Statistics
| Branch: | Revision:

root / cpu-exec.c @ b7bcbe95

History | View | Annotate | Download (36.7 kB)

1
/*
2
 *  i386 emulator main execution loop
3
 * 
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "config.h"
21
#include "exec.h"
22
#include "disas.h"
23

    
24
#if !defined(CONFIG_SOFTMMU)
25
#undef EAX
26
#undef ECX
27
#undef EDX
28
#undef EBX
29
#undef ESP
30
#undef EBP
31
#undef ESI
32
#undef EDI
33
#undef EIP
34
#include <signal.h>
35
#include <sys/ucontext.h>
36
#endif
37

    
38
int tb_invalidated_flag;
39

    
40
//#define DEBUG_EXEC
41
//#define DEBUG_SIGNAL
42

    
43
#if defined(TARGET_ARM) || defined(TARGET_SPARC)
44
/* XXX: unify with i386 target */
45
void cpu_loop_exit(void)
46
{
47
    longjmp(env->jmp_env, 1);
48
}
49
#endif
50

    
51
/* exit the current TB from a signal handler. The host registers are
52
   restored in a state compatible with the CPU emulator
53
 */
54
void cpu_resume_from_signal(CPUState *env1, void *puc) 
55
{
56
#if !defined(CONFIG_SOFTMMU)
57
    struct ucontext *uc = puc;
58
#endif
59

    
60
    env = env1;
61

    
62
    /* XXX: restore cpu registers saved in host registers */
63

    
64
#if !defined(CONFIG_SOFTMMU)
65
    if (puc) {
66
        /* XXX: use siglongjmp ? */
67
        sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
68
    }
69
#endif
70
    longjmp(env->jmp_env, 1);
71
}
72

    
73
/* main execution loop */
74

    
75
int cpu_exec(CPUState *env1)
76
{
77
    int saved_T0, saved_T1, saved_T2;
78
    CPUState *saved_env;
79
#ifdef reg_EAX
80
    int saved_EAX;
81
#endif
82
#ifdef reg_ECX
83
    int saved_ECX;
84
#endif
85
#ifdef reg_EDX
86
    int saved_EDX;
87
#endif
88
#ifdef reg_EBX
89
    int saved_EBX;
90
#endif
91
#ifdef reg_ESP
92
    int saved_ESP;
93
#endif
94
#ifdef reg_EBP
95
    int saved_EBP;
96
#endif
97
#ifdef reg_ESI
98
    int saved_ESI;
99
#endif
100
#ifdef reg_EDI
101
    int saved_EDI;
102
#endif
103
#ifdef __sparc__
104
    int saved_i7, tmp_T0;
105
#endif
106
    int code_gen_size, ret, interrupt_request;
107
    void (*gen_func)(void);
108
    TranslationBlock *tb, **ptb;
109
    target_ulong cs_base, pc;
110
    uint8_t *tc_ptr;
111
    unsigned int flags;
112

    
113
    /* first we save global registers */
114
    saved_env = env;
115
    env = env1;
116
    saved_T0 = T0;
117
    saved_T1 = T1;
118
    saved_T2 = T2;
119
#ifdef __sparc__
120
    /* we also save i7 because longjmp may not restore it */
121
    asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
122
#endif
123

    
124
#if defined(TARGET_I386)
125
#ifdef reg_EAX
126
    saved_EAX = EAX;
127
#endif
128
#ifdef reg_ECX
129
    saved_ECX = ECX;
130
#endif
131
#ifdef reg_EDX
132
    saved_EDX = EDX;
133
#endif
134
#ifdef reg_EBX
135
    saved_EBX = EBX;
136
#endif
137
#ifdef reg_ESP
138
    saved_ESP = ESP;
139
#endif
140
#ifdef reg_EBP
141
    saved_EBP = EBP;
142
#endif
143
#ifdef reg_ESI
144
    saved_ESI = ESI;
145
#endif
146
#ifdef reg_EDI
147
    saved_EDI = EDI;
148
#endif
149

    
150
    env_to_regs();
151
    /* put eflags in CPU temporary format */
152
    CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
153
    DF = 1 - (2 * ((env->eflags >> 10) & 1));
154
    CC_OP = CC_OP_EFLAGS;
155
    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
156
#elif defined(TARGET_ARM)
157
    {
158
        unsigned int psr;
159
        psr = env->cpsr;
160
        env->CF = (psr >> 29) & 1;
161
        env->NZF = (psr & 0xc0000000) ^ 0x40000000;
162
        env->VF = (psr << 3) & 0x80000000;
163
        env->QF = (psr >> 27) & 1;
164
        env->cpsr = psr & ~CACHED_CPSR_BITS;
165
    }
166
#elif defined(TARGET_SPARC)
167
#elif defined(TARGET_PPC)
168
#else
169
#error unsupported target CPU
170
#endif
171
    env->exception_index = -1;
172

