Statistics
| Branch: | Revision:

root / qemu-doc.texi @ b6783839

History | View | Annotate | Download (65.3 kB)

1
\input texinfo @c -*- texinfo -*-
2
@c %**start of header
3
@setfilename qemu-doc.info
4
@settitle QEMU Emulator User Documentation
5
@exampleindent 0
6
@paragraphindent 0
7
@c %**end of header
8

    
9
@iftex
10
@titlepage
11
@sp 7
12
@center @titlefont{QEMU Emulator}
13
@sp 1
14
@center @titlefont{User Documentation}
15
@sp 3
16
@end titlepage
17
@end iftex
18

    
19
@ifnottex
20
@node Top
21
@top
22

    
23
@menu
24
* Introduction::
25
* Installation::
26
* QEMU PC System emulator::
27
* QEMU System emulator for non PC targets::
28
* QEMU User space emulator::
29
* compilation:: Compilation from the sources
30
* Index::
31
@end menu
32
@end ifnottex
33

    
34
@contents
35

    
36
@node Introduction
37
@chapter Introduction
38

    
39
@menu
40
* intro_features:: Features
41
@end menu
42

    
43
@node intro_features
44
@section Features
45

    
46
QEMU is a FAST! processor emulator using dynamic translation to
47
achieve good emulation speed.
48

    
49
QEMU has two operating modes:
50

    
51
@itemize @minus
52

    
53
@item 
54
Full system emulation. In this mode, QEMU emulates a full system (for
55
example a PC), including one or several processors and various
56
peripherals. It can be used to launch different Operating Systems
57
without rebooting the PC or to debug system code.
58

    
59
@item 
60
User mode emulation. In this mode, QEMU can launch
61
processes compiled for one CPU on another CPU. It can be used to
62
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63
to ease cross-compilation and cross-debugging.
64

    
65
@end itemize
66

    
67
QEMU can run without an host kernel driver and yet gives acceptable
68
performance. 
69

    
70
For system emulation, the following hardware targets are supported:
71
@itemize
72
@item PC (x86 or x86_64 processor)
73
@item ISA PC (old style PC without PCI bus)
74
@item PREP (PowerPC processor)
75
@item G3 BW PowerMac (PowerPC processor)
76
@item Mac99 PowerMac (PowerPC processor, in progress)
77
@item Sun4m (32-bit Sparc processor)
78
@item Sun4u (64-bit Sparc processor, in progress)
79
@item Malta board (32-bit MIPS processor)
80
@item ARM Integrator/CP (ARM926E, 1026E or 946E processor)
81
@item ARM Versatile baseboard (ARM926E)
82
@item ARM RealView Emulation baseboard (ARM926EJ-S)
83
@item Spitz, Akita, Borzoi and Terrier PDAs (PXA270 processor)
84
@item Freescale MCF5208EVB (ColdFire V2).
85
@item Arnewsh MCF5206 evaluation board (ColdFire V2).
86
@end itemize
87

    
88
For user emulation, x86, PowerPC, ARM, MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
89

    
90
@node Installation
91
@chapter Installation
92

    
93
If you want to compile QEMU yourself, see @ref{compilation}.
94

    
95
@menu
96
* install_linux::   Linux
97
* install_windows:: Windows
98
* install_mac::     Macintosh
99
@end menu
100

    
101
@node install_linux
102
@section Linux
103

    
104
If a precompiled package is available for your distribution - you just
105
have to install it. Otherwise, see @ref{compilation}.
106

    
107
@node install_windows
108
@section Windows
109

    
110
Download the experimental binary installer at
111
@url{http://www.free.oszoo.org/@/download.html}.
112

    
113
@node install_mac
114
@section Mac OS X
115

    
116
Download the experimental binary installer at
117
@url{http://www.free.oszoo.org/@/download.html}.
118

    
119
@node QEMU PC System emulator
120
@chapter QEMU PC System emulator
121

    
122
@menu
123
* pcsys_introduction:: Introduction
124
* pcsys_quickstart::   Quick Start
125
* sec_invocation::     Invocation
126
* pcsys_keys::         Keys
127
* pcsys_monitor::      QEMU Monitor
128
* disk_images::        Disk Images
129
* pcsys_network::      Network emulation
130
* direct_linux_boot::  Direct Linux Boot
131
* pcsys_usb::          USB emulation
132
* gdb_usage::          GDB usage
133
* pcsys_os_specific::  Target OS specific information
134
@end menu
135

    
136
@node pcsys_introduction
137
@section Introduction
138

    
139
@c man begin DESCRIPTION
140

    
141
The QEMU PC System emulator simulates the
142
following peripherals:
143

    
144
@itemize @minus
145
@item 
146
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
147
@item
148
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
149
extensions (hardware level, including all non standard modes).
150
@item
151
PS/2 mouse and keyboard
152
@item 
153
2 PCI IDE interfaces with hard disk and CD-ROM support
154
@item
155
Floppy disk
156
@item 
157
PCI/ISA PCI network adapters
158
@item
159
Serial ports
160
@item
161
Creative SoundBlaster 16 sound card
162
@item
163
ENSONIQ AudioPCI ES1370 sound card
164
@item
165
Adlib(OPL2) - Yamaha YM3812 compatible chip
166
@item
167
PCI UHCI USB controller and a virtual USB hub.
168
@end itemize
169

    
170
SMP is supported with up to 255 CPUs.
171

    
172
Note that adlib is only available when QEMU was configured with
173
-enable-adlib
174

    
175
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
176
VGA BIOS.
177

    
178
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
179

    
180
@c man end
181

    
182
@node pcsys_quickstart
183
@section Quick Start
184

    
185
Download and uncompress the linux image (@file{linux.img}) and type:
186

    
187
@example
188
qemu linux.img
189
@end example
190

    
191
Linux should boot and give you a prompt.
192

    
193
@node sec_invocation
194
@section Invocation
195

    
196
@example
197
@c man begin SYNOPSIS
198
usage: qemu [options] [disk_image]
199
@c man end
200
@end example
201

    
202
@c man begin OPTIONS
203
@var{disk_image} is a raw hard disk image for IDE hard disk 0.
204

    
205
General options:
206
@table @option
207
@item -M machine
208
Select the emulated machine (@code{-M ?} for list)
209

    
210
@item -fda file
211
@item -fdb file
212
Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
213
use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
214

    
215
@item -hda file
216
@item -hdb file
217
@item -hdc file
218
@item -hdd file
219
Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
220

    
221
@item -cdrom file
222
Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and and
223
@option{-cdrom} at the same time). You can use the host CD-ROM by
224
using @file{/dev/cdrom} as filename (@pxref{host_drives}).
225

    
226
@item -boot [a|c|d|n]
227
Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
228
is the default.
229

    
230
@item -snapshot
231
Write to temporary files instead of disk image files. In this case,
232
the raw disk image you use is not written back. You can however force
233
the write back by pressing @key{C-a s} (@pxref{disk_images}).
234

    
235
@item -no-fd-bootchk
236
Disable boot signature checking for floppy disks in Bochs BIOS. It may
237
be needed to boot from old floppy disks.
238

    
239
@item -m megs
240
Set virtual RAM size to @var{megs} megabytes. Default is 128 MB.
241

    
242
@item -smp n
243
Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
244
CPUs are supported.
245

    
246
@item -nographic
247

    
248
Normally, QEMU uses SDL to display the VGA output. With this option,
249
you can totally disable graphical output so that QEMU is a simple
250
command line application. The emulated serial port is redirected on
251
the console. Therefore, you can still use QEMU to debug a Linux kernel
252
with a serial console.
253

    
254
@item -no-frame
255

    
256
Do not use decorations for SDL windows and start them using the whole
257
available screen space. This makes the using QEMU in a dedicated desktop
258
workspace more convenient.
259

    
260
@item -vnc display
261

    
262
Normally, QEMU uses SDL to display the VGA output.  With this option,
263
you can have QEMU listen on VNC display @var{display} and redirect the VGA
264
display over the VNC session.  It is very useful to enable the usb
265
tablet device when using this option (option @option{-usbdevice
266
tablet}). When using the VNC display, you must use the @option{-k}
267
option to set the keyboard layout if you are not using en-us.
268

    
269
@var{display} may be in the form @var{interface:d}, in which case connections
270
will only be allowed from @var{interface} on display @var{d}. Optionally,
271
@var{interface} can be omitted.  @var{display} can also be in the form
272
@var{unix:path} where @var{path} is the location of a unix socket to listen for
273
connections on.
274

    
275

    
276
@item -k language
277

    
278
Use keyboard layout @var{language} (for example @code{fr} for
279
French). This option is only needed where it is not easy to get raw PC
280
keycodes (e.g. on Macs, with some X11 servers or with a VNC
281
display). You don't normally need to use it on PC/Linux or PC/Windows
282
hosts.
283

    
284
The available layouts are:
285
@example
286
ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
287
da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
288
de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
289
@end example
290

