Statistics
| Branch: | Revision:

root / qemu-doc.texi @ ba5e5090

History | View | Annotate | Download (66.6 kB)

1 386405f7 bellard
\input texinfo @c -*- texinfo -*-
2 debc7065 bellard
@c %**start of header
3 debc7065 bellard
@setfilename qemu-doc.info
4 8f40c388 bellard
@settitle QEMU Emulator User Documentation
5 debc7065 bellard
@exampleindent 0
6 debc7065 bellard
@paragraphindent 0
7 debc7065 bellard
@c %**end of header
8 386405f7 bellard
9 0806e3f6 bellard
@iftex
10 386405f7 bellard
@titlepage
11 386405f7 bellard
@sp 7
12 8f40c388 bellard
@center @titlefont{QEMU Emulator}
13 debc7065 bellard
@sp 1
14 debc7065 bellard
@center @titlefont{User Documentation}
15 386405f7 bellard
@sp 3
16 386405f7 bellard
@end titlepage
17 0806e3f6 bellard
@end iftex
18 386405f7 bellard
19 debc7065 bellard
@ifnottex
20 debc7065 bellard
@node Top
21 debc7065 bellard
@top
22 debc7065 bellard
23 debc7065 bellard
@menu
24 debc7065 bellard
* Introduction::
25 debc7065 bellard
* Installation::
26 debc7065 bellard
* QEMU PC System emulator::
27 debc7065 bellard
* QEMU System emulator for non PC targets::
28 83195237 bellard
* QEMU User space emulator::
29 debc7065 bellard
* compilation:: Compilation from the sources
30 debc7065 bellard
* Index::
31 debc7065 bellard
@end menu
32 debc7065 bellard
@end ifnottex
33 debc7065 bellard
34 debc7065 bellard
@contents
35 debc7065 bellard
36 debc7065 bellard
@node Introduction
37 386405f7 bellard
@chapter Introduction
38 386405f7 bellard
39 debc7065 bellard
@menu
40 debc7065 bellard
* intro_features:: Features
41 debc7065 bellard
@end menu
42 debc7065 bellard
43 debc7065 bellard
@node intro_features
44 322d0c66 bellard
@section Features
45 386405f7 bellard
46 1f673135 bellard
QEMU is a FAST! processor emulator using dynamic translation to
47 1f673135 bellard
achieve good emulation speed.
48 1eb20527 bellard
49 1eb20527 bellard
QEMU has two operating modes:
50 0806e3f6 bellard
51 0806e3f6 bellard
@itemize @minus
52 0806e3f6 bellard
53 5fafdf24 ths
@item
54 1f673135 bellard
Full system emulation. In this mode, QEMU emulates a full system (for
55 3f9f3aa1 bellard
example a PC), including one or several processors and various
56 3f9f3aa1 bellard
peripherals. It can be used to launch different Operating Systems
57 3f9f3aa1 bellard
without rebooting the PC or to debug system code.
58 1eb20527 bellard
59 5fafdf24 ths
@item
60 83195237 bellard
User mode emulation. In this mode, QEMU can launch
61 83195237 bellard
processes compiled for one CPU on another CPU. It can be used to
62 1f673135 bellard
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63 1f673135 bellard
to ease cross-compilation and cross-debugging.
64 1eb20527 bellard
65 1eb20527 bellard
@end itemize
66 1eb20527 bellard
67 7c3fc84d bellard
QEMU can run without an host kernel driver and yet gives acceptable
68 5fafdf24 ths
performance.
69 322d0c66 bellard
70 52c00a5f bellard
For system emulation, the following hardware targets are supported:
71 52c00a5f bellard
@itemize
72 9d0a8e6f bellard
@item PC (x86 or x86_64 processor)
73 3f9f3aa1 bellard
@item ISA PC (old style PC without PCI bus)
74 52c00a5f bellard
@item PREP (PowerPC processor)
75 d45952a0 aurel32
@item G3 Beige PowerMac (PowerPC processor)
76 9d0a8e6f bellard
@item Mac99 PowerMac (PowerPC processor, in progress)
77 ee76f82e blueswir1
@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
78 c7ba218d blueswir1
@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
79 d9aedc32 ths
@item Malta board (32-bit and 64-bit MIPS processors)
80 88cb0a02 aurel32
@item MIPS Magnum (64-bit MIPS processor)
81 9ee6e8bb pbrook
@item ARM Integrator/CP (ARM)
82 9ee6e8bb pbrook
@item ARM Versatile baseboard (ARM)
83 0ef849d7 Paul Brook
@item ARM RealView Emulation/Platform baseboard (ARM)
84 ef4c3856 balrog
@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
85 9ee6e8bb pbrook
@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
86 9ee6e8bb pbrook
@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
87 707e011b pbrook
@item Freescale MCF5208EVB (ColdFire V2).
88 209a4e69 pbrook
@item Arnewsh MCF5206 evaluation board (ColdFire V2).
89 02645926 balrog
@item Palm Tungsten|E PDA (OMAP310 processor)
90 c30bb264 balrog
@item N800 and N810 tablets (OMAP2420 processor)
91 57cd6e97 balrog
@item MusicPal (MV88W8618 ARM processor)
92 ef4c3856 balrog
@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
93 ef4c3856 balrog
@item Siemens SX1 smartphone (OMAP310 processor)
94 4af39611 Paul Brook
@item Syborg SVP base model (ARM Cortex-A8).
95 48c50a62 Edgar E. Iglesias
@item AXIS-Devboard88 (CRISv32 ETRAX-FS).
96 48c50a62 Edgar E. Iglesias
@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
97 52c00a5f bellard
@end itemize
98 386405f7 bellard
99 48c50a62 Edgar E. Iglesias
For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
100 0806e3f6 bellard
101 debc7065 bellard
@node Installation
102 5b9f457a bellard
@chapter Installation
103 5b9f457a bellard
104 15a34c63 bellard
If you want to compile QEMU yourself, see @ref{compilation}.
105 15a34c63 bellard
106 debc7065 bellard
@menu
107 debc7065 bellard
* install_linux::   Linux
108 debc7065 bellard
* install_windows:: Windows
109 debc7065 bellard
* install_mac::     Macintosh
110 debc7065 bellard
@end menu
111 debc7065 bellard
112 debc7065 bellard
@node install_linux
113 1f673135 bellard
@section Linux
114 1f673135 bellard
115 7c3fc84d bellard
If a precompiled package is available for your distribution - you just
116 7c3fc84d bellard
have to install it. Otherwise, see @ref{compilation}.
