Statistics
| Branch: | Revision:

root / exec-i386.h @ b6d78bfa

History | View | Annotate | Download (9.5 kB)

1
/*
2
 *  i386 execution defines 
3
 *
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "dyngen-exec.h"
21

    
22
/* at least 4 register variables are defines */
23
register struct CPUX86State *env asm(AREG0);
24
register uint32_t T0 asm(AREG1);
25
register uint32_t T1 asm(AREG2);
26
register uint32_t T2 asm(AREG3);
27

    
28
#define A0 T2
29

    
30
/* if more registers are available, we define some registers too */
31
#ifdef AREG4
32
register uint32_t EAX asm(AREG4);
33
#define reg_EAX
34
#endif
35

    
36
#ifdef AREG5
37
register uint32_t ESP asm(AREG5);
38
#define reg_ESP
39
#endif
40

    
41
#ifdef AREG6
42
register uint32_t EBP asm(AREG6);
43
#define reg_EBP
44
#endif
45

    
46
#ifdef AREG7
47
register uint32_t ECX asm(AREG7);
48
#define reg_ECX
49
#endif
50

    
51
#ifdef AREG8
52
register uint32_t EDX asm(AREG8);
53
#define reg_EDX
54
#endif
55

    
56
#ifdef AREG9
57
register uint32_t EBX asm(AREG9);
58
#define reg_EBX
59
#endif
60

    
61
#ifdef AREG10
62
register uint32_t ESI asm(AREG10);
63
#define reg_ESI
64
#endif
65

    
66
#ifdef AREG11
67
register uint32_t EDI asm(AREG11);
68
#define reg_EDI
69
#endif
70

    
71
extern FILE *logfile;
72
extern int loglevel;
73

    
74
#ifndef reg_EAX
75
#define EAX (env->regs[R_EAX])
76
#endif
77
#ifndef reg_ECX
78
#define ECX (env->regs[R_ECX])
79
#endif
80
#ifndef reg_EDX
81
#define EDX (env->regs[R_EDX])
82
#endif
83
#ifndef reg_EBX
84
#define EBX (env->regs[R_EBX])
85
#endif
86
#ifndef reg_ESP
87
#define ESP (env->regs[R_ESP])
88
#endif
89
#ifndef reg_EBP
90
#define EBP (env->regs[R_EBP])
91
#endif
92
#ifndef reg_ESI
93
#define ESI (env->regs[R_ESI])
94
#endif
95
#ifndef reg_EDI
96
#define EDI (env->regs[R_EDI])
97
#endif
98
#define EIP  (env->eip)
99
#define DF  (env->df)
100

    
101
#define CC_SRC (env->cc_src)
102
#define CC_DST (env->cc_dst)
103
#define CC_OP  (env->cc_op)
104

    
105
/* float macros */
106
#define FT0    (env->ft0)
107
#define ST0    (env->fpregs[env->fpstt])
108
#define ST(n)  (env->fpregs[(env->fpstt + (n)) & 7])
109
#define ST1    ST(1)
110

    
111
#ifdef USE_FP_CONVERT
112
#define FP_CONVERT  (env->fp_convert)
113
#endif
114

    
115
#include "cpu-i386.h"
116
#include "exec.h"
117

    
118
typedef struct CCTable {
119
    int (*compute_all)(void); /* return all the flags */
120
    int (*compute_c)(void);  /* return the C flag */
121
} CCTable;
122

    
123
extern CCTable cc_table[];
124

    
125
void load_seg(int seg_reg, int selector, unsigned cur_eip);
126
void helper_ljmp_protected_T0_T1(void);
127
void helper_lcall_real_T0_T1(int shift, int next_eip);
128
void helper_lcall_protected_T0_T1(int shift, int next_eip);
129
void helper_iret_real(int shift);
130
void helper_iret_protected(int shift);
131
void helper_lret_protected(int shift, int addend);
132
void helper_lldt_T0(void);
133
void helper_ltr_T0(void);
134
void helper_movl_crN_T0(int reg);
135
void helper_movl_drN_T0(int reg);
136
void helper_invlpg(unsigned int addr);
137
void cpu_x86_update_cr0(CPUX86State *env);
138
void cpu_x86_update_cr3(CPUX86State *env);
139
void cpu_x86_flush_tlb(CPUX86State *env, uint32_t addr);
140
int cpu_x86_handle_mmu_fault(CPUX86State *env, uint32_t addr, int is_write);
141
void __hidden cpu_lock(void);
142
void __hidden cpu_unlock(void);
143
void do_interrupt(int intno, int is_int, int error_code, 
144
                  unsigned int next_eip);
145
void do_interrupt_user(int intno, int is_int, int error_code, 
146
                       unsigned int next_eip);
147
void raise_interrupt(int intno, int is_int, int error_code, 
148
                     unsigned int next_eip);
149
void raise_exception_err(int exception_index, int error_code);
150
void raise_exception(int exception_index);
151
void __hidden cpu_loop_exit(void);
152
void helper_fsave(uint8_t *ptr, int data32);
153
void helper_frstor(uint8_t *ptr, int data32);
154