    
291
The default is @code{en-us}.
292

    
293
@item -audio-help
294

    
295
Will show the audio subsystem help: list of drivers, tunable
296
parameters.
297

    
298
@item -soundhw card1,card2,... or -soundhw all
299

    
300
Enable audio and selected sound hardware. Use ? to print all
301
available sound hardware.
302

    
303
@example
304
qemu -soundhw sb16,adlib hda
305
qemu -soundhw es1370 hda
306
qemu -soundhw all hda
307
qemu -soundhw ?
308
@end example
309

    
310
@item -localtime
311
Set the real time clock to local time (the default is to UTC
312
time). This option is needed to have correct date in MS-DOS or
313
Windows.
314

    
315
@item -full-screen
316
Start in full screen.
317

    
318
@item -pidfile file
319
Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
320
from a script.
321

    
322
@item -daemonize
323
Daemonize the QEMU process after initialization.  QEMU will not detach from
324
standard IO until it is ready to receive connections on any of its devices.
325
This option is a useful way for external programs to launch QEMU without having
326
to cope with initialization race conditions.
327

    
328
@item -win2k-hack
329
Use it when installing Windows 2000 to avoid a disk full bug. After
330
Windows 2000 is installed, you no longer need this option (this option
331
slows down the IDE transfers).
332

    
333
@item -option-rom file
334
Load the contents of file as an option ROM.  This option is useful to load
335
things like EtherBoot.
336

    
337
@item -name string
338
Sets the name of the guest.  This name will be display in the SDL window
339
caption.  The name will also be used for the VNC server.
340

    
341
@end table
342

    
343
USB options:
344
@table @option
345

    
346
@item -usb
347
Enable the USB driver (will be the default soon)
348

    
349
@item -usbdevice devname
350
Add the USB device @var{devname}. @xref{usb_devices}.
351
@end table
352

    
353
Network options:
354

    
355
@table @option
356

    
357
@item -net nic[,vlan=n][,macaddr=addr][,model=type]
358
Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
359
= 0 is the default). The NIC is an ne2k_pci by default on the PC
360
target. Optionally, the MAC address can be changed. If no
361
@option{-net} option is specified, a single NIC is created.
362
Qemu can emulate several different models of network card.
363
Valid values for @var{type} are
364
@code{i82551}, @code{i82557b}, @code{i82559er},
365
@code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
366
@code{smc91c111}, @code{lance} and @code{mcf_fec}.
367
Not all devices are supported on all targets.  Use -net nic,model=?
368
for a list of available devices for your target.
369

    
370
@item -net user[,vlan=n][,hostname=name]
371
Use the user mode network stack which requires no administrator
372
privilege to run.  @option{hostname=name} can be used to specify the client
373
hostname reported by the builtin DHCP server.
374

    
375
@item -net tap[,vlan=n][,fd=h][,ifname=name][,script=file]
376
Connect the host TAP network interface @var{name} to VLAN @var{n} and
377
use the network script @var{file} to configure it. The default
378
network script is @file{/etc/qemu-ifup}. Use @option{script=no} to
379
disable script execution. If @var{name} is not
380
provided, the OS automatically provides one.  @option{fd=h} can be
381
used to specify the handle of an already opened host TAP interface. Example:
382

    
383
@example
384
qemu linux.img -net nic -net tap
385
@end example
386

    
387
More complicated example (two NICs, each one connected to a TAP device)
388
@example
389
qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
390
               -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
391
@end example
392

    
393

    
394
@item -net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]
395

    
396
Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
397
machine using a TCP socket connection. If @option{listen} is
398
specified, QEMU waits for incoming connections on @var{port}
399
(@var{host} is optional). @option{connect} is used to connect to
400
another QEMU instance using the @option{listen} option. @option{fd=h}
401
specifies an already opened TCP socket.
402

    
403
Example:
404
@example
405
# launch a first QEMU instance
406
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
407
               -net socket,listen=:1234
408
# connect the VLAN 0 of this instance to the VLAN 0
409
# of the first instance
410
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
411
               -net socket,connect=127.0.0.1:1234
412
@end example
413

    
414
@item -net socket[,vlan=n][,fd=h][,mcast=maddr:port]
415

    
416
Create a VLAN @var{n} shared with another QEMU virtual
417
machines using a UDP multicast socket, effectively making a bus for 
418
every QEMU with same multicast address @var{maddr} and @var{port}.
419
NOTES:
420
@enumerate
421
@item 
422
Several QEMU can be running on different hosts and share same bus (assuming 
423
correct multicast setup for these hosts).
424
@item
425
mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
426
@url{http://user-mode-linux.sf.net}.
427
@item
428
Use @option{fd=h} to specify an already opened UDP multicast socket.
429
@end enumerate
430

    
431
Example:
432
@example
433
# launch one QEMU instance
434
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
435
               -net socket,mcast=230.0.0.1:1234
436
# launch another QEMU instance on same "bus"
437
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
438
               -net socket,mcast=230.0.0.1:1234
439
# launch yet another QEMU instance on same "bus"
440
qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
441
               -net socket,mcast=230.0.0.1:1234
442
@end example
443

    
444
Example (User Mode Linux compat.):
445
@example
446
# launch QEMU instance (note mcast address selected
447
# is UML's default)
448
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
449
               -net socket,mcast=239.192.168.1:1102
450
# launch UML
451
/path/to/linux ubd0=/path/to/root_fs eth0=mcast
452
@end example
453

    
454
@item -net none
455
Indicate that no network devices should be configured. It is used to
456
override the default configuration (@option{-net nic -net user}) which
457
is activated if no @option{-net} options are provided.
458

    
459
@item -tftp dir
460
When using the user mode network stack, activate a built-in TFTP
461
server. The files in @var{dir} will be exposed as the root of a TFTP server.
462
The TFTP client on the guest must be configured in binary mode (use the command
463
@code{bin} of the Unix TFTP client). The host IP address on the guest is as
464
usual 10.0.2.2.
465

    
466
@item -bootp file
467
When using the user mode network stack, broadcast @var{file} as the BOOTP
468
filename.  In conjunction with @option{-tftp}, this can be used to network boot
469
a guest from a local directory.
470

    
471
Example (using pxelinux):
472
@example
473
qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
474
@end example
475

    
476
@item -smb dir
477
When using the user mode network stack, activate a built-in SMB
478
server so that Windows OSes can access to the host files in @file{dir}
479
transparently.
480

    
481
In the guest Windows OS, the line:
482
@example
483
10.0.2.4 smbserver
484
@end example
485
must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
486
or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
487

    
488
Then @file{dir} can be accessed in @file{\\smbserver\qemu}.
489

    
490
Note that a SAMBA server must be installed on the host OS in
491
@file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
492
2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
493

    
494
@item -redir [tcp|udp]:host-port:[guest-host]:guest-port
495

    
496
When using the user mode network stack, redirect incoming TCP or UDP
497
connections to the host port @var{host-port} to the guest
498
@var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
499
is not specified, its value is 10.0.2.15 (default address given by the
500
built-in DHCP server).
501

    
502
For example, to redirect host X11 connection from screen 1 to guest
503
screen 0, use the following:
504

    
505
@example
506
# on the host
507
qemu -redir tcp:6001::6000 [...]
508
# this host xterm should open in the guest X11 server
509
xterm -display :1
510
@end example
511

    
512
To redirect telnet connections from host port 5555 to telnet port on
513
the guest, use the following:
514

    
515
@example
516
# on the host
517
qemu -redir tcp:5555::23 [...]
518
telnet localhost 5555
519
@end example
520

    
521
Then when you use on the host @code{telnet localhost 5555}, you
522
connect to the guest telnet server.
523

    
524
@end table
525

    
526
Linux boot specific: When using these options, you can use a given
527
Linux kernel without installing it in the disk image. It can be useful
528
for easier testing of various kernels.
529

    
530
@table @option
531

    
532
@item -kernel bzImage 
533
Use @var{bzImage} as kernel image.
534

    
535
@item -append cmdline 
536
Use @var{cmdline} as kernel command line
537

    
538
@item -initrd file
539
Use @var{file} as initial ram disk.
540

    
541
@end table
542

    
543
Debug/Expert options:
544
@table @option
545

    
546
@item -serial dev
547
Redirect the virtual serial port to host character device
548
@var{dev}. The default device is @code{vc} in graphical mode and
549
@code{stdio} in non graphical mode.
550

    
551
This option can be used several times to simulate up to 4 serials
552
ports.
553

    
554
Use @code{-serial none} to disable all serial ports.
555

    
556
Available character devices are:
557
@table @code
558
@item vc[:WxH]
559
Virtual console. Optionally, a width and height can be given in pixel with
560
@example
561
vc:800x600
562
@end example
563
It is also possible to specify width or height in characters:
564
@example
565
vc:80Cx24C
566
@end example
567
@item pty
568
[Linux only] Pseudo TTY (a new PTY is automatically allocated)
569
@item none
570
No device is allocated.
571
@item null
572
void device
573
@item /dev/XXX
574
[Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
575
parameters are set according to the emulated ones.
576
@item /dev/parportN
577
[Linux only, parallel port only] Use host parallel port
578
@var{N}. Currently SPP and EPP parallel port features can be used.
579
@item file:filename
580
Write output to filename. No character can be read.
581
@item stdio
582
[Unix only] standard input/output
583
@item pipe:filename
584
name pipe @var{filename}
585
@item COMn
586
[Windows only] Use host serial port @var{n}
587
@item udp:[remote_host]:remote_port[@@[src_ip]:src_port]
588
This implements UDP Net Console.  When @var{remote_host} or @var{src_ip} are not specified they default to @code{0.0.0.0}.  When not using a specified @var{src_port} a random port is automatically chosen.
589