    
173
    /* prepare setjmp context for exception handling */
174
    for(;;) {
175
        if (setjmp(env->jmp_env) == 0) {
176
            env->current_tb = NULL;
177
            /* if an exception is pending, we execute it here */
178
            if (env->exception_index >= 0) {
179
                if (env->exception_index >= EXCP_INTERRUPT) {
180
                    /* exit request from the cpu execution loop */
181
                    ret = env->exception_index;
182
                    break;
183
                } else if (env->user_mode_only) {
184
                    /* if user mode only, we simulate a fake exception
185
                       which will be hanlded outside the cpu execution
186
                       loop */
187
#if defined(TARGET_I386)
188
                    do_interrupt_user(env->exception_index, 
189
                                      env->exception_is_int, 
190
                                      env->error_code, 
191
                                      env->exception_next_eip);
192
#endif
193
                    ret = env->exception_index;
194
                    break;
195
                } else {
196
#if defined(TARGET_I386)
197
                    /* simulate a real cpu exception. On i386, it can
198
                       trigger new exceptions, but we do not handle
199
                       double or triple faults yet. */
200
                    do_interrupt(env->exception_index, 
201
                                 env->exception_is_int, 
202
                                 env->error_code, 
203
                                 env->exception_next_eip, 0);
204
#elif defined(TARGET_PPC)
205
                    do_interrupt(env);
206
#elif defined(TARGET_SPARC)
207
                    do_interrupt(env->exception_index);
208
#endif
209
                }
210
                env->exception_index = -1;
211
            } 
212
#ifdef USE_KQEMU
213
            if (kqemu_is_ok(env) && env->interrupt_request == 0) {
214
                int ret;
215
                env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
216
                ret = kqemu_cpu_exec(env);
217
                /* put eflags in CPU temporary format */
218
                CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
219
                DF = 1 - (2 * ((env->eflags >> 10) & 1));
220
                CC_OP = CC_OP_EFLAGS;
221
                env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
222
                if (ret == 1) {
223
                    /* exception */
224
                    longjmp(env->jmp_env, 1);
225
                } else if (ret == 2) {
226
                    /* softmmu execution needed */
227
                } else {
228
                    if (env->interrupt_request != 0) {
229
                        /* hardware interrupt will be executed just after */
230
                    } else {
231
                        /* otherwise, we restart */
232
                        longjmp(env->jmp_env, 1);
233
                    }
234
                }
235
            }
236
#endif
237

    
238
            T0 = 0; /* force lookup of first TB */
239
            for(;;) {
240
#ifdef __sparc__
241
                /* g1 can be modified by some libc? functions */ 
242
                tmp_T0 = T0;
243
#endif            
244
                interrupt_request = env->interrupt_request;
245
                if (__builtin_expect(interrupt_request, 0)) {
246
#if defined(TARGET_I386)
247
                    /* if hardware interrupt pending, we execute it */
248
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
249
                        (env->eflags & IF_MASK) && 
250
                        !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
251
                        int intno;
252
                        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
253
                        intno = cpu_get_pic_interrupt(env);
254
                        if (loglevel & CPU_LOG_TB_IN_ASM) {
255
                            fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
256
                        }
257
                        do_interrupt(intno, 0, 0, 0, 1);
258
                        /* ensure that no TB jump will be modified as
259
                           the program flow was changed */
260
#ifdef __sparc__
261
                        tmp_T0 = 0;
262
#else
263
                        T0 = 0;
264
#endif
265
                    }
266
#elif defined(TARGET_PPC)
267
#if 0
268
                    if ((interrupt_request & CPU_INTERRUPT_RESET)) {
269
                        cpu_ppc_reset(env);
270
                    }
271
#endif
272
                    if (msr_ee != 0) {
273
                    if ((interrupt_request & CPU_INTERRUPT_HARD)) {
274
                            /* Raise it */
275
                            env->exception_index = EXCP_EXTERNAL;
276
                            env->error_code = 0;
277
                            do_interrupt(env);
278
                        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
279
                        } else if ((interrupt_request & CPU_INTERRUPT_TIMER)) {
280
                            /* Raise it */
281
                            env->exception_index = EXCP_DECR;
282
                            env->error_code = 0;
283
                            do_interrupt(env);
284
                            env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
285
                        }
286
                    }
287
#elif defined(TARGET_SPARC)
288
                    if (interrupt_request & CPU_INTERRUPT_HARD) {
289
                        do_interrupt(env->interrupt_index);
290
                        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
291
                    } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
292
                        //do_interrupt(0, 0, 0, 0, 0);
293
                        env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
294
                    }
295
#endif
296
                    if (interrupt_request & CPU_INTERRUPT_EXITTB) {
297
                        env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
298
                        /* ensure that no TB jump will be modified as
299
                           the program flow was changed */
300
#ifdef __sparc__
301
                        tmp_T0 = 0;
302
#else
303
                        T0 = 0;
304
#endif
305
                    }
306
                    if (interrupt_request & CPU_INTERRUPT_EXIT) {
307
                        env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
308
                        env->exception_index = EXCP_INTERRUPT;
309
                        cpu_loop_exit();
310
                    }
311
                }
312
#ifdef DEBUG_EXEC
313
                if ((loglevel & CPU_LOG_EXEC)) {
314
#if defined(TARGET_I386)
315
                    /* restore flags in standard format */
316
                    env->regs[R_EAX] = EAX;
317
                    env->regs[R_EBX] = EBX;
318
                    env->regs[R_ECX] = ECX;
319
                    env->regs[R_EDX] = EDX;
320
                    env->regs[R_ESI] = ESI;
321
                    env->regs[R_EDI] = EDI;
322
                    env->regs[R_EBP] = EBP;
323
                    env->regs[R_ESP] = ESP;
324
                    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
325
                    cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
326
                    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
327
#elif defined(TARGET_ARM)
328
                    env->cpsr = compute_cpsr();
329
                    cpu_dump_state(env, logfile, fprintf, 0);
330
                    env->cpsr &= ~CACHED_CPSR_BITS;
331
#elif defined(TARGET_SPARC)
332
                    cpu_dump_state (env, logfile, fprintf, 0);
333
#elif defined(TARGET_PPC)
334
                    cpu_dump_state(env, logfile, fprintf, 0);
335
#else
336
#error unsupported target CPU 
337
#endif
338
                }
339
#endif
340
                /* we record a subset of the CPU state. It will
341
                   always be the same before a given translated block
342
                   is executed. */
343
#if defined(TARGET_I386)
344
                flags = env->hflags;
345
                flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
346
                cs_base = env->segs[R_CS].base;
347
                pc = cs_base + env->eip;
348
#elif defined(TARGET_ARM)
349
                flags = env->thumb | (env->vfp.vec_len << 1)
350
                        | (env->vfp.vec_stride << 4);
351
                cs_base = 0;
352
                pc = env->regs[15];
353
#elif defined(TARGET_SPARC)
354
                flags = 0;
355
                cs_base = env->npc;
356
                pc = env->pc;
357
#elif defined(TARGET_PPC)
358
                flags = (msr_pr << MSR_PR) | (msr_fp << MSR_FP) | (msr_se << MSR_SE);
359
                cs_base = 0;
360
                pc = env->nip;
361
#else
362
#error unsupported CPU
363
#endif
364
                tb = tb_find(&ptb, pc, cs_base, 
365
                             flags);
366
                if (!tb) {
367
                    TranslationBlock **ptb1;
368
                    unsigned int h;
369
                    target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
370
                    