117 5b9f457a bellard
118 debc7065 bellard
@node install_windows
119 1f673135 bellard
@section Windows
120 8cd0ac2f bellard
121 15a34c63 bellard
Download the experimental binary installer at
122 debc7065 bellard
@url{http://www.free.oszoo.org/@/download.html}.
123 d691f669 bellard
124 debc7065 bellard
@node install_mac
125 1f673135 bellard
@section Mac OS X
126 d691f669 bellard
127 15a34c63 bellard
Download the experimental binary installer at
128 debc7065 bellard
@url{http://www.free.oszoo.org/@/download.html}.
129 df0f11a0 bellard
130 debc7065 bellard
@node QEMU PC System emulator
131 3f9f3aa1 bellard
@chapter QEMU PC System emulator
132 1eb20527 bellard
133 debc7065 bellard
@menu
134 debc7065 bellard
* pcsys_introduction:: Introduction
135 debc7065 bellard
* pcsys_quickstart::   Quick Start
136 debc7065 bellard
* sec_invocation::     Invocation
137 debc7065 bellard
* pcsys_keys::         Keys
138 debc7065 bellard
* pcsys_monitor::      QEMU Monitor
139 debc7065 bellard
* disk_images::        Disk Images
140 debc7065 bellard
* pcsys_network::      Network emulation
141 debc7065 bellard
* direct_linux_boot::  Direct Linux Boot
142 debc7065 bellard
* pcsys_usb::          USB emulation
143 f858dcae ths
* vnc_security::       VNC security
144 debc7065 bellard
* gdb_usage::          GDB usage
145 debc7065 bellard
* pcsys_os_specific::  Target OS specific information
146 debc7065 bellard
@end menu
147 debc7065 bellard
148 debc7065 bellard
@node pcsys_introduction
149 0806e3f6 bellard
@section Introduction
150 0806e3f6 bellard
151 0806e3f6 bellard
@c man begin DESCRIPTION
152 0806e3f6 bellard
153 3f9f3aa1 bellard
The QEMU PC System emulator simulates the
154 3f9f3aa1 bellard
following peripherals:
155 0806e3f6 bellard
156 0806e3f6 bellard
@itemize @minus
157 5fafdf24 ths
@item
158 15a34c63 bellard
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
159 0806e3f6 bellard
@item
160 15a34c63 bellard
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
161 15a34c63 bellard
extensions (hardware level, including all non standard modes).
162 0806e3f6 bellard
@item
163 0806e3f6 bellard
PS/2 mouse and keyboard
164 5fafdf24 ths
@item
165 15a34c63 bellard
2 PCI IDE interfaces with hard disk and CD-ROM support
166 1f673135 bellard
@item
167 1f673135 bellard
Floppy disk
168 5fafdf24 ths
@item
169 3a2eeac0 Stefan Weil
PCI and ISA network adapters
170 0806e3f6 bellard
@item
171 05d5818c bellard
Serial ports
172 05d5818c bellard
@item
173 c0fe3827 bellard
Creative SoundBlaster 16 sound card
174 c0fe3827 bellard
@item
175 c0fe3827 bellard
ENSONIQ AudioPCI ES1370 sound card
176 c0fe3827 bellard
@item
177 e5c9a13e balrog
Intel 82801AA AC97 Audio compatible sound card
178 e5c9a13e balrog
@item
179 c0fe3827 bellard
Adlib(OPL2) - Yamaha YM3812 compatible chip
180 b389dbfb bellard
@item
181 26463dbc balrog
Gravis Ultrasound GF1 sound card
182 26463dbc balrog
@item
183 cc53d26d malc
CS4231A compatible sound card
184 cc53d26d malc
@item
185 b389dbfb bellard
PCI UHCI USB controller and a virtual USB hub.
186 0806e3f6 bellard
@end itemize
187 0806e3f6 bellard
188 3f9f3aa1 bellard
SMP is supported with up to 255 CPUs.
189 3f9f3aa1 bellard
190 1d1f8c33 malc
Note that adlib, gus and cs4231a are only available when QEMU was
191 1d1f8c33 malc
configured with --audio-card-list option containing the name(s) of
192 e5178e8d malc
required card(s).
193 c0fe3827 bellard
194 15a34c63 bellard
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
195 15a34c63 bellard
VGA BIOS.
196 15a34c63 bellard
197 c0fe3827 bellard
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
198 c0fe3827 bellard
199 26463dbc balrog
QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
200 26463dbc balrog
by Tibor "TS" Sch?tz.
201 423d65f4 balrog
202 720036a5 malc
Not that, by default, GUS shares IRQ(7) with parallel ports and so
203 720036a5 malc
qemu must be told to not have parallel ports to have working GUS
204 720036a5 malc
205 720036a5 malc
@example
206 720036a5 malc
qemu dos.img -soundhw gus -parallel none
207 720036a5 malc
@end example
208 720036a5 malc
209 720036a5 malc
Alternatively:
210 720036a5 malc
@example
211 720036a5 malc
qemu dos.img -device gus,irq=5
212 720036a5 malc
@end example
213 720036a5 malc
214 720036a5 malc
Or some other unclaimed IRQ.
215 720036a5 malc
216 cc53d26d malc
CS4231A is the chip used in Windows Sound System and GUSMAX products
217 cc53d26d malc
218 0806e3f6 bellard
@c man end
219 0806e3f6 bellard
220 debc7065 bellard
@node pcsys_quickstart
221 1eb20527 bellard
@section Quick Start
222 1eb20527 bellard
223 285dc330 bellard
Download and uncompress the linux image (@file{linux.img}) and type:
224 0806e3f6 bellard
225 0806e3f6 bellard
@example
226 285dc330 bellard
qemu linux.img
227 0806e3f6 bellard
@end example
228 0806e3f6 bellard
229 0806e3f6 bellard
Linux should boot and give you a prompt.
230 0806e3f6 bellard
231 6cc721cf bellard
@node sec_invocation
232 ec410fc9 bellard
@section Invocation
233 ec410fc9 bellard
234 ec410fc9 bellard
@example
235 0806e3f6 bellard
@c man begin SYNOPSIS
236 89dfe898 ths
usage: qemu [options] [@var{disk_image}]
237 0806e3f6 bellard
@c man end
238 ec410fc9 bellard
@end example
239 ec410fc9 bellard
240 0806e3f6 bellard
@c man begin OPTIONS
241 d2c639d6 blueswir1
@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
242 d2c639d6 blueswir1
targets do not need a disk image.