    
590
If you just want a simple readonly console you can use @code{netcat} or
591
@code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
592
@code{nc -u -l -p 4555}. Any time qemu writes something to that port it
593
will appear in the netconsole session.
594

    
595
If you plan to send characters back via netconsole or you want to stop
596
and start qemu a lot of times, you should have qemu use the same
597
source port each time by using something like @code{-serial
598
udp::4555@@:4556} to qemu. Another approach is to use a patched
599
version of netcat which can listen to a TCP port and send and receive
600
characters via udp.  If you have a patched version of netcat which
601
activates telnet remote echo and single char transfer, then you can
602
use the following options to step up a netcat redirector to allow
603
telnet on port 5555 to access the qemu port.
604
@table @code
605
@item Qemu Options:
606
-serial udp::4555@@:4556
607
@item netcat options:
608
-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
609
@item telnet options:
610
localhost 5555
611
@end table
612

    
613

    
614
@item tcp:[host]:port[,server][,nowait][,nodelay]
615
The TCP Net Console has two modes of operation.  It can send the serial
616
I/O to a location or wait for a connection from a location.  By default
617
the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
618
the @var{server} option QEMU will wait for a client socket application
619
to connect to the port before continuing, unless the @code{nowait}
620
option was specified.  The @code{nodelay} option disables the Nagle buffering
621
algorithm.  If @var{host} is omitted, 0.0.0.0 is assumed. Only
622
one TCP connection at a time is accepted. You can use @code{telnet} to
623
connect to the corresponding character device.
624
@table @code
625
@item Example to send tcp console to 192.168.0.2 port 4444
626
-serial tcp:192.168.0.2:4444
627
@item Example to listen and wait on port 4444 for connection
628
-serial tcp::4444,server
629
@item Example to not wait and listen on ip 192.168.0.100 port 4444
630
-serial tcp:192.168.0.100:4444,server,nowait
631
@end table
632

    
633
@item telnet:host:port[,server][,nowait][,nodelay]
634
The telnet protocol is used instead of raw tcp sockets.  The options
635
work the same as if you had specified @code{-serial tcp}.  The
636
difference is that the port acts like a telnet server or client using
637
telnet option negotiation.  This will also allow you to send the
638
MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
639
sequence.  Typically in unix telnet you do it with Control-] and then
640
type "send break" followed by pressing the enter key.
641

    
642
@item unix:path[,server][,nowait]
643
A unix domain socket is used instead of a tcp socket.  The option works the
644
same as if you had specified @code{-serial tcp} except the unix domain socket
645
@var{path} is used for connections.
646

    
647
@item mon:dev_string
648
This is a special option to allow the monitor to be multiplexed onto
649
another serial port.  The monitor is accessed with key sequence of
650
@key{Control-a} and then pressing @key{c}. See monitor access
651
@ref{pcsys_keys} in the -nographic section for more keys.
652
@var{dev_string} should be any one of the serial devices specified
653
above.  An example to multiplex the monitor onto a telnet server
654
listening on port 4444 would be:
655
@table @code
656
@item -serial mon:telnet::4444,server,nowait
657
@end table
658

    
659
@end table
660

    
661
@item -parallel dev
662
Redirect the virtual parallel port to host device @var{dev} (same
663
devices as the serial port). On Linux hosts, @file{/dev/parportN} can
664
be used to use hardware devices connected on the corresponding host
665
parallel port.
666

    
667
This option can be used several times to simulate up to 3 parallel
668
ports.
669

    
670
Use @code{-parallel none} to disable all parallel ports.
671

    
672
@item -monitor dev
673
Redirect the monitor to host device @var{dev} (same devices as the
674
serial port).
675
The default device is @code{vc} in graphical mode and @code{stdio} in
676
non graphical mode.
677

    
678
@item -echr numeric_ascii_value
679
Change the escape character used for switching to the monitor when using
680
monitor and serial sharing.  The default is @code{0x01} when using the
681
@code{-nographic} option.  @code{0x01} is equal to pressing
682
@code{Control-a}.  You can select a different character from the ascii
683
control keys where 1 through 26 map to Control-a through Control-z.  For
684
instance you could use the either of the following to change the escape
685
character to Control-t.
686
@table @code
687
@item -echr 0x14
688
@item -echr 20
689
@end table
690

    
691
@item -s
692
Wait gdb connection to port 1234 (@pxref{gdb_usage}). 
693
@item -p port
694
Change gdb connection port.  @var{port} can be either a decimal number
695
to specify a TCP port, or a host device (same devices as the serial port).
696
@item -S
697
Do not start CPU at startup (you must type 'c' in the monitor).
698
@item -d             
699
Output log in /tmp/qemu.log
700
@item -hdachs c,h,s,[,t]
701
Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
702
@var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
703
translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
704
all those parameters. This option is useful for old MS-DOS disk
705
images.
706

    
707
@item -L path
708
Set the directory for the BIOS, VGA BIOS and keymaps.
709

    
710
@item -std-vga
711
Simulate a standard VGA card with Bochs VBE extensions (default is
712
Cirrus Logic GD5446 PCI VGA). If your guest OS supports the VESA 2.0
713
VBE extensions (e.g. Windows XP) and if you want to use high
714
resolution modes (>= 1280x1024x16) then you should use this option.
715

    
716
@item -no-acpi
717
Disable ACPI (Advanced Configuration and Power Interface) support. Use
718
it if your guest OS complains about ACPI problems (PC target machine
719
only).
720

    
721
@item -no-reboot
722
Exit instead of rebooting.
723

    
724
@item -loadvm file
725
Start right away with a saved state (@code{loadvm} in monitor)
726

    
727
@item -semihosting
728
Enable semihosting syscall emulation (ARM and M68K target machines only).
729

    
730
On ARM this implements the "Angel" interface.
731
On M68K this implements the "ColdFire GDB" interface used by libgloss.
732

    
733
Note that this allows guest direct access to the host filesystem,
734
so should only be used with trusted guest OS.
735
@end table
736

    
737
@c man end
738

    
739
@node pcsys_keys
740
@section Keys
741

    
742
@c man begin OPTIONS
743

    
744
During the graphical emulation, you can use the following keys:
745
@table @key
746
@item Ctrl-Alt-f
747
Toggle full screen
748

    
749
@item Ctrl-Alt-n
750
Switch to virtual console 'n'. Standard console mappings are:
751
@table @emph
752
@item 1
753
Target system display
754
@item 2
755
Monitor
756
@item 3
757
Serial port
758
@end table
759

    
760
@item Ctrl-Alt
761
Toggle mouse and keyboard grab.
762
@end table
763

    
764
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
765
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
766

    
767
During emulation, if you are using the @option{-nographic} option, use
768
@key{Ctrl-a h} to get terminal commands:
769

    
770
@table @key
771
@item Ctrl-a h
772
Print this help
773
@item Ctrl-a x    
774
Exit emulator
775
@item Ctrl-a s    
776
Save disk data back to file (if -snapshot)
777
@item Ctrl-a t
778
toggle console timestamps
779
@item Ctrl-a b
780
Send break (magic sysrq in Linux)
781
@item Ctrl-a c
782
Switch between console and monitor
783
@item Ctrl-a Ctrl-a
784
Send Ctrl-a
785
@end table
786
@c man end
787

    
788
@ignore
789

    
790
@c man begin SEEALSO
791
The HTML documentation of QEMU for more precise information and Linux
792
user mode emulator invocation.
793
@c man end
794

    
795
@c man begin AUTHOR
796
Fabrice Bellard
797
@c man end
798

    
799
@end ignore
800

    
801
@node pcsys_monitor
802
@section QEMU Monitor
803

    
804
The QEMU monitor is used to give complex commands to the QEMU
805
emulator. You can use it to:
806

    
807
@itemize @minus
808

    
809
@item
810
Remove or insert removable media images
811
(such as CD-ROM or floppies)
812

    
813
@item 
814
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
815
from a disk file.
816

    
817
@item Inspect the VM state without an external debugger.
818

    
819
@end itemize
820

    
821
@subsection Commands
822

    
823
The following commands are available:
824

    
825
@table @option
826

    
827
@item help or ? [cmd]
828
Show the help for all commands or just for command @var{cmd}.
829

    
830
@item commit  
831
Commit changes to the disk images (if -snapshot is used)
832

    
833
@item info subcommand 
834
show various information about the system state
835

    
836
@table @option
837
@item info network
838
show the various VLANs and the associated devices
839
@item info block
840
show the block devices
841
@item info registers
842
show the cpu registers
843
@item info history
844
show the command line history
845
@item info pci
846
show emulated PCI device
847
@item info usb
848
show USB devices plugged on the virtual USB hub
849
@item info usbhost
850
show all USB host devices
851
@item info capture
852
show information about active capturing
853
@item info snapshots
854
show list of VM snapshots
855
@item info mice
856
show which guest mouse is receiving events
857
@end table
858

