Statistics
| Branch: | Revision:

root / cpu-exec.c @ b6d78bfa

History | View | Annotate | Download (18.4 kB)

1
/*
2
 *  i386 emulator main execution loop
3
 * 
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "config.h"
21
#ifdef TARGET_I386
22
#include "exec-i386.h"
23
#endif
24
#ifdef TARGET_ARM
25
#include "exec-arm.h"
26
#endif
27

    
28
#include "disas.h"
29

    
30
//#define DEBUG_EXEC
31
//#define DEBUG_SIGNAL
32

    
33
#if defined(TARGET_ARM)
34
/* XXX: unify with i386 target */
35
void cpu_loop_exit(void)
36
{
37
    longjmp(env->jmp_env, 1);
38
}
39
#endif
40

    
41
/* main execution loop */
42

    
43
int cpu_exec(CPUState *env1)
44
{
45
    int saved_T0, saved_T1, saved_T2;
46
    CPUState *saved_env;
47
#ifdef reg_EAX
48
    int saved_EAX;
49
#endif
50
#ifdef reg_ECX
51
    int saved_ECX;
52
#endif
53
#ifdef reg_EDX
54
    int saved_EDX;
55
#endif
56
#ifdef reg_EBX
57
    int saved_EBX;
58
#endif
59
#ifdef reg_ESP
60
    int saved_ESP;
61
#endif
62
#ifdef reg_EBP
63
    int saved_EBP;
64
#endif
65
#ifdef reg_ESI
66
    int saved_ESI;
67
#endif
68
#ifdef reg_EDI
69
    int saved_EDI;
70
#endif
71
#ifdef __sparc__
72
    int saved_i7, tmp_T0;
73
#endif
74
    int code_gen_size, ret, interrupt_request;
75
    void (*gen_func)(void);
76
    TranslationBlock *tb, **ptb;
77
    uint8_t *tc_ptr, *cs_base, *pc;
78
    unsigned int flags;
79

    
80
    /* first we save global registers */
81
    saved_T0 = T0;
82
    saved_T1 = T1;
83
    saved_T2 = T2;
84
    saved_env = env;
85
    env = env1;
86
#ifdef __sparc__
87
    /* we also save i7 because longjmp may not restore it */
88
    asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
89
#endif
90

    
91
#if defined(TARGET_I386)
92
#ifdef reg_EAX
93
    saved_EAX = EAX;
94
    EAX = env->regs[R_EAX];
95
#endif
96
#ifdef reg_ECX
97
    saved_ECX = ECX;
98
    ECX = env->regs[R_ECX];
99
#endif
100
#ifdef reg_EDX
101
    saved_EDX = EDX;
102
    EDX = env->regs[R_EDX];
103
#endif
104
#ifdef reg_EBX
105
    saved_EBX = EBX;
106
    EBX = env->regs[R_EBX];
107
#endif
108
#ifdef reg_ESP
109
    saved_ESP = ESP;
110
    ESP = env->regs[R_ESP];
111
#endif
112
#ifdef reg_EBP
113
    saved_EBP = EBP;
114
    EBP = env->regs[R_EBP];
115
#endif
116
#ifdef reg_ESI
117
    saved_ESI = ESI;
118
    ESI = env->regs[R_ESI];
119
#endif
120
#ifdef reg_EDI
121
    saved_EDI = EDI;
122
    EDI = env->regs[R_EDI];
123
#endif
124
    
125
    /* put eflags in CPU temporary format */
126
    CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
127
    DF = 1 - (2 * ((env->eflags >> 10) & 1));
128
    CC_OP = CC_OP_EFLAGS;
129
    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
130
#elif defined(TARGET_ARM)
131
    {
132
        unsigned int psr;
133
        psr = env->cpsr;
134
        env->CF = (psr >> 29) & 1;
135
        env->NZF = (psr & 0xc0000000) ^ 0x40000000;
136
        env->VF = (psr << 3) & 0x80000000;
137
        env->cpsr = psr & ~0xf0000000;
138
    }
139
#else
140
#error unsupported target CPU
141
#endif
142
    env->exception_index = -1;
143