371
                    
372
                    spin_lock(&tb_lock);
373

    
374
                    tb_invalidated_flag = 0;
375
                    
376
                    regs_to_env(); /* XXX: do it just before cpu_gen_code() */
377

    
378
                    /* find translated block using physical mappings */
379
                    phys_pc = get_phys_addr_code(env, pc);
380
                    phys_page1 = phys_pc & TARGET_PAGE_MASK;
381
                    phys_page2 = -1;
382
                    h = tb_phys_hash_func(phys_pc);
383
                    ptb1 = &tb_phys_hash[h];
384
                    for(;;) {
385
                        tb = *ptb1;
386
                        if (!tb)
387
                            goto not_found;
388
                        if (tb->pc == pc && 
389
                            tb->page_addr[0] == phys_page1 &&
390
                            tb->cs_base == cs_base && 
391
                            tb->flags == flags) {
392
                            /* check next page if needed */
393
                            if (tb->page_addr[1] != -1) {
394
                                virt_page2 = (pc & TARGET_PAGE_MASK) + 
395
                                    TARGET_PAGE_SIZE;
396
                                phys_page2 = get_phys_addr_code(env, virt_page2);
397
                                if (tb->page_addr[1] == phys_page2)
398
                                    goto found;
399
                            } else {
400
                                goto found;
401
                            }
402
                        }
403
                        ptb1 = &tb->phys_hash_next;
404
                    }
405
                not_found:
406
                    /* if no translated code available, then translate it now */
407
                    tb = tb_alloc(pc);
408
                    if (!tb) {
409
                        /* flush must be done */
410
                        tb_flush(env);
411
                        /* cannot fail at this point */
412
                        tb = tb_alloc(pc);
413
                        /* don't forget to invalidate previous TB info */
414
                        ptb = &tb_hash[tb_hash_func(pc)];
415
                        T0 = 0;
416
                    }
417
                    tc_ptr = code_gen_ptr;
418
                    tb->tc_ptr = tc_ptr;
419
                    tb->cs_base = cs_base;
420
                    tb->flags = flags;
421
                    cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
422
                    code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
423
                    
424
                    /* check next page if needed */
425
                    virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
426
                    phys_page2 = -1;
427
                    if ((pc & TARGET_PAGE_MASK) != virt_page2) {
428
                        phys_page2 = get_phys_addr_code(env, virt_page2);
429
                    }
430
                    tb_link_phys(tb, phys_pc, phys_page2);
431