    
155
void OPPROTO op_movl_eflags_T0(void);
156
void OPPROTO op_movl_T0_eflags(void);
157
void raise_interrupt(int intno, int is_int, int error_code, 
158
                     unsigned int next_eip);
159
void raise_exception_err(int exception_index, int error_code);
160
void raise_exception(int exception_index);
161
void helper_divl_EAX_T0(uint32_t eip);
162
void helper_idivl_EAX_T0(uint32_t eip);
163
void helper_cmpxchg8b(void);
164
void helper_cpuid(void);
165
void helper_rdtsc(void);
166
void helper_rdmsr(void);
167
void helper_wrmsr(void);
168
void helper_lsl(void);
169
void helper_lar(void);
170

    
171
#ifdef USE_X86LDOUBLE
172
/* use long double functions */
173
#define lrint lrintl
174
#define llrint llrintl
175
#define fabs fabsl
176
#define sin sinl
177
#define cos cosl
178
#define sqrt sqrtl
179
#define pow powl
180
#define log logl
181
#define tan tanl
182
#define atan2 atan2l
183
#define floor floorl
184
#define ceil ceill
185
#define rint rintl
186
#endif
187

    
188
extern int lrint(CPU86_LDouble x);
189
extern int64_t llrint(CPU86_LDouble x);
190
extern CPU86_LDouble fabs(CPU86_LDouble x);
191
extern CPU86_LDouble sin(CPU86_LDouble x);
192
extern CPU86_LDouble cos(CPU86_LDouble x);
193
extern CPU86_LDouble sqrt(CPU86_LDouble x);
194
extern CPU86_LDouble pow(CPU86_LDouble, CPU86_LDouble);
195
extern CPU86_LDouble log(CPU86_LDouble x);
196
extern CPU86_LDouble tan(CPU86_LDouble x);
197
extern CPU86_LDouble atan2(CPU86_LDouble, CPU86_LDouble);
198
extern CPU86_LDouble floor(CPU86_LDouble x);
199
extern CPU86_LDouble ceil(CPU86_LDouble x);
200
extern CPU86_LDouble rint(CPU86_LDouble x);
201

    
202
#define RC_MASK         0xc00
203
#define RC_NEAR                0x000
204
#define RC_DOWN                0x400
205
#define RC_UP                0x800
206
#define RC_CHOP                0xc00
207

    
208
#define MAXTAN 9223372036854775808.0
209

    
210
#ifdef __arm__
211
/* we have no way to do correct rounding - a FPU emulator is needed */
212
#define FE_DOWNWARD   FE_TONEAREST
213
#define FE_UPWARD     FE_TONEAREST
214
#define FE_TOWARDZERO FE_TONEAREST
215
#endif
216

    
217
#ifdef USE_X86LDOUBLE
218

    
219
/* only for x86 */
220
typedef union {
221
    long double d;
222
    struct {
223
        unsigned long long lower;
224
        unsigned short upper;
225
    } l;
226
} CPU86_LDoubleU;
227

    
228
/* the following deal with x86 long double-precision numbers */
229
#define MAXEXPD 0x7fff
230
#define EXPBIAS 16383
231
#define EXPD(fp)        (fp.l.upper & 0x7fff)
232
#define SIGND(fp)        ((fp.l.upper) & 0x8000)
233
#define MANTD(fp)       (fp.l.lower)
234
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
235

    
236
#else
237

    
238
/* NOTE: arm is horrible as double 32 bit words are stored in big endian ! */
239
typedef union {
240
    double d;
241
#if !defined(WORDS_BIGENDIAN) && !defined(__arm__)
242
    struct {
243
        uint32_t lower;
244
        int32_t upper;
245
    } l;
246
#else
247
    struct {
248
        int32_t upper;
249
        uint32_t lower;
250
    } l;
251
#endif
252
#ifndef __arm__
253
    int64_t ll;
254
#endif
255
} CPU86_LDoubleU;
256