243 ec410fc9 bellard
244 5824d651 blueswir1
@include qemu-options.texi
245 ec410fc9 bellard
246 3e11db9a bellard
@c man end
247 3e11db9a bellard
248 debc7065 bellard
@node pcsys_keys
249 3e11db9a bellard
@section Keys
250 3e11db9a bellard
251 3e11db9a bellard
@c man begin OPTIONS
252 3e11db9a bellard
253 a1b74fe8 bellard
During the graphical emulation, you can use the following keys:
254 a1b74fe8 bellard
@table @key
255 f9859310 bellard
@item Ctrl-Alt-f
256 a1b74fe8 bellard
Toggle full screen
257 a0a821a4 bellard
258 c4a735f9 malc
@item Ctrl-Alt-u
259 c4a735f9 malc
Restore the screen's un-scaled dimensions
260 c4a735f9 malc
261 f9859310 bellard
@item Ctrl-Alt-n
262 a0a821a4 bellard
Switch to virtual console 'n'. Standard console mappings are:
263 a0a821a4 bellard
@table @emph
264 a0a821a4 bellard
@item 1
265 a0a821a4 bellard
Target system display
266 a0a821a4 bellard
@item 2
267 a0a821a4 bellard
Monitor
268 a0a821a4 bellard
@item 3
269 a0a821a4 bellard
Serial port
270 a1b74fe8 bellard
@end table
271 a1b74fe8 bellard
272 f9859310 bellard
@item Ctrl-Alt
273 a0a821a4 bellard
Toggle mouse and keyboard grab.
274 a0a821a4 bellard
@end table
275 a0a821a4 bellard
276 3e11db9a bellard
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
277 3e11db9a bellard
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
278 3e11db9a bellard
279 a0a821a4 bellard
During emulation, if you are using the @option{-nographic} option, use
280 a0a821a4 bellard
@key{Ctrl-a h} to get terminal commands:
281 ec410fc9 bellard
282 ec410fc9 bellard
@table @key
283 a1b74fe8 bellard
@item Ctrl-a h
284 d2c639d6 blueswir1
@item Ctrl-a ?
285 ec410fc9 bellard
Print this help
286 3b46e624 ths
@item Ctrl-a x
287 366dfc52 ths
Exit emulator
288 3b46e624 ths
@item Ctrl-a s
289 1f47a922 bellard
Save disk data back to file (if -snapshot)
290 20d8a3ed ths
@item Ctrl-a t
291 d2c639d6 blueswir1
Toggle console timestamps
292 a1b74fe8 bellard
@item Ctrl-a b
293 1f673135 bellard
Send break (magic sysrq in Linux)
294 a1b74fe8 bellard
@item Ctrl-a c
295 1f673135 bellard
Switch between console and monitor
296 a1b74fe8 bellard
@item Ctrl-a Ctrl-a
297 a1b74fe8 bellard
Send Ctrl-a
298 ec410fc9 bellard
@end table
299 0806e3f6 bellard
@c man end
300 0806e3f6 bellard
301 0806e3f6 bellard
@ignore
302 0806e3f6 bellard
303 1f673135 bellard
@c man begin SEEALSO
304 1f673135 bellard
The HTML documentation of QEMU for more precise information and Linux
305 1f673135 bellard
user mode emulator invocation.
306 1f673135 bellard
@c man end
307 1f673135 bellard
308 1f673135 bellard
@c man begin AUTHOR
309 1f673135 bellard
Fabrice Bellard
310 1f673135 bellard
@c man end
311 1f673135 bellard
312 1f673135 bellard
@end ignore
313 1f673135 bellard
314 debc7065 bellard
@node pcsys_monitor
315 1f673135 bellard
@section QEMU Monitor
316 1f673135 bellard
317 1f673135 bellard
The QEMU monitor is used to give complex commands to the QEMU
318 1f673135 bellard
emulator. You can use it to:
319 1f673135 bellard
320 1f673135 bellard
@itemize @minus
321 1f673135 bellard
322 1f673135 bellard
@item
323 e598752a ths
Remove or insert removable media images
324 89dfe898 ths
(such as CD-ROM or floppies).
325 1f673135 bellard
326 5fafdf24 ths
@item
327 1f673135 bellard
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
328 1f673135 bellard
from a disk file.
329 1f673135 bellard
330 1f673135 bellard
@item Inspect the VM state without an external debugger.
331 1f673135 bellard
332 1f673135 bellard
@end itemize
333 1f673135 bellard
334 1f673135 bellard
@subsection Commands
335 1f673135 bellard
336 1f673135 bellard
The following commands are available:
337 1f673135 bellard
338 2313086a Blue Swirl
@include qemu-monitor.texi
339 0806e3f6 bellard
340 1f673135 bellard
@subsection Integer expressions
341 1f673135 bellard
342 1f673135 bellard
The monitor understands integers expressions for every integer
343 1f673135 bellard
argument. You can use register names to get the value of specifics
344 1f673135 bellard
CPU registers by prefixing them with @emph{$}.
345 ec410fc9 bellard
346 1f47a922 bellard
@node disk_images
347 1f47a922 bellard
@section Disk Images
348 1f47a922 bellard
349 acd935ef bellard
Since version 0.6.1, QEMU supports many disk image formats, including
350 acd935ef bellard
growable disk images (their size increase as non empty sectors are
351 13a2e80f bellard
written), compressed and encrypted disk images. Version 0.8.3 added
352 13a2e80f bellard
the new qcow2 disk image format which is essential to support VM
353 13a2e80f bellard
snapshots.
354 1f47a922 bellard
355 debc7065 bellard
@menu
356 debc7065 bellard
* disk_images_quickstart::    Quick start for disk image creation
357 debc7065 bellard
* disk_images_snapshot_mode:: Snapshot mode
358 13a2e80f bellard
* vm_snapshots::              VM snapshots
359 debc7065 bellard
* qemu_img_invocation::       qemu-img Invocation
360 975b092b ths
* qemu_nbd_invocation::       qemu-nbd Invocation
361 19cb3738 bellard
* host_drives::               Using host drives
362 debc7065 bellard
* disk_images_fat_images::    Virtual FAT disk images
363 75818250 ths
* disk_images_nbd::           NBD access
364 debc7065 bellard
@end menu
365 debc7065 bellard
366 debc7065 bellard
@node disk_images_quickstart
367 acd935ef bellard
@subsection Quick start for disk image creation
368 acd935ef bellard
369 acd935ef bellard
You can create a disk image with the command:
370 1f47a922 bellard
@example
371 acd935ef bellard
qemu-img create myimage.img mysize
372 1f47a922 bellard
@end example
373 acd935ef bellard
where @var{myimage.img} is the disk image filename and @var{mysize} is its
374 acd935ef bellard
size in kilobytes. You can add an @code{M} suffix to give the size in
375 acd935ef bellard
megabytes and a @code{G} suffix for gigabytes.