    
432
                found:
433
                    if (tb_invalidated_flag) {
434
                        /* as some TB could have been invalidated because
435
                           of memory exceptions while generating the code, we
436
                           must recompute the hash index here */
437
                        ptb = &tb_hash[tb_hash_func(pc)];
438
                        while (*ptb != NULL)
439
                            ptb = &(*ptb)->hash_next;
440
                        T0 = 0;
441
                    }
442
                    /* we add the TB in the virtual pc hash table */
443
                    *ptb = tb;
444
                    tb->hash_next = NULL;
445
                    tb_link(tb);
446
                    spin_unlock(&tb_lock);
447
                }
448
#ifdef DEBUG_EXEC
449
                if ((loglevel & CPU_LOG_EXEC)) {
450
                    fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
451
                            (long)tb->tc_ptr, tb->pc,
452
                            lookup_symbol(tb->pc));
453
                }
454
#endif
455
#ifdef __sparc__
456
                T0 = tmp_T0;
457
#endif            
458
                /* see if we can patch the calling TB. */
459
                {
460
                    if (T0 != 0
461
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
462
                    && (tb->cflags & CF_CODE_COPY) == 
463
                    (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
464
#endif
465
                    ) {
466
                    spin_lock(&tb_lock);
467
                    tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb);
468
#if defined(USE_CODE_COPY)
469
                    /* propagates the FP use info */
470
                    ((TranslationBlock *)(T0 & ~3))->cflags |= 
471
                        (tb->cflags & CF_FP_USED);
472
#endif
473
                    spin_unlock(&tb_lock);
474
                }
475
                }
476
                tc_ptr = tb->tc_ptr;
477
                env->current_tb = tb;
478
                /* execute the generated code */
479
                gen_func = (void *)tc_ptr;
480
#if defined(__sparc__)
481
                __asm__ __volatile__("call        %0\n\t"
482
                                     "mov        %%o7,%%i0"
483
                                     : /* no outputs */
484
                                     : "r" (gen_func) 
485
                                     : "i0", "i1", "i2", "i3", "i4", "i5");
486
#elif defined(__arm__)
487
                asm volatile ("mov pc, %0\n\t"
488
                              ".global exec_loop\n\t"
489
                              "exec_loop:\n\t"
490
                              : /* no outputs */
491
                              : "r" (gen_func)
492
                              : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
493
#elif defined(TARGET_I386) && defined(USE_CODE_COPY)
494
{
495
    if (!(tb->cflags & CF_CODE_COPY)) {
496
        if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) {
497
            save_native_fp_state(env);
498
        }
499
        gen_func();
500
    } else {
501
        if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) {
502
            restore_native_fp_state(env);
503
        }
504
        /* we work with native eflags */
505
        CC_SRC = cc_table[CC_OP].compute_all();
506
        CC_OP = CC_OP_EFLAGS;
507
        asm(".globl exec_loop\n"
508
            "\n"
509
            "debug1:\n"
510
            "    pushl %%ebp\n"
511
            "    fs movl %10, %9\n"
512
            "    fs movl %11, %%eax\n"
513
            "    andl $0x400, %%eax\n"
514
            "    fs orl %8, %%eax\n"
515
            "    pushl %%eax\n"
516
            "    popf\n"
517
            "    fs movl %%esp, %12\n"
518
            "    fs movl %0, %%eax\n"
519
            "    fs movl %1, %%ecx\n"
520
            "    fs movl %2, %%edx\n"
521
            "    fs movl %3, %%ebx\n"
522
            "    fs movl %4, %%esp\n"
523
            "    fs movl %5, %%ebp\n"
524
            "    fs movl %6, %%esi\n"
525
            "    fs movl %7, %%edi\n"
526
            "    fs jmp *%9\n"
527
            "exec_loop:\n"
528
            "    fs movl %%esp, %4\n"
529
            "    fs movl %12, %%esp\n"
530
            "    fs movl %%eax, %0\n"
531
            "    fs movl %%ecx, %1\n"
532
            "    fs movl %%edx, %2\n"
533
            "    fs movl %%ebx, %3\n"
534
            "    fs movl %%ebp, %5\n"
535
            "    fs movl %%esi, %6\n"
536
            "    fs movl %%edi, %7\n"
537
            "    pushf\n"
538
            "    popl %%eax\n"
539
            "    movl %%eax, %%ecx\n"
540
            "    andl $0x400, %%ecx\n"
541
            "    shrl $9, %%ecx\n"
542
            "    andl $0x8d5, %%eax\n"
543
            "    fs movl %%eax, %8\n"
544
            "    movl $1, %%eax\n"
545
            "    subl %%ecx, %%eax\n"
546
            "    fs movl %%eax, %11\n"
547
            "    fs movl %9, %%ebx\n" /* get T0 value */
548
            "    popl %%ebp\n"
549
            :
550
            : "m" (*(uint8_t *)offsetof(CPUState, regs[0])),
551
            "m" (*(uint8_t *)offsetof(CPUState, regs[1])),
552
            "m" (*(uint8_t *)offsetof(CPUState, regs[2])),
553
            "m" (*(uint8_t *)offsetof(CPUState, regs[3])),
554
            "m" (*(uint8_t *)offsetof(CPUState, regs[4])),
555
            "m" (*(uint8_t *)offsetof(CPUState, regs[5])),
556
            "m" (*(uint8_t *)offsetof(CPUState, regs[6])),
557
            "m" (*(uint8_t *)offsetof(CPUState, regs[7])),
558
            "m" (*(uint8_t *)offsetof(CPUState, cc_src)),
559
            "m" (*(uint8_t *)offsetof(CPUState, tmp0)),
560
            "a" (gen_func),
561
            "m" (*(uint8_t *)offsetof(CPUState, df)),
562
            "m" (*(uint8_t *)offsetof(CPUState, saved_esp))
563
            : "%ecx", "%edx"
564
            );
565
    }
566
}
567
#else
568
                gen_func();
569
#endif
570
                env->current_tb = NULL;
571
                /* reset soft MMU for next block (it can currently
572
                   only be set by a memory fault) */
573
#if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
574
                if (env->hflags & HF_SOFTMMU_MASK) {
575
                    env->hflags &= ~HF_SOFTMMU_MASK;
576
                    /* do not allow linking to another block */
577
                    T0 = 0;
578
                }
579
#endif
580
            }
581
        } else {
582
            env_to_regs();
583
        }
584
    } /* for(;;) */
585