    
859
@item q or quit
860
Quit the emulator.
861

    
862
@item eject [-f] device
863
Eject a removable medium (use -f to force it).
864

    
865
@item change device filename
866
Change a removable medium.
867

    
868
@item screendump filename
869
Save screen into PPM image @var{filename}.
870

    
871
@item mouse_move dx dy [dz]
872
Move the active mouse to the specified coordinates @var{dx} @var{dy}
873
with optional scroll axis @var{dz}.
874

    
875
@item mouse_button val
876
Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
877

    
878
@item mouse_set index
879
Set which mouse device receives events at given @var{index}, index
880
can be obtained with
881
@example
882
info mice
883
@end example
884

    
885
@item wavcapture filename [frequency [bits [channels]]]
886
Capture audio into @var{filename}. Using sample rate @var{frequency}
887
bits per sample @var{bits} and number of channels @var{channels}.
888

    
889
Defaults:
890
@itemize @minus
891
@item Sample rate = 44100 Hz - CD quality
892
@item Bits = 16
893
@item Number of channels = 2 - Stereo
894
@end itemize
895

    
896
@item stopcapture index
897
Stop capture with a given @var{index}, index can be obtained with
898
@example
899
info capture
900
@end example
901

    
902
@item log item1[,...]
903
Activate logging of the specified items to @file{/tmp/qemu.log}.
904

    
905
@item savevm [tag|id]
906
Create a snapshot of the whole virtual machine. If @var{tag} is
907
provided, it is used as human readable identifier. If there is already
908
a snapshot with the same tag or ID, it is replaced. More info at
909
@ref{vm_snapshots}.
910

    
911
@item loadvm tag|id
912
Set the whole virtual machine to the snapshot identified by the tag
913
@var{tag} or the unique snapshot ID @var{id}.
914

    
915
@item delvm tag|id
916
Delete the snapshot identified by @var{tag} or @var{id}.
917

    
918
@item stop
919
Stop emulation.
920

    
921
@item c or cont
922
Resume emulation.
923

    
924
@item gdbserver [port]
925
Start gdbserver session (default port=1234)
926

    
927
@item x/fmt addr
928
Virtual memory dump starting at @var{addr}.
929

    
930
@item xp /fmt addr
931
Physical memory dump starting at @var{addr}.
932

    
933
@var{fmt} is a format which tells the command how to format the
934
data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
935

    
936
@table @var
937
@item count 
938
is the number of items to be dumped.
939

    
940
@item format
941
can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
942
c (char) or i (asm instruction).
943

    
944
@item size
945
can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
946
@code{h} or @code{w} can be specified with the @code{i} format to
947
respectively select 16 or 32 bit code instruction size.
948

    
949
@end table
950

    
951
Examples: 
952
@itemize
953
@item
954
Dump 10 instructions at the current instruction pointer:
955
@example 
956
(qemu) x/10i $eip
957
0x90107063:  ret
958
0x90107064:  sti
959
0x90107065:  lea    0x0(%esi,1),%esi
960
0x90107069:  lea    0x0(%edi,1),%edi
961
0x90107070:  ret
962
0x90107071:  jmp    0x90107080
963
0x90107073:  nop
964
0x90107074:  nop
965
0x90107075:  nop
966
0x90107076:  nop
967
@end example
968

    
969
@item
970
Dump 80 16 bit values at the start of the video memory.
971
@smallexample 
972
(qemu) xp/80hx 0xb8000
973
0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
974
0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
975
0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
976
0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
977
0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
978
0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
979
0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
980
0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
981
0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
982
0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
983
@end smallexample
984
@end itemize
985

    
986
@item p or print/fmt expr
987

    
988
Print expression value. Only the @var{format} part of @var{fmt} is
989
used.
990

    
991
@item sendkey keys
992

    
993
Send @var{keys} to the emulator. Use @code{-} to press several keys
994
simultaneously. Example:
995
@example
996
sendkey ctrl-alt-f1
997
@end example
998

    
999
This command is useful to send keys that your graphical user interface
1000
intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
1001

    
1002
@item system_reset
1003

    
1004
Reset the system.
1005

    
1006
@item usb_add devname
1007

    
1008
Add the USB device @var{devname}.  For details of available devices see
1009
@ref{usb_devices}
1010

    
1011
@item usb_del devname
1012

    
1013
Remove the USB device @var{devname} from the QEMU virtual USB
1014
hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
1015
command @code{info usb} to see the devices you can remove.
1016

    
1017
@end table
1018

    
1019
@subsection Integer expressions
1020

    
1021
The monitor understands integers expressions for every integer
1022
argument. You can use register names to get the value of specifics
1023
CPU registers by prefixing them with @emph{$}.
1024

    
1025
@node disk_images
1026
@section Disk Images
1027

    
1028
Since version 0.6.1, QEMU supports many disk image formats, including
1029
growable disk images (their size increase as non empty sectors are
1030
written), compressed and encrypted disk images. Version 0.8.3 added
1031
the new qcow2 disk image format which is essential to support VM
1032
snapshots.
1033

    
1034
@menu
1035
* disk_images_quickstart::    Quick start for disk image creation
1036
* disk_images_snapshot_mode:: Snapshot mode
1037
* vm_snapshots::              VM snapshots
1038
* qemu_img_invocation::       qemu-img Invocation
1039
* host_drives::               Using host drives
1040
* disk_images_fat_images::    Virtual FAT disk images
1041
@end menu
1042

    
1043
@node disk_images_quickstart
1044
@subsection Quick start for disk image creation
1045

    
1046
You can create a disk image with the command:
1047
@example
1048
qemu-img create myimage.img mysize
1049
@end example
1050
where @var{myimage.img} is the disk image filename and @var{mysize} is its
1051
size in kilobytes. You can add an @code{M} suffix to give the size in
1052
megabytes and a @code{G} suffix for gigabytes.
1053

    
1054
See @ref{qemu_img_invocation} for more information.
1055

    
1056
@node disk_images_snapshot_mode
1057
@subsection Snapshot mode
1058

    
1059
If you use the option @option{-snapshot}, all disk images are
1060
considered as read only. When sectors in written, they are written in
1061
a temporary file created in @file{/tmp}. You can however force the
1062
write back to the raw disk images by using the @code{commit} monitor
1063
command (or @key{C-a s} in the serial console).
1064

    
1065
@node vm_snapshots
1066
@subsection VM snapshots
1067

    
1068
VM snapshots are snapshots of the complete virtual machine including
1069
CPU state, RAM, device state and the content of all the writable
1070
disks. In order to use VM snapshots, you must have at least one non
1071
removable and writable block device using the @code{qcow2} disk image
1072
format. Normally this device is the first virtual hard drive.
1073

    
1074
Use the monitor command @code{savevm} to create a new VM snapshot or
1075
replace an existing one. A human readable name can be assigned to each
1076
snapshot in addition to its numerical ID.
1077

    
1078
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1079
a VM snapshot. @code{info snapshots} lists the available snapshots
1080
with their associated information:
1081

    
1082
@example
1083
(qemu) info snapshots
1084
Snapshot devices: hda
1085
Snapshot list (from hda):
1086
ID        TAG                 VM SIZE                DATE       VM CLOCK
1087
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
1088
2                                 40M 2006-08-06 12:43:29   00:00:18.633
1089
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
1090
@end example
1091

    
1092
A VM snapshot is made of a VM state info (its size is shown in
1093
@code{info snapshots}) and a snapshot of every writable disk image.
1094
The VM state info is stored in the first @code{qcow2} non removable
1095
and writable block device. The disk image snapshots are stored in
1096
every disk image. The size of a snapshot in a disk image is difficult
1097
to evaluate and is not shown by @code{info snapshots} because the
1098
associated disk sectors are shared among all the snapshots to save
1099
disk space (otherwise each snapshot would need a full copy of all the
1100
disk images).
1101

    
1102
When using the (unrelated) @code{-snapshot} option
1103
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1104
but they are deleted as soon as you exit QEMU.
1105

    
1106
VM snapshots currently have the following known limitations:
1107
@itemize
1108
@item 
1109
They cannot cope with removable devices if they are removed or
1110
inserted after a snapshot is done.
1111
@item 
1112
A few device drivers still have incomplete snapshot support so their
1113
state is not saved or restored properly (in particular USB).
1114
@end itemize
1115

    
1116
@node qemu_img_invocation
1117
@subsection @code{qemu-img} Invocation
1118

    
1119
@include qemu-img.texi
1120

    
1121
@node host_drives
1122
@subsection Using host drives
1123

    
1124
In addition to disk image files, QEMU can directly access host
1125
devices. We describe here the usage for QEMU version >= 0.8.3.
1126

    
1127
@subsubsection Linux
1128

    
1129
On Linux, you can directly use the host device filename instead of a
1130
disk image filename provided you have enough privileges to access
1131
it. For example, use @file{/dev/cdrom} to access to the CDROM or
1132
@file{/dev/fd0} for the floppy.
1133