376 acd935ef bellard
377 debc7065 bellard
See @ref{qemu_img_invocation} for more information.
378 1f47a922 bellard
379 debc7065 bellard
@node disk_images_snapshot_mode
380 1f47a922 bellard
@subsection Snapshot mode
381 1f47a922 bellard
382 1f47a922 bellard
If you use the option @option{-snapshot}, all disk images are
383 1f47a922 bellard
considered as read only. When sectors in written, they are written in
384 1f47a922 bellard
a temporary file created in @file{/tmp}. You can however force the
385 acd935ef bellard
write back to the raw disk images by using the @code{commit} monitor
386 acd935ef bellard
command (or @key{C-a s} in the serial console).
387 1f47a922 bellard
388 13a2e80f bellard
@node vm_snapshots
389 13a2e80f bellard
@subsection VM snapshots
390 13a2e80f bellard
391 13a2e80f bellard
VM snapshots are snapshots of the complete virtual machine including
392 13a2e80f bellard
CPU state, RAM, device state and the content of all the writable
393 13a2e80f bellard
disks. In order to use VM snapshots, you must have at least one non
394 13a2e80f bellard
removable and writable block device using the @code{qcow2} disk image
395 13a2e80f bellard
format. Normally this device is the first virtual hard drive.
396 13a2e80f bellard
397 13a2e80f bellard
Use the monitor command @code{savevm} to create a new VM snapshot or
398 13a2e80f bellard
replace an existing one. A human readable name can be assigned to each
399 19d36792 bellard
snapshot in addition to its numerical ID.
400 13a2e80f bellard
401 13a2e80f bellard
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
402 13a2e80f bellard
a VM snapshot. @code{info snapshots} lists the available snapshots
403 13a2e80f bellard
with their associated information:
404 13a2e80f bellard
405 13a2e80f bellard
@example
406 13a2e80f bellard
(qemu) info snapshots
407 13a2e80f bellard
Snapshot devices: hda
408 13a2e80f bellard
Snapshot list (from hda):
409 13a2e80f bellard
ID        TAG                 VM SIZE                DATE       VM CLOCK
410 13a2e80f bellard
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
411 13a2e80f bellard
2                                 40M 2006-08-06 12:43:29   00:00:18.633
412 13a2e80f bellard
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
413 13a2e80f bellard
@end example
414 13a2e80f bellard
415 13a2e80f bellard
A VM snapshot is made of a VM state info (its size is shown in
416 13a2e80f bellard
@code{info snapshots}) and a snapshot of every writable disk image.
417 13a2e80f bellard
The VM state info is stored in the first @code{qcow2} non removable
418 13a2e80f bellard
and writable block device. The disk image snapshots are stored in
419 13a2e80f bellard
every disk image. The size of a snapshot in a disk image is difficult
420 13a2e80f bellard
to evaluate and is not shown by @code{info snapshots} because the
421 13a2e80f bellard
associated disk sectors are shared among all the snapshots to save
422 19d36792 bellard
disk space (otherwise each snapshot would need a full copy of all the
423 19d36792 bellard
disk images).
424 13a2e80f bellard
425 13a2e80f bellard
When using the (unrelated) @code{-snapshot} option
426 13a2e80f bellard
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
427 13a2e80f bellard
but they are deleted as soon as you exit QEMU.
428 13a2e80f bellard
429 13a2e80f bellard
VM snapshots currently have the following known limitations:
430 13a2e80f bellard
@itemize
431 5fafdf24 ths
@item
432 13a2e80f bellard
They cannot cope with removable devices if they are removed or
433 13a2e80f bellard
inserted after a snapshot is done.
434 5fafdf24 ths
@item
435 13a2e80f bellard
A few device drivers still have incomplete snapshot support so their
436 13a2e80f bellard
state is not saved or restored properly (in particular USB).
437 13a2e80f bellard
@end itemize
438 13a2e80f bellard
439 acd935ef bellard
@node qemu_img_invocation
440 acd935ef bellard
@subsection @code{qemu-img} Invocation
441 1f47a922 bellard
442 acd935ef bellard
@include qemu-img.texi
443 05efe46e bellard
444 975b092b ths
@node qemu_nbd_invocation
445 975b092b ths
@subsection @code{qemu-nbd} Invocation
446 975b092b ths
447 975b092b ths
@include qemu-nbd.texi
448 975b092b ths
449 19cb3738 bellard
@node host_drives
450 19cb3738 bellard
@subsection Using host drives
451 19cb3738 bellard
452 19cb3738 bellard
In addition to disk image files, QEMU can directly access host
453 19cb3738 bellard
devices. We describe here the usage for QEMU version >= 0.8.3.
454 19cb3738 bellard
455 19cb3738 bellard
@subsubsection Linux
456 19cb3738 bellard
457 19cb3738 bellard
On Linux, you can directly use the host device filename instead of a
458 4be456f1 ths
disk image filename provided you have enough privileges to access
459 19cb3738 bellard
it. For example, use @file{/dev/cdrom} to access to the CDROM or
460 19cb3738 bellard
@file{/dev/fd0} for the floppy.
461 19cb3738 bellard
462 f542086d bellard
@table @code
463 19cb3738 bellard
@item CD
464 19cb3738 bellard
You can specify a CDROM device even if no CDROM is loaded. QEMU has
465 19cb3738 bellard
specific code to detect CDROM insertion or removal. CDROM ejection by
466 19cb3738 bellard
the guest OS is supported. Currently only data CDs are supported.
467 19cb3738 bellard
@item Floppy
468 19cb3738 bellard
You can specify a floppy device even if no floppy is loaded. Floppy
469 19cb3738 bellard
removal is currently not detected accurately (if you change floppy
470 19cb3738 bellard
without doing floppy access while the floppy is not loaded, the guest
471 19cb3738 bellard
OS will think that the same floppy is loaded).
472 19cb3738 bellard
@item Hard disks
473 19cb3738 bellard
Hard disks can be used. Normally you must specify the whole disk
474 19cb3738 bellard
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
475 19cb3738 bellard
see it as a partitioned disk. WARNING: unless you know what you do, it
476 19cb3738 bellard
is better to only make READ-ONLY accesses to the hard disk otherwise
477 19cb3738 bellard
you may corrupt your host data (use the @option{-snapshot} command
478 19cb3738 bellard
line option or modify the device permissions accordingly).