    
144
    /* prepare setjmp context for exception handling */
145
    for(;;) {
146
        if (setjmp(env->jmp_env) == 0) {
147
            /* if an exception is pending, we execute it here */
148
            if (env->exception_index >= 0) {
149
                if (env->exception_index >= EXCP_INTERRUPT) {
150
                    /* exit request from the cpu execution loop */
151
                    ret = env->exception_index;
152
                    break;
153
                } else if (env->user_mode_only) {
154
                    /* if user mode only, we simulate a fake exception
155
                       which will be hanlded outside the cpu execution
156
                       loop */
157
#if defined(TARGET_I386)
158
                    do_interrupt_user(env->exception_index, 
159
                                      env->exception_is_int, 
160
                                      env->error_code, 
161
                                      env->exception_next_eip);
162
#endif
163
                    ret = env->exception_index;
164
                    break;
165
                } else {
166
#if defined(TARGET_I386)
167
                    /* simulate a real cpu exception. On i386, it can
168
                       trigger new exceptions, but we do not handle
169
                       double or triple faults yet. */
170
                    do_interrupt(env->exception_index, 
171
                                 env->exception_is_int, 
172
                                 env->error_code, 
173
                                 env->exception_next_eip);
174
#endif
175
                }
176
                env->exception_index = -1;
177
            }
178
            T0 = 0; /* force lookup of first TB */
179
            for(;;) {
180
#ifdef __sparc__
181
                /* g1 can be modified by some libc? functions */ 
182
                tmp_T0 = T0;
183
#endif            
184
                interrupt_request = env->interrupt_request;
185
                if (interrupt_request) {
186
#if defined(TARGET_I386)
187
                    /* if hardware interrupt pending, we execute it */
188
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
189
                        (env->eflags & IF_MASK)) {
190
                        int intno;
191
                        intno = cpu_x86_get_pic_interrupt(env);
192
                        if (loglevel) {
193
                            fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
194
                        }
195
                        do_interrupt(intno, 0, 0, 0);
196
                        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
197
                        /* ensure that no TB jump will be modified as
198
                           the program flow was changed */
199
#ifdef __sparc__
200
                        tmp_T0 = 0;
201
#else
202
                        T0 = 0;
203
#endif
204
                    }
205
#endif
206
                    if (interrupt_request & CPU_INTERRUPT_EXIT) {
207
                        env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
208
                        env->exception_index = EXCP_INTERRUPT;
209
                        cpu_loop_exit();
210
                    }
211
                }
212
#ifdef DEBUG_EXEC
213
                if (loglevel) {
214
#if defined(TARGET_I386)
215
                    /* restore flags in standard format */
216
                    env->regs[R_EAX] = EAX;
217
                    env->regs[R_EBX] = EBX;
218
                    env->regs[R_ECX] = ECX;
219
                    env->regs[R_EDX] = EDX;
220
                    env->regs[R_ESI] = ESI;
221
                    env->regs[R_EDI] = EDI;
222
                    env->regs[R_EBP] = EBP;
223
                    env->regs[R_ESP] = ESP;
224
                    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
225
                    cpu_x86_dump_state(env, logfile, X86_DUMP_CCOP);
226
                    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
227
#elif defined(TARGET_ARM)
228
                    env->cpsr = compute_cpsr();
229
                    cpu_arm_dump_state(env, logfile, 0);
230
                    env->cpsr &= ~0xf0000000;
231
#else
232
#error unsupported target CPU 
233
#endif
234
                }
235
#endif
236
                /* we compute the CPU state. We assume it will not
237
                   change during the whole generated block. */
238
#if defined(TARGET_I386)
239
                flags = (env->segs[R_CS].flags & DESC_B_MASK)
240
                    >> (DESC_B_SHIFT - GEN_FLAG_CODE32_SHIFT);
241