    
1134
@table @code
1135
@item CD
1136
You can specify a CDROM device even if no CDROM is loaded. QEMU has
1137
specific code to detect CDROM insertion or removal. CDROM ejection by
1138
the guest OS is supported. Currently only data CDs are supported.
1139
@item Floppy
1140
You can specify a floppy device even if no floppy is loaded. Floppy
1141
removal is currently not detected accurately (if you change floppy
1142
without doing floppy access while the floppy is not loaded, the guest
1143
OS will think that the same floppy is loaded).
1144
@item Hard disks
1145
Hard disks can be used. Normally you must specify the whole disk
1146
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1147
see it as a partitioned disk. WARNING: unless you know what you do, it
1148
is better to only make READ-ONLY accesses to the hard disk otherwise
1149
you may corrupt your host data (use the @option{-snapshot} command
1150
line option or modify the device permissions accordingly).
1151
@end table
1152

    
1153
@subsubsection Windows
1154

    
1155
@table @code
1156
@item CD
1157
The preferred syntax is the drive letter (e.g. @file{d:}). The
1158
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1159
supported as an alias to the first CDROM drive.
1160

    
1161
Currently there is no specific code to handle removable media, so it
1162
is better to use the @code{change} or @code{eject} monitor commands to
1163
change or eject media.
1164
@item Hard disks
1165
Hard disks can be used with the syntax: @file{\\.\PhysicalDriveN}
1166
where @var{N} is the drive number (0 is the first hard disk).
1167

    
1168
WARNING: unless you know what you do, it is better to only make
1169
READ-ONLY accesses to the hard disk otherwise you may corrupt your
1170
host data (use the @option{-snapshot} command line so that the
1171
modifications are written in a temporary file).
1172
@end table
1173

    
1174

    
1175
@subsubsection Mac OS X
1176

    
1177
@file{/dev/cdrom} is an alias to the first CDROM. 
1178

    
1179
Currently there is no specific code to handle removable media, so it
1180
is better to use the @code{change} or @code{eject} monitor commands to
1181
change or eject media.
1182

    
1183
@node disk_images_fat_images
1184
@subsection Virtual FAT disk images
1185

    
1186
QEMU can automatically create a virtual FAT disk image from a
1187
directory tree. In order to use it, just type:
1188

    
1189
@example 
1190
qemu linux.img -hdb fat:/my_directory
1191
@end example
1192

    
1193
Then you access access to all the files in the @file{/my_directory}
1194
directory without having to copy them in a disk image or to export
1195
them via SAMBA or NFS. The default access is @emph{read-only}.
1196

    
1197
Floppies can be emulated with the @code{:floppy:} option:
1198

    
1199
@example 
1200
qemu linux.img -fda fat:floppy:/my_directory
1201
@end example
1202

    
1203
A read/write support is available for testing (beta stage) with the
1204
@code{:rw:} option:
1205

    
1206
@example 
1207
qemu linux.img -fda fat:floppy:rw:/my_directory
1208
@end example
1209

    
1210
What you should @emph{never} do:
1211
@itemize
1212
@item use non-ASCII filenames ;
1213
@item use "-snapshot" together with ":rw:" ;
1214
@item expect it to work when loadvm'ing ;
1215
@item write to the FAT directory on the host system while accessing it with the guest system.
1216
@end itemize
1217

    
1218
@node pcsys_network
1219
@section Network emulation
1220

    
1221
QEMU can simulate several network cards (PCI or ISA cards on the PC
1222
target) and can connect them to an arbitrary number of Virtual Local
1223
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1224
VLAN. VLAN can be connected between separate instances of QEMU to
1225
simulate large networks. For simpler usage, a non privileged user mode
1226
network stack can replace the TAP device to have a basic network
1227
connection.
1228

    
1229
@subsection VLANs
1230

    
1231
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1232
connection between several network devices. These devices can be for
1233
example QEMU virtual Ethernet cards or virtual Host ethernet devices
1234
(TAP devices).
1235

    
1236
@subsection Using TAP network interfaces
1237

    
1238
This is the standard way to connect QEMU to a real network. QEMU adds
1239
a virtual network device on your host (called @code{tapN}), and you
1240
can then configure it as if it was a real ethernet card.
1241

    
1242
@subsubsection Linux host
1243

    
1244
As an example, you can download the @file{linux-test-xxx.tar.gz}
1245
archive and copy the script @file{qemu-ifup} in @file{/etc} and
1246
configure properly @code{sudo} so that the command @code{ifconfig}
1247
contained in @file{qemu-ifup} can be executed as root. You must verify
1248
that your host kernel supports the TAP network interfaces: the
1249
device @file{/dev/net/tun} must be present.
1250

    
1251
See @ref{sec_invocation} to have examples of command lines using the
1252
TAP network interfaces.
1253

    
1254
@subsubsection Windows host
1255

    
1256
There is a virtual ethernet driver for Windows 2000/XP systems, called
1257
TAP-Win32. But it is not included in standard QEMU for Windows,
1258
so you will need to get it separately. It is part of OpenVPN package,
1259
so download OpenVPN from : @url{http://openvpn.net/}.
1260

    
1261
@subsection Using the user mode network stack
1262

    
1263
By using the option @option{-net user} (default configuration if no
1264
@option{-net} option is specified), QEMU uses a completely user mode
1265
network stack (you don't need root privilege to use the virtual
1266
network). The virtual network configuration is the following:
1267

    
1268
@example
1269

    
1270
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1271
                           |          (10.0.2.2)
1272
                           |
1273
                           ---->  DNS server (10.0.2.3)
1274
                           |     
1275
                           ---->  SMB server (10.0.2.4)
1276
@end example
1277

    
1278
The QEMU VM behaves as if it was behind a firewall which blocks all
1279
incoming connections. You can use a DHCP client to automatically
1280
configure the network in the QEMU VM. The DHCP server assign addresses
1281
to the hosts starting from 10.0.2.15.
1282

    
1283
In order to check that the user mode network is working, you can ping
1284
the address 10.0.2.2 and verify that you got an address in the range
1285
10.0.2.x from the QEMU virtual DHCP server.
1286

    
1287
Note that @code{ping} is not supported reliably to the internet as it
1288
would require root privileges. It means you can only ping the local
1289
router (10.0.2.2).
1290

    
1291
When using the built-in TFTP server, the router is also the TFTP
1292
server.
1293

    
1294
When using the @option{-redir} option, TCP or UDP connections can be
1295
redirected from the host to the guest. It allows for example to
1296
redirect X11, telnet or SSH connections.
1297

    
1298
@subsection Connecting VLANs between QEMU instances
1299

    
1300
Using the @option{-net socket} option, it is possible to make VLANs
1301
that span several QEMU instances. See @ref{sec_invocation} to have a
1302
basic example.
1303

    
1304
@node direct_linux_boot
1305
@section Direct Linux Boot
1306

    
1307
This section explains how to launch a Linux kernel inside QEMU without
1308
having to make a full bootable image. It is very useful for fast Linux
1309
kernel testing.
1310

    
1311
The syntax is:
1312
@example
1313
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1314
@end example
1315

    
1316
Use @option{-kernel} to provide the Linux kernel image and
1317
@option{-append} to give the kernel command line arguments. The
1318
@option{-initrd} option can be used to provide an INITRD image.
1319

    
1320
When using the direct Linux boot, a disk image for the first hard disk
1321
@file{hda} is required because its boot sector is used to launch the
1322
Linux kernel.
1323

    
1324
If you do not need graphical output, you can disable it and redirect
1325
the virtual serial port and the QEMU monitor to the console with the
1326
@option{-nographic} option. The typical command line is:
1327
@example
1328
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1329
     -append "root=/dev/hda console=ttyS0" -nographic
1330
@end example
1331

    
1332
Use @key{Ctrl-a c} to switch between the serial console and the
1333
monitor (@pxref{pcsys_keys}).
1334

    
1335
@node pcsys_usb
1336
@section USB emulation
1337

    
1338
QEMU emulates a PCI UHCI USB controller. You can virtually plug
1339
virtual USB devices or real host USB devices (experimental, works only
1340
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1341
as necessary to connect multiple USB devices.
1342

    
1343
@menu
1344
* usb_devices::
1345
* host_usb_devices::
1346
@end menu
1347
@node usb_devices
1348
@subsection Connecting USB devices
1349

    
1350
USB devices can be connected with the @option{-usbdevice} commandline option
1351
or the @code{usb_add} monitor command.  Available devices are:
1352

    
1353
@table @var
1354
@item @code{mouse}
1355
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1356
@item @code{tablet}
1357
Pointer device that uses absolute coordinates (like a touchscreen).
1358
This means qemu is able to report the mouse position without having
1359
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1360
@item @code{disk:file}
1361
Mass storage device based on @var{file} (@pxref{disk_images})
1362
@item @code{host:bus.addr}
1363
Pass through the host device identified by @var{bus.addr}
1364
(Linux only)
1365
@item @code{host:vendor_id:product_id}
1366
Pass through the host device identified by @var{vendor_id:product_id}
1367
(Linux only)
1368
@item @code{wacom-tablet}
1369
Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
1370
above but it can be used with the tslib library because in addition to touch
1371
coordinates it reports touch pressure.
1372
@item @code{keyboard}
1373
Standard USB keyboard.  Will override the PS/2 keyboard (if present).
1374
@end table
1375