    
586

    
587
#if defined(TARGET_I386)
588
#if defined(USE_CODE_COPY)
589
    if (env->native_fp_regs) {
590
        save_native_fp_state(env);
591
    }
592
#endif
593
    /* restore flags in standard format */
594
    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
595

    
596
    /* restore global registers */
597
#ifdef reg_EAX
598
    EAX = saved_EAX;
599
#endif
600
#ifdef reg_ECX
601
    ECX = saved_ECX;
602
#endif
603
#ifdef reg_EDX
604
    EDX = saved_EDX;
605
#endif
606
#ifdef reg_EBX
607
    EBX = saved_EBX;
608
#endif
609
#ifdef reg_ESP
610
    ESP = saved_ESP;
611
#endif
612
#ifdef reg_EBP
613
    EBP = saved_EBP;
614
#endif
615
#ifdef reg_ESI
616
    ESI = saved_ESI;
617
#endif
618
#ifdef reg_EDI
619
    EDI = saved_EDI;
620
#endif
621
#elif defined(TARGET_ARM)
622
    env->cpsr = compute_cpsr();
623
    /* XXX: Save/restore host fpu exception state?.  */
624
#elif defined(TARGET_SPARC)
625
#elif defined(TARGET_PPC)
626
#else
627
#error unsupported target CPU
628
#endif
629
#ifdef __sparc__
630
    asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
631
#endif
632
    T0 = saved_T0;
633
    T1 = saved_T1;
634
    T2 = saved_T2;
635
    env = saved_env;
636
    return ret;
637
}
638

    
639
/* must only be called from the generated code as an exception can be
640
   generated */
641
void tb_invalidate_page_range(target_ulong start, target_ulong end)
642
{
643
    /* XXX: cannot enable it yet because it yields to MMU exception
644
       where NIP != read address on PowerPC */
645
#if 0
646
    target_ulong phys_addr;
647
    phys_addr = get_phys_addr_code(env, start);
648
    tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
649
#endif
650
}
651

    
652
#if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
653

    
654
void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
655
{
656
    CPUX86State *saved_env;
657

    
658
    saved_env = env;
659
    env = s;
660
    if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
661
        selector &= 0xffff;
662
        cpu_x86_load_seg_cache(env, seg_reg, selector, 
663
                               (selector << 4), 0xffff, 0);
664
    } else {
665
        load_seg(seg_reg, selector);
666
    }
667
    env = saved_env;
668
}
669

    
670
void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
671
{
672
    CPUX86State *saved_env;
673

    
674
    saved_env = env;
675
    env = s;
676
    
677
    helper_fsave((target_ulong)ptr, data32);
678

    
679
    env = saved_env;
680
}
681

    
682
void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
683
{
684
    CPUX86State *saved_env;
685

    
686
    saved_env = env;
687
    env = s;
688
    
689
    helper_frstor((target_ulong)ptr, data32);
690

    
691
    env = saved_env;
692
}
693

    
694
#endif /* TARGET_I386 */
695

    
696
#if !defined(CONFIG_SOFTMMU)
697

    
698
#if defined(TARGET_I386)
699

    
700
/* 'pc' is the host PC at which the exception was raised. 'address' is
701
   the effective address of the memory exception. 'is_write' is 1 if a
702
   write caused the exception and otherwise 0'. 'old_set' is the
703
   signal set which should be restored */
704
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
705
                                    int is_write, sigset_t *old_set, 
706
                                    void *puc)
707
{
708
    TranslationBlock *tb;
709
    int ret;
710

    
711
    if (cpu_single_env)
712
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
713
#if defined(DEBUG_SIGNAL)
714
    qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
715
                pc, address, is_write, *(unsigned long *)old_set);
716
#endif
717
    /* XXX: locking issue */
718
    if (is_write && page_unprotect(address, pc, puc)) {
719
        return 1;
720
    }
721