                flags |= (env->segs[R_SS].flags & DESC_B_MASK)
242
                    >> (DESC_B_SHIFT - GEN_FLAG_SS32_SHIFT);
243
                flags |= (((unsigned long)env->segs[R_DS].base | 
244
                           (unsigned long)env->segs[R_ES].base |
245
                           (unsigned long)env->segs[R_SS].base) != 0) << 
246
                    GEN_FLAG_ADDSEG_SHIFT;
247
                flags |= env->cpl << GEN_FLAG_CPL_SHIFT;
248
                flags |= (env->eflags & VM_MASK) >> (17 - GEN_FLAG_VM_SHIFT);
249
                flags |= (env->eflags & (IOPL_MASK | TF_MASK));
250
                cs_base = env->segs[R_CS].base;
251
                pc = cs_base + env->eip;
252
#elif defined(TARGET_ARM)
253
                flags = 0;
254
                cs_base = 0;
255
                pc = (uint8_t *)env->regs[15];
256
#else
257
#error unsupported CPU
258
#endif
259
                tb = tb_find(&ptb, (unsigned long)pc, (unsigned long)cs_base, 
260
                             flags);
261
                if (!tb) {
262
                    spin_lock(&tb_lock);
263
                    /* if no translated code available, then translate it now */
264
                    tb = tb_alloc((unsigned long)pc);
265
                    if (!tb) {
266
                        /* flush must be done */
267
                        tb_flush();
268
                        /* cannot fail at this point */
269
                        tb = tb_alloc((unsigned long)pc);
270
                        /* don't forget to invalidate previous TB info */
271
                        ptb = &tb_hash[tb_hash_func((unsigned long)pc)];
272
                        T0 = 0;
273
                    }
274
                    tc_ptr = code_gen_ptr;
275
                    tb->tc_ptr = tc_ptr;
276
                    tb->cs_base = (unsigned long)cs_base;
277
                    tb->flags = flags;
278
                    ret = cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
279
#if defined(TARGET_I386)
280
                    /* XXX: suppress that, this is incorrect */
281
                    /* if invalid instruction, signal it */
282
                    if (ret != 0) {
283
                        /* NOTE: the tb is allocated but not linked, so we
284
                           can leave it */
285
                        spin_unlock(&tb_lock);
286
                        raise_exception(EXCP06_ILLOP);
287
                    }
288
#endif
289
                    *ptb = tb;
290
                    tb->hash_next = NULL;
291
                    tb_link(tb);
292
                    code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
293
                    spin_unlock(&tb_lock);
294
                }
295
#ifdef DEBUG_EXEC
296
                if (loglevel) {
297
                    fprintf(logfile, "Trace 0x%08lx [0x%08lx] %s\n",
298
                            (long)tb->tc_ptr, (long)tb->pc,
299
                            lookup_symbol((void *)tb->pc));
300
                }
301
#endif
302
#ifdef __sparc__
303
                T0 = tmp_T0;
304
#endif            
305
                /* see if we can patch the calling TB. XXX: remove TF test */
306
                if (T0 != 0
307
#if defined(TARGET_I386)
308
                    && !(env->eflags & TF_MASK)
309
#endif
310
                    ) {
311
                    spin_lock(&tb_lock);
312
                    tb_add_jump((TranslationBlock *)(T0 & ~3), T0 & 3, tb);
313
                    spin_unlock(&tb_lock);
314
                }
315
                tc_ptr = tb->tc_ptr;
316
                env->current_tb = tb;
317
                /* execute the generated code */
318
                gen_func = (void *)tc_ptr;
319
#if defined(__sparc__)
320
                __asm__ __volatile__("call        %0\n\t"
321
                                     "mov        %%o7,%%i0"
322
                                     : /* no outputs */
323
                                     : "r" (gen_func) 
324
                                     : "i0", "i1", "i2", "i3", "i4", "i5");
325
#elif defined(__arm__)
326
                asm volatile ("mov pc, %0\n\t"
327
                              ".global exec_loop\n\t"
328
                              "exec_loop:\n\t"
329
                              : /* no outputs */
330
                              : "r" (gen_func)
331
                              : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
332
#else
333
                gen_func();
334
#endif
335
                env->current_tb = NULL;
336
            }
337
        } else {
338
        }
339
    } /* for(;;) */
340