479 19cb3738 bellard
@end table
480 19cb3738 bellard
481 19cb3738 bellard
@subsubsection Windows
482 19cb3738 bellard
483 01781963 bellard
@table @code
484 01781963 bellard
@item CD
485 4be456f1 ths
The preferred syntax is the drive letter (e.g. @file{d:}). The
486 01781963 bellard
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
487 01781963 bellard
supported as an alias to the first CDROM drive.
488 19cb3738 bellard
489 e598752a ths
Currently there is no specific code to handle removable media, so it
490 19cb3738 bellard
is better to use the @code{change} or @code{eject} monitor commands to
491 19cb3738 bellard
change or eject media.
492 01781963 bellard
@item Hard disks
493 89dfe898 ths
Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
494 01781963 bellard
where @var{N} is the drive number (0 is the first hard disk).
495 01781963 bellard
496 01781963 bellard
WARNING: unless you know what you do, it is better to only make
497 01781963 bellard
READ-ONLY accesses to the hard disk otherwise you may corrupt your
498 01781963 bellard
host data (use the @option{-snapshot} command line so that the
499 01781963 bellard
modifications are written in a temporary file).
500 01781963 bellard
@end table
501 01781963 bellard
502 19cb3738 bellard
503 19cb3738 bellard
@subsubsection Mac OS X
504 19cb3738 bellard
505 5fafdf24 ths
@file{/dev/cdrom} is an alias to the first CDROM.
506 19cb3738 bellard
507 e598752a ths
Currently there is no specific code to handle removable media, so it
508 19cb3738 bellard
is better to use the @code{change} or @code{eject} monitor commands to
509 19cb3738 bellard
change or eject media.
510 19cb3738 bellard
511 debc7065 bellard
@node disk_images_fat_images
512 2c6cadd4 bellard
@subsection Virtual FAT disk images
513 2c6cadd4 bellard
514 2c6cadd4 bellard
QEMU can automatically create a virtual FAT disk image from a
515 2c6cadd4 bellard
directory tree. In order to use it, just type:
516 2c6cadd4 bellard
517 5fafdf24 ths
@example
518 2c6cadd4 bellard
qemu linux.img -hdb fat:/my_directory
519 2c6cadd4 bellard
@end example
520 2c6cadd4 bellard
521 2c6cadd4 bellard
Then you access access to all the files in the @file{/my_directory}
522 2c6cadd4 bellard
directory without having to copy them in a disk image or to export
523 2c6cadd4 bellard
them via SAMBA or NFS. The default access is @emph{read-only}.
524 2c6cadd4 bellard
525 2c6cadd4 bellard
Floppies can be emulated with the @code{:floppy:} option:
526 2c6cadd4 bellard
527 5fafdf24 ths
@example
528 2c6cadd4 bellard
qemu linux.img -fda fat:floppy:/my_directory
529 2c6cadd4 bellard
@end example
530 2c6cadd4 bellard
531 2c6cadd4 bellard
A read/write support is available for testing (beta stage) with the
532 2c6cadd4 bellard
@code{:rw:} option:
533 2c6cadd4 bellard
534 5fafdf24 ths
@example
535 2c6cadd4 bellard
qemu linux.img -fda fat:floppy:rw:/my_directory
536 2c6cadd4 bellard
@end example
537 2c6cadd4 bellard
538 2c6cadd4 bellard
What you should @emph{never} do:
539 2c6cadd4 bellard
@itemize
540 2c6cadd4 bellard
@item use non-ASCII filenames ;
541 2c6cadd4 bellard
@item use "-snapshot" together with ":rw:" ;
542 85b2c688 bellard
@item expect it to work when loadvm'ing ;
543 85b2c688 bellard
@item write to the FAT directory on the host system while accessing it with the guest system.
544 2c6cadd4 bellard
@end itemize
545 2c6cadd4 bellard
546 75818250 ths
@node disk_images_nbd
547 75818250 ths
@subsection NBD access
548 75818250 ths
549 75818250 ths
QEMU can access directly to block device exported using the Network Block Device
550 75818250 ths
protocol.
551 75818250 ths
552 75818250 ths
@example
553 75818250 ths
qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
554 75818250 ths
@end example
555 75818250 ths
556 75818250 ths
If the NBD server is located on the same host, you can use an unix socket instead
557 75818250 ths
of an inet socket:
558 75818250 ths
559 75818250 ths
@example
560 75818250 ths
qemu linux.img -hdb nbd:unix:/tmp/my_socket
561 75818250 ths
@end example
562 75818250 ths
563 75818250 ths
In this case, the block device must be exported using qemu-nbd:
564 75818250 ths
565 75818250 ths
@example
566 75818250 ths
qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
567 75818250 ths
@end example
568 75818250 ths
569 75818250 ths
The use of qemu-nbd allows to share a disk between several guests:
570 75818250 ths
@example
571 75818250 ths
qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
572 75818250 ths
@end example
573 75818250 ths
574 75818250 ths
and then you can use it with two guests:
575 75818250 ths
@example
576 75818250 ths
qemu linux1.img -hdb nbd:unix:/tmp/my_socket
577 75818250 ths
qemu linux2.img -hdb nbd:unix:/tmp/my_socket
578 75818250 ths
@end example
579 75818250 ths
580 debc7065 bellard
@node pcsys_network
581 9d4fb82e bellard
@section Network emulation
582 9d4fb82e bellard
583 4be456f1 ths
QEMU can simulate several network cards (PCI or ISA cards on the PC
584 41d03949 bellard
target) and can connect them to an arbitrary number of Virtual Local
585 41d03949 bellard
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
586 41d03949 bellard
VLAN. VLAN can be connected between separate instances of QEMU to
587 4be456f1 ths
simulate large networks. For simpler usage, a non privileged user mode
588 41d03949 bellard
network stack can replace the TAP device to have a basic network
589 41d03949 bellard
connection.
590 41d03949 bellard
591 41d03949 bellard
@subsection VLANs
592 9d4fb82e bellard
593 41d03949 bellard
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
594 41d03949 bellard
connection between several network devices. These devices can be for
595 41d03949 bellard
example QEMU virtual Ethernet cards or virtual Host ethernet devices
596 41d03949 bellard
(TAP devices).
597 9d4fb82e bellard
598 41d03949 bellard
@subsection Using TAP network interfaces
599 41d03949 bellard
600 41d03949 bellard
This is the standard way to connect QEMU to a real network. QEMU adds
601 41d03949 bellard
a virtual network device on your host (called @code{tapN}), and you
602 41d03949 bellard
can then configure it as if it was a real ethernet card.