    
722
    /* see if it is an MMU fault */
723
    ret = cpu_x86_handle_mmu_fault(env, address, is_write, 
724
                                   ((env->hflags & HF_CPL_MASK) == 3), 0);
725
    if (ret < 0)
726
        return 0; /* not an MMU fault */
727
    if (ret == 0)
728
        return 1; /* the MMU fault was handled without causing real CPU fault */
729
    /* now we have a real cpu fault */
730
    tb = tb_find_pc(pc);
731
    if (tb) {
732
        /* the PC is inside the translated code. It means that we have
733
           a virtual CPU fault */
734
        cpu_restore_state(tb, env, pc, puc);
735
    }
736
    if (ret == 1) {
737
#if 0
738
        printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n", 
739
               env->eip, env->cr[2], env->error_code);
740
#endif
741
        /* we restore the process signal mask as the sigreturn should
742
           do it (XXX: use sigsetjmp) */
743
        sigprocmask(SIG_SETMASK, old_set, NULL);
744
        raise_exception_err(EXCP0E_PAGE, env->error_code);
745
    } else {
746
        /* activate soft MMU for this block */
747
        env->hflags |= HF_SOFTMMU_MASK;
748
        cpu_resume_from_signal(env, puc);
749
    }
750
    /* never comes here */
751
    return 1;
752
}
753

    
754
#elif defined(TARGET_ARM)
755
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
756
                                    int is_write, sigset_t *old_set,
757
                                    void *puc)
758
{
759
    TranslationBlock *tb;
760
    int ret;
761

    
762
    if (cpu_single_env)
763
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
764
#if defined(DEBUG_SIGNAL)
765
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
766
           pc, address, is_write, *(unsigned long *)old_set);
767
#endif
768
    /* XXX: locking issue */
769
    if (is_write && page_unprotect(address, pc, puc)) {
770
        return 1;
771
    }
772
    /* see if it is an MMU fault */
773
    ret = cpu_arm_handle_mmu_fault(env, address, is_write, 1, 0);
774
    if (ret < 0)
775
        return 0; /* not an MMU fault */
776
    if (ret == 0)
777
        return 1; /* the MMU fault was handled without causing real CPU fault */
778
    /* now we have a real cpu fault */
779
    tb = tb_find_pc(pc);
780
    if (tb) {
781
        /* the PC is inside the translated code. It means that we have
782
           a virtual CPU fault */
783
        cpu_restore_state(tb, env, pc, puc);
784
    }
785
    /* we restore the process signal mask as the sigreturn should
786
       do it (XXX: use sigsetjmp) */
787
    sigprocmask(SIG_SETMASK, old_set, NULL);
788
    cpu_loop_exit();
789
}
790
#elif defined(TARGET_SPARC)
791
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
792
                                    int is_write, sigset_t *old_set,
793
                                    void *puc)
794
{
795
    TranslationBlock *tb;
796
    int ret;
797

    
798
    if (cpu_single_env)
799
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
800
#if defined(DEBUG_SIGNAL)
801
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
802
           pc, address, is_write, *(unsigned long *)old_set);
803
#endif
804
    /* XXX: locking issue */
805
    if (is_write && page_unprotect(address, pc, puc)) {
806
        return 1;
807
    }
808
    /* see if it is an MMU fault */
809
    ret = cpu_sparc_handle_mmu_fault(env, address, is_write, 1, 0);
810
    if (ret < 0)
811
        return 0; /* not an MMU fault */
812
    if (ret == 0)
813
        return 1; /* the MMU fault was handled without causing real CPU fault */
814
    /* now we have a real cpu fault */
815
    tb = tb_find_pc(pc);
816
    if (tb) {
817
        /* the PC is inside the translated code. It means that we have
818
           a virtual CPU fault */
819
        cpu_restore_state(tb, env, pc, puc);
820
    }
821
    /* we restore the process signal mask as the sigreturn should
822
       do it (XXX: use sigsetjmp) */
823
    sigprocmask(SIG_SETMASK, old_set, NULL);
824
    cpu_loop_exit();
825
}
826
#elif defined (TARGET_PPC)
827
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
828
                                    int is_write, sigset_t *old_set,
829
                                    void *puc)
830
{
831
    TranslationBlock *tb;
832
    int ret;
833
    
834
    if (cpu_single_env)
835
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
836
#if defined(DEBUG_SIGNAL)
837
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
838
           pc, address, is_write, *(unsigned long *)old_set);
839
#endif
840
    /* XXX: locking issue */
841
    if (is_write && page_unprotect(address, pc, puc)) {
842
        return 1;
843
    }
844

    
845
    /* see if it is an MMU fault */
846
    ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
847
    if (ret < 0)
848
        return 0; /* not an MMU fault */
849
    if (ret == 0)
850
        return 1; /* the MMU fault was handled without causing real CPU fault */
851

