) {
2272
        sysbus_create_simple("sysbus-ohci", 0x4c000000,
2273
                        qdev_get_gpio_in(s->pic, PXA2XX_PIC_USBH1));
2274
    }
2275

    
2276
    s->pcmcia[0] = pxa2xx_pcmcia_init(address_space, 0x20000000);
2277
    s->pcmcia[1] = pxa2xx_pcmcia_init(address_space, 0x30000000);
2278

    
2279
    sysbus_create_simple("pxa2xx_rtc", 0x40900000,
2280
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_RTCALARM));
2281

    
2282
    s->i2c[0] = pxa2xx_i2c_init(0x40301600,
2283
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2C), 0xffff);
2284
    s->i2c[1] = pxa2xx_i2c_init(0x40f00100,
2285
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_PWRI2C), 0xff);
2286

    
2287
    s->i2s = pxa2xx_i2s_init(address_space, 0x40400000,
2288
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2S),
2289
                    qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_I2S),
2290
                    qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_I2S));
2291

    
2292
    /* GPIO1 resets the processor */
2293
    /* The handler can be overridden by board-specific code */
2294
    qdev_connect_gpio_out(s->gpio, 1, s->reset);
2295
    return s;
2296
}
2297

    
2298
static void pxa2xx_register_devices(void)
2299
{
2300
    i2c_register_slave(&pxa2xx_i2c_slave_info);
2301
    sysbus_register_dev("pxa2xx-ssp", sizeof(PXA2xxSSPState), pxa2xx_ssp_init);
2302
    sysbus_register_withprop(&pxa2xx_i2c_info);
2303
    sysbus_register_withprop(&pxa2xx_rtc_sysbus_info);
2304
}
2305

    
2306
device_init(pxa2xx_register_devices)