    
257
/* the following deal with IEEE double-precision numbers */
258
#define MAXEXPD 0x7ff
259
#define EXPBIAS 1023
260
#define EXPD(fp)        (((fp.l.upper) >> 20) & 0x7FF)
261
#define SIGND(fp)        ((fp.l.upper) & 0x80000000)
262
#ifdef __arm__
263
#define MANTD(fp)        (fp.l.lower | ((uint64_t)(fp.l.upper & ((1 << 20) - 1)) << 32))
264
#else
265
#define MANTD(fp)        (fp.ll & ((1LL << 52) - 1))
266
#endif
267
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7ff << 20)) | (EXPBIAS << 20)
268
#endif
269

    
270
static inline void fpush(void)
271
{
272
    env->fpstt = (env->fpstt - 1) & 7;
273
    env->fptags[env->fpstt] = 0; /* validate stack entry */
274
}
275

    
276
static inline void fpop(void)
277
{
278
    env->fptags[env->fpstt] = 1; /* invvalidate stack entry */
279
    env->fpstt = (env->fpstt + 1) & 7;
280
}
281

    
282
#ifndef USE_X86LDOUBLE
283
static inline CPU86_LDouble helper_fldt(uint8_t *ptr)
284
{
285
    CPU86_LDoubleU temp;
286
    int upper, e;
287
    uint64_t ll;
288

    
289
    /* mantissa */
290
    upper = lduw(ptr + 8);
291
    /* XXX: handle overflow ? */
292
    e = (upper & 0x7fff) - 16383 + EXPBIAS; /* exponent */
293
    e |= (upper >> 4) & 0x800; /* sign */
294
    ll = (ldq(ptr) >> 11) & ((1LL << 52) - 1);
295
#ifdef __arm__
296
    temp.l.upper = (e << 20) | (ll >> 32);
297
    temp.l.lower = ll;
298
#else
299
    temp.ll = ll | ((uint64_t)e << 52);
300
#endif
301
    return temp.d;
302
}
303

    
304
static inline void helper_fstt(CPU86_LDouble f, uint8_t *ptr)
305
{
306
    CPU86_LDoubleU temp;
307
    int e;
308

    
309
    temp.d = f;
310
    /* mantissa */
311
    stq(ptr, (MANTD(temp) << 11) | (1LL << 63));
312
    /* exponent + sign */
313
    e = EXPD(temp) - EXPBIAS + 16383;
314
    e |= SIGND(temp) >> 16;
315
    stw(ptr + 8, e);
316
}
317
#endif
318

    
319
const CPU86_LDouble f15rk[7];
320

    
321
void helper_fldt_ST0_A0(void);
322
void helper_fstt_ST0_A0(void);
323
void helper_fbld_ST0_A0(void);
324
void helper_fbst_ST0_A0(void);
325
void helper_f2xm1(void);
326
void helper_fyl2x(void);
327
void helper_fptan(void);
328
void helper_fpatan(void);
329
void helper_fxtract(void);
330
void helper_fprem1(void);
331
void helper_fprem(void);
332
void helper_fyl2xp1(void);
333
void helper_fsqrt(void);
334
void helper_fsincos(void);
335
void helper_frndint(void);
336
void helper_fscale(void);
337
void helper_fsin(void);
338
void helper_fcos(void);
339
void helper_fxam_ST0(void);
340
void helper_fstenv(uint8_t *ptr, int data32);
341
void helper_fldenv(uint8_t *ptr, int data32);
342
void helper_fsave(uint8_t *ptr, int data32);
343
void helper_frstor(uint8_t *ptr, int data32);
344

    
345
const uint8_t parity_table[256];
346
const uint8_t rclw_table[32];
347
const uint8_t rclb_table[32];
348

    
349
static inline uint32_t compute_eflags(void)
350
{
351
    return env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
352
}
353

    
354
#define FL_UPDATE_MASK32 (TF_MASK | AC_MASK | ID_MASK)
355

    
356
#define FL_UPDATE_CPL0_MASK (TF_MASK | IF_MASK | IOPL_MASK | NT_MASK | \
357
                             RF_MASK | AC_MASK | ID_MASK)
358

    
359
/* NOTE: CC_OP must be modified manually to CC_OP_EFLAGS */
360
static inline void load_eflags(int eflags, int update_mask)
361
{
362
    CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
363
    DF = 1 - (2 * ((eflags >> 10) & 1));
364
    env->eflags = (env->eflags & ~update_mask) | 
365
        (eflags & update_mask);
366
}