    
852
    /* now we have a real cpu fault */
853
    tb = tb_find_pc(pc);
854
    if (tb) {
855
        /* the PC is inside the translated code. It means that we have
856
           a virtual CPU fault */
857
        cpu_restore_state(tb, env, pc, puc);
858
    }
859
    if (ret == 1) {
860
#if 0
861
        printf("PF exception: NIP=0x%08x error=0x%x %p\n", 
862
               env->nip, env->error_code, tb);
863
#endif
864
    /* we restore the process signal mask as the sigreturn should
865
       do it (XXX: use sigsetjmp) */
866
        sigprocmask(SIG_SETMASK, old_set, NULL);
867
        do_raise_exception_err(env->exception_index, env->error_code);
868
    } else {
869
        /* activate soft MMU for this block */
870
        cpu_resume_from_signal(env, puc);
871
    }
872
    /* never comes here */
873
    return 1;
874
}
875
#else
876
#error unsupported target CPU
877
#endif
878

    
879
#if defined(__i386__)
880

    
881
#if defined(USE_CODE_COPY)
882
static void cpu_send_trap(unsigned long pc, int trap, 
883
                          struct ucontext *uc)
884
{
885
    TranslationBlock *tb;
886

    
887
    if (cpu_single_env)
888
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
889
    /* now we have a real cpu fault */
890
    tb = tb_find_pc(pc);
891
    if (tb) {
892
        /* the PC is inside the translated code. It means that we have
893
           a virtual CPU fault */
894
        cpu_restore_state(tb, env, pc, uc);
895
    }
896
    sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
897
    raise_exception_err(trap, env->error_code);
898
}
899
#endif
900

    
901
int cpu_signal_handler(int host_signum, struct siginfo *info, 
902
                       void *puc)
903
{
904
    struct ucontext *uc = puc;
905
    unsigned long pc;
906
    int trapno;
907

    
908
#ifndef REG_EIP
909
/* for glibc 2.1 */
910
#define REG_EIP    EIP
911
#define REG_ERR    ERR
912
#define REG_TRAPNO TRAPNO
913
#endif
914
    pc = uc->uc_mcontext.gregs[REG_EIP];
915
    trapno = uc->uc_mcontext.gregs[REG_TRAPNO];
916
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
917
    if (trapno == 0x00 || trapno == 0x05) {
918
        /* send division by zero or bound exception */
919
        cpu_send_trap(pc, trapno, uc);
920
        return 1;
921
    } else
922
#endif
923
        return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
924
                                 trapno == 0xe ? 
925
                                 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
926
                                 &uc->uc_sigmask, puc);
927
}
928

    
929
#elif defined(__x86_64__)
930

    
931
int cpu_signal_handler(int host_signum, struct siginfo *info,
932
                       void *puc)
933
{
934
    struct ucontext *uc = puc;
935
    unsigned long pc;
936

    
937
    pc = uc->uc_mcontext.gregs[REG_RIP];
938
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
939
                             uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ? 
940
                             (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
941
                             &uc->uc_sigmask, puc);
942
}
943

    
944
#elif defined(__powerpc__)
945

    
946
/***********************************************************************
947
 * signal context platform-specific definitions
948
 * From Wine
949
 */
950
#ifdef linux
951
/* All Registers access - only for local access */
952
# define REG_sig(reg_name, context)                ((context)->uc_mcontext.regs->reg_name)
953
/* Gpr Registers access  */
954
# define GPR_sig(reg_num, context)                REG_sig(gpr[reg_num], context)
955
# define IAR_sig(context)                        REG_sig(nip, context)        /* Program counter */
956
# define MSR_sig(context)                        REG_sig(msr, context)   /* Machine State Register (Supervisor) */
957
# define CTR_sig(context)                        REG_sig(ctr, context)   /* Count register */
958
# define XER_sig(context)                        REG_sig(xer, context) /* User's integer exception register */
959
# define LR_sig(context)                        REG_sig(link, context) /* Link register */
960
# define CR_sig(context)                        REG_sig(ccr, context) /* Condition register */
961
/* Float Registers access  */
962
# define FLOAT_sig(reg_num, context)                (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
963
# define FPSCR_sig(context)                        (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
964
/* Exception Registers access */
965
# define DAR_sig(context)                        REG_sig(dar, context)
966
# define DSISR_sig(context)                        REG_sig(dsisr, context)
967
# define TRAP_sig(context)                        REG_sig(trap, context)
968
#endif /* linux */
969