    
1376
@node host_usb_devices
1377
@subsection Using host USB devices on a Linux host
1378

    
1379
WARNING: this is an experimental feature. QEMU will slow down when
1380
using it. USB devices requiring real time streaming (i.e. USB Video
1381
Cameras) are not supported yet.
1382

    
1383
@enumerate
1384
@item If you use an early Linux 2.4 kernel, verify that no Linux driver 
1385
is actually using the USB device. A simple way to do that is simply to
1386
disable the corresponding kernel module by renaming it from @file{mydriver.o}
1387
to @file{mydriver.o.disabled}.
1388

    
1389
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1390
@example
1391
ls /proc/bus/usb
1392
001  devices  drivers
1393
@end example
1394

    
1395
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1396
@example
1397
chown -R myuid /proc/bus/usb
1398
@end example
1399

    
1400
@item Launch QEMU and do in the monitor:
1401
@example 
1402
info usbhost
1403
  Device 1.2, speed 480 Mb/s
1404
    Class 00: USB device 1234:5678, USB DISK
1405
@end example
1406
You should see the list of the devices you can use (Never try to use
1407
hubs, it won't work).
1408

    
1409
@item Add the device in QEMU by using:
1410
@example 
1411
usb_add host:1234:5678
1412
@end example
1413

    
1414
Normally the guest OS should report that a new USB device is
1415
plugged. You can use the option @option{-usbdevice} to do the same.
1416

    
1417
@item Now you can try to use the host USB device in QEMU.
1418

    
1419
@end enumerate
1420

    
1421
When relaunching QEMU, you may have to unplug and plug again the USB
1422
device to make it work again (this is a bug).
1423

    
1424
@node gdb_usage
1425
@section GDB usage
1426

    
1427
QEMU has a primitive support to work with gdb, so that you can do
1428
'Ctrl-C' while the virtual machine is running and inspect its state.
1429

    
1430
In order to use gdb, launch qemu with the '-s' option. It will wait for a
1431
gdb connection:
1432
@example
1433
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1434
       -append "root=/dev/hda"
1435
Connected to host network interface: tun0
1436
Waiting gdb connection on port 1234
1437
@end example
1438

    
1439
Then launch gdb on the 'vmlinux' executable:
1440
@example
1441
> gdb vmlinux
1442
@end example
1443

    
1444
In gdb, connect to QEMU:
1445
@example
1446
(gdb) target remote localhost:1234
1447
@end example
1448

    
1449
Then you can use gdb normally. For example, type 'c' to launch the kernel:
1450
@example
1451
(gdb) c
1452
@end example
1453

    
1454
Here are some useful tips in order to use gdb on system code:
1455

    
1456
@enumerate
1457
@item
1458
Use @code{info reg} to display all the CPU registers.
1459
@item
1460
Use @code{x/10i $eip} to display the code at the PC position.
1461
@item
1462
Use @code{set architecture i8086} to dump 16 bit code. Then use
1463
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1464
@end enumerate
1465

    
1466
@node pcsys_os_specific
1467
@section Target OS specific information
1468

    
1469
@subsection Linux
1470

    
1471
To have access to SVGA graphic modes under X11, use the @code{vesa} or
1472
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1473
color depth in the guest and the host OS.
1474

    
1475
When using a 2.6 guest Linux kernel, you should add the option
1476
@code{clock=pit} on the kernel command line because the 2.6 Linux
1477
kernels make very strict real time clock checks by default that QEMU
1478
cannot simulate exactly.
1479

    
1480
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1481
not activated because QEMU is slower with this patch. The QEMU
1482
Accelerator Module is also much slower in this case. Earlier Fedora
1483
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1484
patch by default. Newer kernels don't have it.
1485

    
1486
@subsection Windows
1487

    
1488
If you have a slow host, using Windows 95 is better as it gives the
1489
best speed. Windows 2000 is also a good choice.
1490

    
1491
@subsubsection SVGA graphic modes support
1492

    
1493
QEMU emulates a Cirrus Logic GD5446 Video
1494
card. All Windows versions starting from Windows 95 should recognize
1495
and use this graphic card. For optimal performances, use 16 bit color
1496
depth in the guest and the host OS.
1497

    
1498
If you are using Windows XP as guest OS and if you want to use high
1499
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1500
1280x1024x16), then you should use the VESA VBE virtual graphic card
1501
(option @option{-std-vga}).
1502

    
1503
@subsubsection CPU usage reduction
1504

    
1505
Windows 9x does not correctly use the CPU HLT
1506
instruction. The result is that it takes host CPU cycles even when
1507
idle. You can install the utility from
1508
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1509
problem. Note that no such tool is needed for NT, 2000 or XP.
1510

    
1511
@subsubsection Windows 2000 disk full problem
1512

    
1513
Windows 2000 has a bug which gives a disk full problem during its
1514
installation. When installing it, use the @option{-win2k-hack} QEMU
1515
option to enable a specific workaround. After Windows 2000 is
1516
installed, you no longer need this option (this option slows down the
1517
IDE transfers).
1518

    
1519
@subsubsection Windows 2000 shutdown
1520

    
1521
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1522
can. It comes from the fact that Windows 2000 does not automatically
1523
use the APM driver provided by the BIOS.
1524

    
1525
In order to correct that, do the following (thanks to Struan
1526
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1527
Add/Troubleshoot a device => Add a new device & Next => No, select the
1528
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1529
(again) a few times. Now the driver is installed and Windows 2000 now
1530
correctly instructs QEMU to shutdown at the appropriate moment. 
1531

    
1532
@subsubsection Share a directory between Unix and Windows
1533

    
1534
See @ref{sec_invocation} about the help of the option @option{-smb}.
1535

    
1536
@subsubsection Windows XP security problem
1537

    
1538
Some releases of Windows XP install correctly but give a security
1539
error when booting:
1540
@example
1541
A problem is preventing Windows from accurately checking the
1542
license for this computer. Error code: 0x800703e6.
1543
@end example
1544

    
1545
The workaround is to install a service pack for XP after a boot in safe
1546
mode. Then reboot, and the problem should go away. Since there is no
1547
network while in safe mode, its recommended to download the full
1548
installation of SP1 or SP2 and transfer that via an ISO or using the
1549
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1550

    
1551
@subsection MS-DOS and FreeDOS
1552

    
1553
@subsubsection CPU usage reduction
1554

    
1555
DOS does not correctly use the CPU HLT instruction. The result is that
1556
it takes host CPU cycles even when idle. You can install the utility
1557
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1558
problem.
1559

    
1560
@node QEMU System emulator for non PC targets
1561
@chapter QEMU System emulator for non PC targets
1562

    
1563
QEMU is a generic emulator and it emulates many non PC
1564
machines. Most of the options are similar to the PC emulator. The
1565
differences are mentioned in the following sections.
1566

    
1567
@menu
1568
* QEMU PowerPC System emulator::
1569
* Sparc32 System emulator::
1570
* Sparc64 System emulator::
1571
* MIPS System emulator::
1572
* ARM System emulator::
1573
* ColdFire System emulator::
1574
@end menu
1575

    
1576
@node QEMU PowerPC System emulator
1577
@section QEMU PowerPC System emulator
1578

    
1579
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1580
or PowerMac PowerPC system.
1581

    
1582
QEMU emulates the following PowerMac peripherals:
1583

    
1584
@itemize @minus
1585
@item 
1586
UniNorth PCI Bridge 
1587
@item
1588
PCI VGA compatible card with VESA Bochs Extensions
1589
@item 
1590
2 PMAC IDE interfaces with hard disk and CD-ROM support
1591
@item 
1592
NE2000 PCI adapters
1593
@item
1594
Non Volatile RAM
1595
@item
1596
VIA-CUDA with ADB keyboard and mouse.
1597
@end itemize
1598

    
1599
QEMU emulates the following PREP peripherals:
1600

    
1601
@itemize @minus
1602
@item 
1603
PCI Bridge
1604
@item
1605
PCI VGA compatible card with VESA Bochs Extensions
1606
@item 
1607
2 IDE interfaces with hard disk and CD-ROM support
1608
@item
1609
Floppy disk
1610
@item 
1611
NE2000 network adapters
1612
@item
1613
Serial port
1614
@item
1615
PREP Non Volatile RAM
1616
@item
1617
PC compatible keyboard and mouse.
1618
@end itemize
1619

    
1620
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1621
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1622

    
1623
@c man begin OPTIONS
1624

    
1625
The following options are specific to the PowerPC emulation:
1626

    
1627
@table @option
1628

    
1629
@item -g WxH[xDEPTH]  
1630

    
1631
Set the initial VGA graphic mode. The default is 800x600x15.
1632

    
1633
@end table
1634

    
1635
@c man end 
1636

    
1637

    
1638
More information is available at
1639
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1640

    
1641
@node Sparc32 System emulator
1642
@section Sparc32 System emulator
1643

    
1644
Use the executable @file{qemu-system-sparc} to simulate a SparcStation 5
1645
or SparcStation 10 (sun4m architecture). The emulation is somewhat complete.
1646