603 9d4fb82e bellard
604 8f40c388 bellard
@subsubsection Linux host
605 8f40c388 bellard
606 9d4fb82e bellard
As an example, you can download the @file{linux-test-xxx.tar.gz}
607 9d4fb82e bellard
archive and copy the script @file{qemu-ifup} in @file{/etc} and
608 9d4fb82e bellard
configure properly @code{sudo} so that the command @code{ifconfig}
609 9d4fb82e bellard
contained in @file{qemu-ifup} can be executed as root. You must verify
610 41d03949 bellard
that your host kernel supports the TAP network interfaces: the
611 9d4fb82e bellard
device @file{/dev/net/tun} must be present.
612 9d4fb82e bellard
613 ee0f4751 bellard
See @ref{sec_invocation} to have examples of command lines using the
614 ee0f4751 bellard
TAP network interfaces.
615 9d4fb82e bellard
616 8f40c388 bellard
@subsubsection Windows host
617 8f40c388 bellard
618 8f40c388 bellard
There is a virtual ethernet driver for Windows 2000/XP systems, called
619 8f40c388 bellard
TAP-Win32. But it is not included in standard QEMU for Windows,
620 8f40c388 bellard
so you will need to get it separately. It is part of OpenVPN package,
621 8f40c388 bellard
so download OpenVPN from : @url{http://openvpn.net/}.
622 8f40c388 bellard
623 9d4fb82e bellard
@subsection Using the user mode network stack
624 9d4fb82e bellard
625 41d03949 bellard
By using the option @option{-net user} (default configuration if no
626 41d03949 bellard
@option{-net} option is specified), QEMU uses a completely user mode
627 4be456f1 ths
network stack (you don't need root privilege to use the virtual
628 41d03949 bellard
network). The virtual network configuration is the following:
629 9d4fb82e bellard
630 9d4fb82e bellard
@example
631 9d4fb82e bellard
632 41d03949 bellard
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
633 41d03949 bellard
                           |          (10.0.2.2)
634 9d4fb82e bellard
                           |
635 2518bd0d bellard
                           ---->  DNS server (10.0.2.3)
636 3b46e624 ths
                           |
637 2518bd0d bellard
                           ---->  SMB server (10.0.2.4)
638 9d4fb82e bellard
@end example
639 9d4fb82e bellard
640 9d4fb82e bellard
The QEMU VM behaves as if it was behind a firewall which blocks all
641 9d4fb82e bellard
incoming connections. You can use a DHCP client to automatically
642 41d03949 bellard
configure the network in the QEMU VM. The DHCP server assign addresses
643 41d03949 bellard
to the hosts starting from 10.0.2.15.
644 9d4fb82e bellard
645 9d4fb82e bellard
In order to check that the user mode network is working, you can ping
646 9d4fb82e bellard
the address 10.0.2.2 and verify that you got an address in the range
647 9d4fb82e bellard
10.0.2.x from the QEMU virtual DHCP server.
648 9d4fb82e bellard
649 b415a407 bellard
Note that @code{ping} is not supported reliably to the internet as it
650 4be456f1 ths
would require root privileges. It means you can only ping the local
651 b415a407 bellard
router (10.0.2.2).
652 b415a407 bellard
653 9bf05444 bellard
When using the built-in TFTP server, the router is also the TFTP
654 9bf05444 bellard
server.
655 9bf05444 bellard
656 9bf05444 bellard
When using the @option{-redir} option, TCP or UDP connections can be
657 9bf05444 bellard
redirected from the host to the guest. It allows for example to
658 9bf05444 bellard
redirect X11, telnet or SSH connections.
659 443f1376 bellard
660 41d03949 bellard
@subsection Connecting VLANs between QEMU instances
661 41d03949 bellard
662 41d03949 bellard
Using the @option{-net socket} option, it is possible to make VLANs
663 41d03949 bellard
that span several QEMU instances. See @ref{sec_invocation} to have a
664 41d03949 bellard
basic example.
665 41d03949 bellard
666 9d4fb82e bellard
@node direct_linux_boot
667 9d4fb82e bellard
@section Direct Linux Boot
668 1f673135 bellard
669 1f673135 bellard
This section explains how to launch a Linux kernel inside QEMU without
670 1f673135 bellard
having to make a full bootable image. It is very useful for fast Linux
671 ee0f4751 bellard
kernel testing.
672 1f673135 bellard
673 ee0f4751 bellard
The syntax is:
674 1f673135 bellard
@example
675 ee0f4751 bellard
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
676 1f673135 bellard
@end example
677 1f673135 bellard
678 ee0f4751 bellard
Use @option{-kernel} to provide the Linux kernel image and
679 ee0f4751 bellard
@option{-append} to give the kernel command line arguments. The
680 ee0f4751 bellard
@option{-initrd} option can be used to provide an INITRD image.
681 1f673135 bellard
682 ee0f4751 bellard
When using the direct Linux boot, a disk image for the first hard disk
683 ee0f4751 bellard
@file{hda} is required because its boot sector is used to launch the
684 ee0f4751 bellard
Linux kernel.
685 1f673135 bellard
686 ee0f4751 bellard
If you do not need graphical output, you can disable it and redirect
687 ee0f4751 bellard
the virtual serial port and the QEMU monitor to the console with the
688 ee0f4751 bellard
@option{-nographic} option. The typical command line is:
689 1f673135 bellard
@example
690 ee0f4751 bellard
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
691 ee0f4751 bellard
     -append "root=/dev/hda console=ttyS0" -nographic
692 1f673135 bellard
@end example
693 1f673135 bellard
694 ee0f4751 bellard
Use @key{Ctrl-a c} to switch between the serial console and the
695 ee0f4751 bellard
monitor (@pxref{pcsys_keys}).
696 1f673135 bellard
697 debc7065 bellard
@node pcsys_usb
698 b389dbfb bellard
@section USB emulation
699 b389dbfb bellard
700 0aff66b5 pbrook
QEMU emulates a PCI UHCI USB controller. You can virtually plug
701 0aff66b5 pbrook
virtual USB devices or real host USB devices (experimental, works only
702 0aff66b5 pbrook
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
703 f542086d bellard
as necessary to connect multiple USB devices.