    
341

    
342
#if defined(TARGET_I386)
343
    /* restore flags in standard format */
344
    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
345

    
346
    /* restore global registers */
347
#ifdef reg_EAX
348
    EAX = saved_EAX;
349
#endif
350
#ifdef reg_ECX
351
    ECX = saved_ECX;
352
#endif
353
#ifdef reg_EDX
354
    EDX = saved_EDX;
355
#endif
356
#ifdef reg_EBX
357
    EBX = saved_EBX;
358
#endif
359
#ifdef reg_ESP
360
    ESP = saved_ESP;
361
#endif
362
#ifdef reg_EBP
363
    EBP = saved_EBP;
364
#endif
365
#ifdef reg_ESI
366
    ESI = saved_ESI;
367
#endif
368
#ifdef reg_EDI
369
    EDI = saved_EDI;
370
#endif
371
#elif defined(TARGET_ARM)
372
    env->cpsr = compute_cpsr();
373
#else
374
#error unsupported target CPU
375
#endif
376
#ifdef __sparc__
377
    asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
378
#endif
379
    T0 = saved_T0;
380
    T1 = saved_T1;
381
    T2 = saved_T2;
382
    env = saved_env;
383
    return ret;
384
}
385

    
386
#if defined(TARGET_I386)
387

    
388
void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
389
{
390
    CPUX86State *saved_env;
391

    
392
    saved_env = env;
393
    env = s;
394
    if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
395
        SegmentCache *sc;
396
        selector &= 0xffff;
397
        sc = &env->segs[seg_reg];
398
        sc->base = (void *)(selector << 4);
399
        sc->limit = 0xffff;
400
        sc->flags = 0;
401
        sc->selector = selector;
402
    } else {
403
        load_seg(seg_reg, selector, 0);
404
    }
405
    env = saved_env;
406
}
407

    
408
void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
409
{
410
    CPUX86State *saved_env;
411

    
412
    saved_env = env;
413
    env = s;
414
    
415
    helper_fsave(ptr, data32);
416

    
417
    env = saved_env;
418
}
419

    
420
void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
421
{
422
    CPUX86State *saved_env;
423

    
424
    saved_env = env;
425
    env = s;
426
    
427
    helper_frstor(ptr, data32);
428

    
429
    env = saved_env;
430
}
431

    
432
#endif /* TARGET_I386 */
433

    
434
#undef EAX
435
#undef ECX
436
#undef EDX
437
#undef EBX
438
#undef ESP
439
#undef EBP
440
#undef ESI
441
#undef EDI
442
#undef EIP
443
#include <signal.h>
444
#include <sys/ucontext.h>
445

    
446
#if defined(TARGET_I386)
447

    
448
/* 'pc' is the host PC at which the exception was raised. 'address' is
449
   the effective address of the memory exception. 'is_write' is 1 if a
450
   write caused the exception and otherwise 0'. 'old_set' is the
451
   signal set which should be restored */
452
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
453
                                    int is_write, sigset_t *old_set)
454
{
455
    TranslationBlock *tb;
456
    int ret;
457

    
458
    if (cpu_single_env)
459
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
460
#if defined(DEBUG_SIGNAL)
461
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
462
           pc, address, is_write, *(unsigned long *)old_set);
463
#endif
464
    /* XXX: locking issue */
465
    if (is_write && page_unprotect(address)) {
466
        return 1;
467
    }
468
    /* see if it is an MMU fault */
469
    ret = cpu_x86_handle_mmu_fault(env, address, is_write);
470
    if (ret < 0)
471
        return 0; /* not an MMU fault */
472
    if (ret == 0)
473
        return 1; /* the MMU fault was handled without causing real CPU fault */
474
    /* now we have a real cpu fault */
475
    tb = tb_find_pc(pc);
476
    if (tb) {
477
        /* the PC is inside the translated code. It means that we have
478
           a virtual CPU fault */
479
        cpu_restore_state(tb, env, pc);
480
    }
481
#if 0
482
    printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n", 
483
           env->eip, env->cr[2], env->error_code);
484
#endif
485
    /* we restore the process signal mask as the sigreturn should
486
       do it (XXX: use sigsetjmp) */
487
    sigprocmask(SIG_SETMASK, old_set, NULL);
488
    raise_exception_err(EXCP0E_PAGE, env->error_code);
489
    /* never comes here */
490
    return 1;
491
}
492