    
1647
QEMU emulates the following sun4m peripherals:
1648

    
1649
@itemize @minus
1650
@item
1651
IOMMU
1652
@item
1653
TCX Frame buffer
1654
@item 
1655
Lance (Am7990) Ethernet
1656
@item
1657
Non Volatile RAM M48T08
1658
@item
1659
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1660
and power/reset logic
1661
@item
1662
ESP SCSI controller with hard disk and CD-ROM support
1663
@item
1664
Floppy drive
1665
@item
1666
CS4231 sound device (only on SS-5, not working yet)
1667
@end itemize
1668

    
1669
The number of peripherals is fixed in the architecture.
1670

    
1671
Since version 0.8.2, QEMU uses OpenBIOS
1672
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1673
firmware implementation. The goal is to implement a 100% IEEE
1674
1275-1994 (referred to as Open Firmware) compliant firmware.
1675

    
1676
A sample Linux 2.6 series kernel and ram disk image are available on
1677
the QEMU web site. Please note that currently NetBSD, OpenBSD or
1678
Solaris kernels don't work.
1679

    
1680
@c man begin OPTIONS
1681

    
1682
The following options are specific to the Sparc32 emulation:
1683

    
1684
@table @option
1685

    
1686
@item -g WxHx[xDEPTH]
1687

    
1688
Set the initial TCX graphic mode. The default is 1024x768x8, currently
1689
the only other possible mode is 1024x768x24.
1690

    
1691
@item -prom-env string
1692

    
1693
Set OpenBIOS variables in NVRAM, for example:
1694

    
1695
@example
1696
qemu-system-sparc -prom-env 'auto-boot?=false' \
1697
 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1698
@end example
1699

    
1700
@item -M [SS-5|SS-10]
1701

    
1702
Set the emulated machine type. Default is SS-5.
1703

    
1704
@end table
1705

    
1706
@c man end 
1707

    
1708
@node Sparc64 System emulator
1709
@section Sparc64 System emulator
1710

    
1711
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u machine.
1712
The emulator is not usable for anything yet.
1713

    
1714
QEMU emulates the following sun4u peripherals:
1715

    
1716
@itemize @minus
1717
@item
1718
UltraSparc IIi APB PCI Bridge 
1719
@item
1720
PCI VGA compatible card with VESA Bochs Extensions
1721
@item
1722
Non Volatile RAM M48T59
1723
@item
1724
PC-compatible serial ports
1725
@end itemize
1726

    
1727
@node MIPS System emulator
1728
@section MIPS System emulator
1729

    
1730
Use the executable @file{qemu-system-mips} to simulate a MIPS machine.
1731
Three different machine types are emulated:
1732

    
1733
@itemize @minus
1734
@item
1735
A generic ISA PC-like machine "mips"
1736
@item
1737
The MIPS Malta prototype board "malta"
1738
@item
1739
An ACER Pica "pica61"
1740
@end itemize
1741

    
1742
The generic emulation is supported by Debian 'Etch' and is able to
1743
install Debian into a virtual disk image. The following devices are
1744
emulated:
1745

    
1746
@itemize @minus
1747
@item 
1748
MIPS 24Kf CPU
1749
@item
1750
PC style serial port
1751
@item
1752
PC style IDE disk
1753
@item
1754
NE2000 network card
1755
@end itemize
1756

    
1757
The Malta emulation supports the following devices:
1758

    
1759
@itemize @minus
1760
@item
1761
Core board with MIPS 24Kf CPU and Galileo system controller
1762
@item
1763
PIIX4 PCI/USB/SMbus controller
1764
@item
1765
The Multi-I/O chip's serial device
1766
@item
1767
PCnet32 PCI network card
1768
@item
1769
Malta FPGA serial device
1770
@item
1771
Cirrus VGA graphics card
1772
@end itemize
1773

    
1774
The ACER Pica emulation supports:
1775

    
1776
@itemize @minus
1777
@item
1778
MIPS R4000 CPU
1779
@item
1780
PC-style IRQ and DMA controllers
1781
@item
1782
PC Keyboard
1783
@item
1784
IDE controller
1785
@end itemize
1786

    
1787
@node ARM System emulator
1788
@section ARM System emulator
1789

    
1790
Use the executable @file{qemu-system-arm} to simulate a ARM
1791
machine. The ARM Integrator/CP board is emulated with the following
1792
devices:
1793

    
1794
@itemize @minus
1795
@item
1796
ARM926E, ARM1026E or ARM946E CPU
1797
@item
1798
Two PL011 UARTs
1799
@item 
1800
SMC 91c111 Ethernet adapter
1801
@item
1802
PL110 LCD controller
1803
@item
1804
PL050 KMI with PS/2 keyboard and mouse.
1805
@item
1806
PL181 MultiMedia Card Interface with SD card.
1807
@end itemize
1808

    
1809
The ARM Versatile baseboard is emulated with the following devices:
1810

    
1811
@itemize @minus
1812
@item
1813
ARM926E CPU
1814
@item
1815
PL190 Vectored Interrupt Controller
1816
@item
1817
Four PL011 UARTs
1818
@item 
1819
SMC 91c111 Ethernet adapter
1820
@item
1821
PL110 LCD controller
1822
@item
1823
PL050 KMI with PS/2 keyboard and mouse.
1824
@item
1825
PCI host bridge.  Note the emulated PCI bridge only provides access to
1826
PCI memory space.  It does not provide access to PCI IO space.
1827
This means some devices (eg. ne2k_pci NIC) are not usable, and others
1828
(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
1829
mapped control registers.
1830
@item
1831
PCI OHCI USB controller.
1832
@item
1833
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
1834
@item
1835
PL181 MultiMedia Card Interface with SD card.
1836
@end itemize
1837

    
1838
The ARM RealView Emulation baseboard is emulated with the following devices:
1839

    
1840
@itemize @minus
1841
@item
1842
ARM926E CPU
1843
@item
1844
ARM AMBA Generic/Distributed Interrupt Controller
1845
@item
1846
Four PL011 UARTs
1847
@item 
1848
SMC 91c111 Ethernet adapter
1849
@item
1850
PL110 LCD controller
1851
@item
1852
PL050 KMI with PS/2 keyboard and mouse
1853
@item
1854
PCI host bridge
1855
@item
1856
PCI OHCI USB controller
1857
@item
1858
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
1859
@item
1860
PL181 MultiMedia Card Interface with SD card.
1861
@end itemize
1862

    
1863
The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
1864
and "Terrier") emulation includes the following peripherals:
1865

    
1866
@itemize @minus
1867
@item
1868
Intel PXA270 System-on-chip (ARM V5TE core)
1869
@item
1870
NAND Flash memory
1871
@item
1872
IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
1873
@item
1874
On-chip OHCI USB controller
1875
@item
1876
On-chip LCD controller
1877
@item
1878
On-chip Real Time Clock
1879
@item
1880
TI ADS7846 touchscreen controller on SSP bus
1881
@item
1882
Maxim MAX1111 analog-digital converter on I@math{^2}C bus
1883
@item
1884
GPIO-connected keyboard controller and LEDs
1885
@item
1886
Secure Digital card connected to PXA MMC/SD host
1887
@item
1888
Three on-chip UARTs
1889
@item
1890
WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
1891
@end itemize
1892

    
1893
A Linux 2.6 test image is available on the QEMU web site. More
1894
information is available in the QEMU mailing-list archive.
1895

    
1896
@node ColdFire System emulator
1897
@section ColdFire System emulator
1898

    
1899
Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
1900
The emulator is able to boot a uClinux kernel.
1901

    
1902
The M5208EVB emulation includes the following devices:
1903

    
1904
@itemize @minus
1905
@item 
1906
MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
1907
@item
1908
Three Two on-chip UARTs.
1909
@item
1910
Fast Ethernet Controller (FEC)
1911
@end itemize
1912

    
1913
The AN5206 emulation includes the following devices:
1914

    
1915
@itemize @minus
1916
@item 
1917
MCF5206 ColdFire V2 Microprocessor.
1918
@item
1919
Two on-chip UARTs.
1920
@end itemize
1921

    
1922
@node QEMU User space emulator 
1923
@chapter QEMU User space emulator 
1924

    
1925
@menu
1926
* Supported Operating Systems ::
1927
* Linux User space emulator::
1928
* Mac OS X/Darwin User space emulator ::
1929
@end menu
1930

    
1931
@node Supported Operating Systems
1932
@section Supported Operating Systems
1933

    
1934
The following OS are supported in user space emulation:
1935

    
1936
@itemize @minus
1937
@item
1938
Linux (referred as qemu-linux-user)
1939
@item
1940
Mac OS X/Darwin (referred as qemu-darwin-user)
1941
@end itemize
1942

    
1943
@node Linux User space emulator
1944
@section Linux User space emulator
1945

    
1946
@menu
1947
* Quick Start::
1948
* Wine launch::
1949
* Command line options::
1950
* Other binaries::
1951
@end menu
1952

    
1953
@node Quick Start
1954
@subsection Quick Start
1955

    
1956
In order to launch a Linux process, QEMU needs the process executable
1957
itself and all the target (x86) dynamic libraries used by it. 
1958