704 b389dbfb bellard
705 0aff66b5 pbrook
@menu
706 0aff66b5 pbrook
* usb_devices::
707 0aff66b5 pbrook
* host_usb_devices::
708 0aff66b5 pbrook
@end menu
709 0aff66b5 pbrook
@node usb_devices
710 0aff66b5 pbrook
@subsection Connecting USB devices
711 b389dbfb bellard
712 0aff66b5 pbrook
USB devices can be connected with the @option{-usbdevice} commandline option
713 0aff66b5 pbrook
or the @code{usb_add} monitor command.  Available devices are:
714 b389dbfb bellard
715 db380c06 balrog
@table @code
716 db380c06 balrog
@item mouse
717 0aff66b5 pbrook
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
718 db380c06 balrog
@item tablet
719 c6d46c20 bellard
Pointer device that uses absolute coordinates (like a touchscreen).
720 0aff66b5 pbrook
This means qemu is able to report the mouse position without having
721 0aff66b5 pbrook
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
722 db380c06 balrog
@item disk:@var{file}
723 0aff66b5 pbrook
Mass storage device based on @var{file} (@pxref{disk_images})
724 db380c06 balrog
@item host:@var{bus.addr}
725 0aff66b5 pbrook
Pass through the host device identified by @var{bus.addr}
726 0aff66b5 pbrook
(Linux only)
727 db380c06 balrog
@item host:@var{vendor_id:product_id}
728 0aff66b5 pbrook
Pass through the host device identified by @var{vendor_id:product_id}
729 0aff66b5 pbrook
(Linux only)
730 db380c06 balrog
@item wacom-tablet
731 f6d2a316 balrog
Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
732 f6d2a316 balrog
above but it can be used with the tslib library because in addition to touch
733 f6d2a316 balrog
coordinates it reports touch pressure.
734 db380c06 balrog
@item keyboard
735 47b2d338 balrog
Standard USB keyboard.  Will override the PS/2 keyboard (if present).
736 db380c06 balrog
@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
737 db380c06 balrog
Serial converter. This emulates an FTDI FT232BM chip connected to host character
738 db380c06 balrog
device @var{dev}. The available character devices are the same as for the
739 db380c06 balrog
@code{-serial} option. The @code{vendorid} and @code{productid} options can be
740 a11d070e balrog
used to override the default 0403:6001. For instance, 
741 db380c06 balrog
@example
742 db380c06 balrog
usb_add serial:productid=FA00:tcp:192.168.0.2:4444
743 db380c06 balrog
@end example
744 db380c06 balrog
will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
745 db380c06 balrog
serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
746 2e4d9fb1 aurel32
@item braille
747 2e4d9fb1 aurel32
Braille device.  This will use BrlAPI to display the braille output on a real
748 2e4d9fb1 aurel32
or fake device.
749 9ad97e65 balrog
@item net:@var{options}
750 9ad97e65 balrog
Network adapter that supports CDC ethernet and RNDIS protocols.  @var{options}
751 9ad97e65 balrog
specifies NIC options as with @code{-net nic,}@var{options} (see description).
752 9ad97e65 balrog
For instance, user-mode networking can be used with
753 6c9f886c balrog
@example
754 9ad97e65 balrog
qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
755 6c9f886c balrog
@end example
756 6c9f886c balrog
Currently this cannot be used in machines that support PCI NICs.
757 2d564691 balrog
@item bt[:@var{hci-type}]
758 2d564691 balrog
Bluetooth dongle whose type is specified in the same format as with
759 2d564691 balrog
the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}.  If
760 2d564691 balrog
no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
761 2d564691 balrog
This USB device implements the USB Transport Layer of HCI.  Example
762 2d564691 balrog
usage:
763 2d564691 balrog
@example
764 2d564691 balrog
qemu [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
765 2d564691 balrog
@end example
766 0aff66b5 pbrook
@end table
767 b389dbfb bellard
768 0aff66b5 pbrook
@node host_usb_devices
769 b389dbfb bellard
@subsection Using host USB devices on a Linux host
770 b389dbfb bellard
771 b389dbfb bellard
WARNING: this is an experimental feature. QEMU will slow down when
772 b389dbfb bellard
using it. USB devices requiring real time streaming (i.e. USB Video
773 b389dbfb bellard
Cameras) are not supported yet.
774 b389dbfb bellard
775 b389dbfb bellard
@enumerate
776 5fafdf24 ths
@item If you use an early Linux 2.4 kernel, verify that no Linux driver
777 b389dbfb bellard
is actually using the USB device. A simple way to do that is simply to
778 b389dbfb bellard
disable the corresponding kernel module by renaming it from @file{mydriver.o}
779 b389dbfb bellard
to @file{mydriver.o.disabled}.
780 b389dbfb bellard
781 b389dbfb bellard
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
782 b389dbfb bellard
@example
783 b389dbfb bellard
ls /proc/bus/usb
784 b389dbfb bellard
001  devices  drivers
785 b389dbfb bellard
@end example
786 b389dbfb bellard
787 b389dbfb bellard
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
788 b389dbfb bellard
@example
789 b389dbfb bellard
chown -R myuid /proc/bus/usb
790 b389dbfb bellard
@end example
791 b389dbfb bellard
792 b389dbfb bellard
@item Launch QEMU and do in the monitor:
793 5fafdf24 ths
@example
794 b389dbfb bellard
info usbhost
795 b389dbfb bellard
  Device 1.2, speed 480 Mb/s
796 b389dbfb bellard
    Class 00: USB device 1234:5678, USB DISK
797 b389dbfb bellard
@end example
798 b389dbfb bellard
You should see the list of the devices you can use (Never try to use
799 b389dbfb bellard
hubs, it won't work).
800 b389dbfb bellard
801 b389dbfb bellard
@item Add the device in QEMU by using:
802 5fafdf24 ths
@example
803 b389dbfb bellard
usb_add host:1234:5678
804 b389dbfb bellard
@end example
805 b389dbfb bellard
806 b389dbfb bellard
Normally the guest OS should report that a new USB device is
807 b389dbfb bellard
plugged. You can use the option @option{-usbdevice} to do the same.
808 b389dbfb bellard
809 b389dbfb bellard
@item Now you can try to use the host USB device in QEMU.
810 b389dbfb bellard
811 b389dbfb bellard
@end enumerate
812 b389dbfb bellard
813 b389dbfb bellard
When relaunching QEMU, you may have to unplug and plug again the USB
814 b389dbfb bellard
device to make it work again (this is a bug).
815 b389dbfb bellard
816 f858dcae ths
@node vnc_security
817 f858dcae ths
@section VNC security
818 f858dcae ths
819 f858dcae ths
The VNC server capability provides access to the graphical console
820 f858dcae ths
of the guest VM across the network. This has a number of security
821 f858dcae ths
considerations depending on the deployment scenarios.