    
493
#elif defined(TARGET_ARM)
494
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
495
                                    int is_write, sigset_t *old_set)
496
{
497
    /* XXX: do more */
498
    return 0;
499
}
500
#else
501
#error unsupported target CPU
502
#endif
503

    
504
#if defined(__i386__)
505

    
506
int cpu_signal_handler(int host_signum, struct siginfo *info, 
507
                       void *puc)
508
{
509
    struct ucontext *uc = puc;
510
    unsigned long pc;
511
    
512
#ifndef REG_EIP
513
/* for glibc 2.1 */
514
#define REG_EIP    EIP
515
#define REG_ERR    ERR
516
#define REG_TRAPNO TRAPNO
517
#endif
518
    pc = uc->uc_mcontext.gregs[REG_EIP];
519
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
520
                             uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ? 
521
                             (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
522
                             &uc->uc_sigmask);
523
}
524

    
525
#elif defined(__powerpc)
526

    
527
int cpu_signal_handler(int host_signum, struct siginfo *info, 
528
                       void *puc)
529
{
530
    struct ucontext *uc = puc;
531
    struct pt_regs *regs = uc->uc_mcontext.regs;
532
    unsigned long pc;
533
    int is_write;
534

    
535
    pc = regs->nip;
536
    is_write = 0;
537
#if 0
538
    /* ppc 4xx case */
539
    if (regs->dsisr & 0x00800000)
540
        is_write = 1;
541
#else
542
    if (regs->trap != 0x400 && (regs->dsisr & 0x02000000))
543
        is_write = 1;
544
#endif
545
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
546
                             is_write, &uc->uc_sigmask);
547
}
548

    
549
#elif defined(__alpha__)
550

    
551
int cpu_signal_handler(int host_signum, struct siginfo *info, 
552
                           void *puc)
553
{
554
    struct ucontext *uc = puc;
555
    uint32_t *pc = uc->uc_mcontext.sc_pc;
556
    uint32_t insn = *pc;
557
    int is_write = 0;
558

    
559
    /* XXX: need kernel patch to get write flag faster */
560
    switch (insn >> 26) {
561
    case 0x0d: // stw
562
    case 0x0e: // stb
563
    case 0x0f: // stq_u
564
    case 0x24: // stf
565
    case 0x25: // stg
566
    case 0x26: // sts
567
    case 0x27: // stt
568
    case 0x2c: // stl
569
    case 0x2d: // stq
570
    case 0x2e: // stl_c
571
    case 0x2f: // stq_c
572
        is_write = 1;
573
    }
574

    
575
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
576
                             is_write, &uc->uc_sigmask);
577
}
578
#elif defined(__sparc__)
579

    
580
int cpu_signal_handler(int host_signum, struct siginfo *info, 
581
                       void *puc)
582
{
583
    uint32_t *regs = (uint32_t *)(info + 1);
584
    void *sigmask = (regs + 20);
585
    unsigned long pc;
586
    int is_write;
587
    uint32_t insn;
588
    
589
    /* XXX: is there a standard glibc define ? */
590
    pc = regs[1];
591
    /* XXX: need kernel patch to get write flag faster */
592
    is_write = 0;
593
    insn = *(uint32_t *)pc;
594
    if ((insn >> 30) == 3) {
595
      switch((insn >> 19) & 0x3f) {
596
      case 0x05: // stb
597
      case 0x06: // sth
598
      case 0x04: // st
599
      case 0x07: // std
600
      case 0x24: // stf
601
      case 0x27: // stdf
602
      case 0x25: // stfsr
603
        is_write = 1;
604
        break;
605
      }
606
    }
607
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
608
                             is_write, sigmask);
609
}
610

    
611
#elif defined(__arm__)
612

    
613
int cpu_signal_handler(int host_signum, struct siginfo *info, 
614
                       void *puc)
615
{
616
    struct ucontext *uc = puc;
617
    unsigned long pc;
618
    int is_write;
619
    
620
    pc = uc->uc_mcontext.gregs[R15];
621
    /* XXX: compute is_write */
622
    is_write = 0;
623
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
624
                             is_write,
625
                             &uc->uc_sigmask);
626
}
627

    
628
#else
629

    
630
#error host CPU specific signal handler needed
631

    
632
#endif