    
1959
@itemize
1960

    
1961
@item On x86, you can just try to launch any process by using the native
1962
libraries:
1963

    
1964
@example 
1965
qemu-i386 -L / /bin/ls
1966
@end example
1967

    
1968
@code{-L /} tells that the x86 dynamic linker must be searched with a
1969
@file{/} prefix.
1970

    
1971
@item Since QEMU is also a linux process, you can launch qemu with
1972
qemu (NOTE: you can only do that if you compiled QEMU from the sources):
1973

    
1974
@example 
1975
qemu-i386 -L / qemu-i386 -L / /bin/ls
1976
@end example
1977

    
1978
@item On non x86 CPUs, you need first to download at least an x86 glibc
1979
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
1980
@code{LD_LIBRARY_PATH} is not set:
1981

    
1982
@example
1983
unset LD_LIBRARY_PATH 
1984
@end example
1985

    
1986
Then you can launch the precompiled @file{ls} x86 executable:
1987

    
1988
@example
1989
qemu-i386 tests/i386/ls
1990
@end example
1991
You can look at @file{qemu-binfmt-conf.sh} so that
1992
QEMU is automatically launched by the Linux kernel when you try to
1993
launch x86 executables. It requires the @code{binfmt_misc} module in the
1994
Linux kernel.
1995

    
1996
@item The x86 version of QEMU is also included. You can try weird things such as:
1997
@example
1998
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
1999
          /usr/local/qemu-i386/bin/ls-i386
2000
@end example
2001

    
2002
@end itemize
2003

    
2004
@node Wine launch
2005
@subsection Wine launch
2006

    
2007
@itemize
2008

    
2009
@item Ensure that you have a working QEMU with the x86 glibc
2010
distribution (see previous section). In order to verify it, you must be
2011
able to do:
2012

    
2013
@example
2014
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2015
@end example
2016

    
2017
@item Download the binary x86 Wine install
2018
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page). 
2019

    
2020
@item Configure Wine on your account. Look at the provided script
2021
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2022
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2023

    
2024
@item Then you can try the example @file{putty.exe}:
2025

    
2026
@example
2027
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2028
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2029
@end example
2030

    
2031
@end itemize
2032

    
2033
@node Command line options
2034
@subsection Command line options
2035

    
2036
@example
2037
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2038
@end example
2039

    
2040
@table @option
2041
@item -h
2042
Print the help
2043
@item -L path   
2044
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2045
@item -s size
2046
Set the x86 stack size in bytes (default=524288)
2047
@end table
2048

    
2049
Debug options:
2050

    
2051
@table @option
2052
@item -d
2053
Activate log (logfile=/tmp/qemu.log)
2054
@item -p pagesize
2055
Act as if the host page size was 'pagesize' bytes
2056
@end table
2057

    
2058
@node Other binaries
2059
@subsection Other binaries
2060

    
2061
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2062
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2063
configurations), and arm-uclinux bFLT format binaries.
2064

    
2065
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2066
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2067
coldfire uClinux bFLT format binaries.
2068

    
2069
The binary format is detected automatically.
2070

    
2071
@node Mac OS X/Darwin User space emulator
2072
@section Mac OS X/Darwin User space emulator
2073

    
2074
@menu
2075
* Mac OS X/Darwin Status::
2076
* Mac OS X/Darwin Quick Start::
2077
* Mac OS X/Darwin Command line options::
2078
@end menu
2079

    
2080
@node Mac OS X/Darwin Status
2081
@subsection Mac OS X/Darwin Status
2082

    
2083
@itemize @minus
2084
@item
2085
target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2086
@item
2087
target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2088
@item
2089
target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2090
@item
2091
target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2092
@end itemize
2093

    
2094
[1] If you're host commpage can be executed by qemu.
2095

    
2096
@node Mac OS X/Darwin Quick Start
2097
@subsection Quick Start
2098

    
2099
In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2100
itself and all the target dynamic libraries used by it. If you don't have the FAT
2101
libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2102
CD or compile them by hand.
2103

    
2104
@itemize
2105

    
2106
@item On x86, you can just try to launch any process by using the native
2107
libraries:
2108

    
2109
@example 
2110
qemu-i386 /bin/ls
2111
@end example
2112

    
2113
or to run the ppc version of the executable:
2114

    
2115
@example 
2116
qemu-ppc /bin/ls
2117
@end example
2118

    
2119
@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2120
are installed:
2121

    
2122
@example 
2123
qemu-i386 -L /opt/x86_root/ /bin/ls
2124
@end example
2125

    
2126
@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2127
@file{/opt/x86_root/usr/bin/dyld}.
2128

    
2129
@end itemize
2130

    
2131
@node Mac OS X/Darwin Command line options
2132
@subsection Command line options
2133

    
2134
@example
2135
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2136
@end example
2137

    
2138
@table @option
2139
@item -h
2140
Print the help
2141
@item -L path   
2142
Set the library root path (default=/)
2143
@item -s size
2144
Set the stack size in bytes (default=524288)
2145
@end table
2146

    
2147
Debug options:
2148

    
2149
@table @option
2150
@item -d
2151
Activate log (logfile=/tmp/qemu.log)
2152
@item -p pagesize
2153
Act as if the host page size was 'pagesize' bytes
2154
@end table
2155

    
2156
@node compilation
2157
@chapter Compilation from the sources
2158

    
2159
@menu
2160
* Linux/Unix::
2161
* Windows::
2162
* Cross compilation for Windows with Linux::
2163
* Mac OS X::
2164
@end menu
2165

    
2166
@node Linux/Unix
2167
@section Linux/Unix
2168

    
2169
@subsection Compilation
2170

    
2171
First you must decompress the sources:
2172
@example
2173
cd /tmp
2174
tar zxvf qemu-x.y.z.tar.gz
2175
cd qemu-x.y.z
2176
@end example
2177

    
2178
Then you configure QEMU and build it (usually no options are needed):
2179
@example
2180
./configure
2181
make
2182
@end example
2183

    
2184
Then type as root user:
2185
@example
2186
make install
2187
@end example
2188
to install QEMU in @file{/usr/local}.
2189

    
2190
@subsection GCC version
2191

    
2192
In order to compile QEMU successfully, it is very important that you
2193
have the right tools. The most important one is gcc. On most hosts and
2194
in particular on x86 ones, @emph{gcc 4.x is not supported}. If your
2195
Linux distribution includes a gcc 4.x compiler, you can usually
2196
install an older version (it is invoked by @code{gcc32} or
2197
@code{gcc34}). The QEMU configure script automatically probes for
2198
these older versions so that usually you don't have to do anything.
2199

    
2200
@node Windows
2201
@section Windows
2202

    
2203
@itemize
2204
@item Install the current versions of MSYS and MinGW from
2205
@url{http://www.mingw.org/}. You can find detailed installation
2206
instructions in the download section and the FAQ.
2207

    
2208
@item Download 
2209
the MinGW development library of SDL 1.2.x
2210
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2211
@url{http://www.libsdl.org}. Unpack it in a temporary place, and
2212
unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
2213
directory. Edit the @file{sdl-config} script so that it gives the
2214
correct SDL directory when invoked.
2215

    
2216
@item Extract the current version of QEMU.
2217
 
2218
@item Start the MSYS shell (file @file{msys.bat}).
2219

    
2220
@item Change to the QEMU directory. Launch @file{./configure} and 
2221
@file{make}.  If you have problems using SDL, verify that
2222
@file{sdl-config} can be launched from the MSYS command line.
2223

    
2224
@item You can install QEMU in @file{Program Files/Qemu} by typing 
2225
@file{make install}. Don't forget to copy @file{SDL.dll} in
2226
@file{Program Files/Qemu}.
2227

    
2228
@end itemize
2229

    
2230
@node Cross compilation for Windows with Linux
2231
@section Cross compilation for Windows with Linux
2232

    
2233
@itemize
2234
@item
2235
Install the MinGW cross compilation tools available at
2236
@url{http://www.mingw.org/}.
2237

    
2238
@item 
2239
Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
2240
unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
2241
variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
2242
the QEMU configuration script.
2243

    
2244
@item 
2245
Configure QEMU for Windows cross compilation:
2246
@example
2247
./configure --enable-mingw32
2248
@end example
2249
If necessary, you can change the cross-prefix according to the prefix
2250
chosen for the MinGW tools with --cross-prefix. You can also use
2251
--prefix to set the Win32 install path.
2252

    
2253
@item You can install QEMU in the installation directory by typing 
2254
@file{make install}. Don't forget to copy @file{SDL.dll} in the
2255
installation directory. 
2256

    
2257
@end itemize
2258

    
2259
Note: Currently, Wine does not seem able to launch
2260
QEMU for Win32.
2261

    
2262
@node Mac OS X
2263
@section Mac OS X
2264

    
2265
The Mac OS X patches are not fully merged in QEMU, so you should look
2266
at the QEMU mailing list archive to have all the necessary
2267
information.
2268

    
2269
@node Index
2270
@chapter Index
2271
@printindex cp
2272

    
2273
@bye