    
970
#ifdef __APPLE__
971
# include <sys/ucontext.h>
972
typedef struct ucontext SIGCONTEXT;
973
/* All Registers access - only for local access */
974
# define REG_sig(reg_name, context)                ((context)->uc_mcontext->ss.reg_name)
975
# define FLOATREG_sig(reg_name, context)        ((context)->uc_mcontext->fs.reg_name)
976
# define EXCEPREG_sig(reg_name, context)        ((context)->uc_mcontext->es.reg_name)
977
# define VECREG_sig(reg_name, context)                ((context)->uc_mcontext->vs.reg_name)
978
/* Gpr Registers access */
979
# define GPR_sig(reg_num, context)                REG_sig(r##reg_num, context)
980
# define IAR_sig(context)                        REG_sig(srr0, context)        /* Program counter */
981
# define MSR_sig(context)                        REG_sig(srr1, context)  /* Machine State Register (Supervisor) */
982
# define CTR_sig(context)                        REG_sig(ctr, context)
983
# define XER_sig(context)                        REG_sig(xer, context) /* Link register */
984
# define LR_sig(context)                        REG_sig(lr, context)  /* User's integer exception register */
985
# define CR_sig(context)                        REG_sig(cr, context)  /* Condition register */
986
/* Float Registers access */
987
# define FLOAT_sig(reg_num, context)                FLOATREG_sig(fpregs[reg_num], context)
988
# define FPSCR_sig(context)                        ((double)FLOATREG_sig(fpscr, context))
989
/* Exception Registers access */
990
# define DAR_sig(context)                        EXCEPREG_sig(dar, context)     /* Fault registers for coredump */
991
# define DSISR_sig(context)                        EXCEPREG_sig(dsisr, context)
992
# define TRAP_sig(context)                        EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
993
#endif /* __APPLE__ */
994

    
995
int cpu_signal_handler(int host_signum, struct siginfo *info, 
996
                       void *puc)
997
{
998
    struct ucontext *uc = puc;
999
    unsigned long pc;
1000
    int is_write;
1001

    
1002
    pc = IAR_sig(uc);
1003
    is_write = 0;
1004
#if 0
1005
    /* ppc 4xx case */
1006
    if (DSISR_sig(uc) & 0x00800000)
1007
        is_write = 1;
1008
#else
1009
    if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
1010
        is_write = 1;
1011
#endif
1012
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1013
                             is_write, &uc->uc_sigmask, puc);
1014
}
1015

    
1016
#elif defined(__alpha__)
1017

    
1018
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1019
                           void *puc)
1020
{
1021
    struct ucontext *uc = puc;
1022
    uint32_t *pc = uc->uc_mcontext.sc_pc;
1023
    uint32_t insn = *pc;
1024
    int is_write = 0;
1025

    
1026
    /* XXX: need kernel patch to get write flag faster */
1027
    switch (insn >> 26) {
1028
    case 0x0d: // stw
1029
    case 0x0e: // stb
1030
    case 0x0f: // stq_u
1031
    case 0x24: // stf
1032
    case 0x25: // stg
1033
    case 0x26: // sts
1034
    case 0x27: // stt
1035
    case 0x2c: // stl
1036
    case 0x2d: // stq
1037
    case 0x2e: // stl_c
1038
    case 0x2f: // stq_c
1039
        is_write = 1;
1040
    }
1041

    
1042
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1043
                             is_write, &uc->uc_sigmask, puc);
1044
}
1045
#elif defined(__sparc__)
1046

    
1047
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1048
                       void *puc)
1049
{
1050
    uint32_t *regs = (uint32_t *)(info + 1);
1051
    void *sigmask = (regs + 20);
1052
    unsigned long pc;
1053
    int is_write;
1054
    uint32_t insn;
1055
    
1056
    /* XXX: is there a standard glibc define ? */
1057
    pc = regs[1];
1058
    /* XXX: need kernel patch to get write flag faster */
1059
    is_write = 0;
1060
    insn = *(uint32_t *)pc;
1061
    if ((insn >> 30) == 3) {
1062
      switch((insn >> 19) & 0x3f) {
1063
      case 0x05: // stb
1064
      case 0x06: // sth
1065
      case 0x04: // st
1066
      case 0x07: // std
1067
      case 0x24: // stf
1068
      case 0x27: // stdf
1069
      case 0x25: // stfsr
1070
        is_write = 1;
1071
        break;
1072
      }
1073
    }
1074
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1075
                             is_write, sigmask, NULL);
1076
}
1077

    
1078
#elif defined(__arm__)
1079

    
1080
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1081
                       void *puc)
1082
{
1083
    struct ucontext *uc = puc;
1084
    unsigned long pc;
1085
    int is_write;
1086
    
1087
    pc = uc->uc_mcontext.gregs[R15];
1088
    /* XXX: compute is_write */
1089
    is_write = 0;
1090
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1091
                             is_write,
1092
                             &uc->uc_sigmask);
1093
}
1094

    
1095
#elif defined(__mc68000)
1096

    
1097
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1098
                       void *puc)
1099
{
1100
    struct ucontext *uc = puc;
1101
    unsigned long pc;
1102
    int is_write;
1103
    
1104
    pc = uc->uc_mcontext.gregs[16];
1105
    /* XXX: compute is_write */
1106
    is_write = 0;
1107
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1108
                             is_write,
1109
                             &uc->uc_sigmask, puc);
1110
}
1111

    
1112
#else
1113

    
1114
#error host CPU specific signal handler needed
1115

    
1116
#endif
1117

    
1118
#endif /* !defined(CONFIG_SOFTMMU) */