822 f858dcae ths
823 f858dcae ths
@menu
824 f858dcae ths
* vnc_sec_none::
825 f858dcae ths
* vnc_sec_password::
826 f858dcae ths
* vnc_sec_certificate::
827 f858dcae ths
* vnc_sec_certificate_verify::
828 f858dcae ths
* vnc_sec_certificate_pw::
829 2f9606b3 aliguori
* vnc_sec_sasl::
830 2f9606b3 aliguori
* vnc_sec_certificate_sasl::
831 f858dcae ths
* vnc_generate_cert::
832 2f9606b3 aliguori
* vnc_setup_sasl::
833 f858dcae ths
@end menu
834 f858dcae ths
@node vnc_sec_none
835 f858dcae ths
@subsection Without passwords
836 f858dcae ths
837 f858dcae ths
The simplest VNC server setup does not include any form of authentication.
838 f858dcae ths
For this setup it is recommended to restrict it to listen on a UNIX domain
839 f858dcae ths
socket only. For example
840 f858dcae ths
841 f858dcae ths
@example
842 f858dcae ths
qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
843 f858dcae ths
@end example
844 f858dcae ths
845 f858dcae ths
This ensures that only users on local box with read/write access to that
846 f858dcae ths
path can access the VNC server. To securely access the VNC server from a
847 f858dcae ths
remote machine, a combination of netcat+ssh can be used to provide a secure
848 f858dcae ths
tunnel.
849 f858dcae ths
850 f858dcae ths
@node vnc_sec_password
851 f858dcae ths
@subsection With passwords
852 f858dcae ths
853 f858dcae ths
The VNC protocol has limited support for password based authentication. Since
854 f858dcae ths
the protocol limits passwords to 8 characters it should not be considered
855 f858dcae ths
to provide high security. The password can be fairly easily brute-forced by
856 f858dcae ths
a client making repeat connections. For this reason, a VNC server using password
857 f858dcae ths
authentication should be restricted to only listen on the loopback interface
858 34a3d239 blueswir1
or UNIX domain sockets. Password authentication is requested with the @code{password}
859 f858dcae ths
option, and then once QEMU is running the password is set with the monitor. Until
860 f858dcae ths
the monitor is used to set the password all clients will be rejected.
861 f858dcae ths
862 f858dcae ths
@example
863 f858dcae ths
qemu [...OPTIONS...] -vnc :1,password -monitor stdio
864 f858dcae ths
(qemu) change vnc password
865 f858dcae ths
Password: ********
866 f858dcae ths
(qemu)
867 f858dcae ths
@end example
868 f858dcae ths
869 f858dcae ths
@node vnc_sec_certificate
870 f858dcae ths
@subsection With x509 certificates
871 f858dcae ths
872 f858dcae ths
The QEMU VNC server also implements the VeNCrypt extension allowing use of
873 f858dcae ths
TLS for encryption of the session, and x509 certificates for authentication.
874 f858dcae ths
The use of x509 certificates is strongly recommended, because TLS on its
875 f858dcae ths
own is susceptible to man-in-the-middle attacks. Basic x509 certificate
876 f858dcae ths
support provides a secure session, but no authentication. This allows any
877 f858dcae ths
client to connect, and provides an encrypted session.
878 f858dcae ths
879 f858dcae ths
@example
880 f858dcae ths
qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
881 f858dcae ths
@end example
882 f858dcae ths
883 f858dcae ths
In the above example @code{/etc/pki/qemu} should contain at least three files,
884 f858dcae ths
@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
885 f858dcae ths
users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
886 f858dcae ths
NB the @code{server-key.pem} file should be protected with file mode 0600 to
887 f858dcae ths
only be readable by the user owning it.
888 f858dcae ths
889 f858dcae ths
@node vnc_sec_certificate_verify
890 f858dcae ths
@subsection With x509 certificates and client verification
891 f858dcae ths
892 f858dcae ths
Certificates can also provide a means to authenticate the client connecting.
893 f858dcae ths
The server will request that the client provide a certificate, which it will
894 f858dcae ths
then validate against the CA certificate. This is a good choice if deploying
895 f858dcae ths
in an environment with a private internal certificate authority.
896 f858dcae ths
897 f858dcae ths
@example
898 f858dcae ths
qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
899 f858dcae ths
@end example
900 f858dcae ths
901 f858dcae ths
902 f858dcae ths
@node vnc_sec_certificate_pw
903 f858dcae ths
@subsection With x509 certificates, client verification and passwords
904 f858dcae ths
905 f858dcae ths
Finally, the previous method can be combined with VNC password authentication
906 f858dcae ths
to provide two layers of authentication for clients.
907 f858dcae ths
908 f858dcae ths
@example
909 f858dcae ths
qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
910 f858dcae ths
(qemu) change vnc password
911 f858dcae ths
Password: ********
912 f858dcae ths
(qemu)
913 f858dcae ths
@end example
914 f858dcae ths
915 2f9606b3 aliguori
916 2f9606b3 aliguori
@node vnc_sec_sasl
917 2f9606b3 aliguori
@subsection With SASL authentication
918 2f9606b3 aliguori
919 2f9606b3 aliguori
The SASL authentication method is a VNC extension, that provides an
920 2f9606b3 aliguori
easily extendable, pluggable authentication method. This allows for
921 2f9606b3 aliguori
integration with a wide range of authentication mechanisms, such as
922 2f9606b3 aliguori
PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
923 2f9606b3 aliguori
The strength of the authentication depends on the exact mechanism
924 2f9606b3 aliguori
configured. If the chosen mechanism also provides a SSF layer, then
925 2f9606b3 aliguori
it will encrypt the datastream as well.
926 2f9606b3 aliguori
927 2f9606b3 aliguori
Refer to the later docs on how to choose the exact SASL mechanism
928 2f9606b3 aliguori
used for authentication, but assuming use of one supporting SSF,
929 2f9606b3 aliguori
then QEMU can be launched with:
930 2f9606b3 aliguori
931 2f9606b3 aliguori
@example
932 2f9606b3 aliguori
qemu [...OPTIONS...] -vnc :1,sasl -monitor stdio
933 2f9606b3 aliguori
@end example
934 2f9606b3 aliguori
935 2f9606b3 aliguori
@node vnc_sec_certificate_sasl
936 2f9606b3 aliguori
@subsection With x509 certificates and SASL authentication
937 2f9606b3 aliguori
938 2f9606b3 aliguori
If the desired SASL authentication mechanism does not supported
939 2f9606b3 aliguori
SSF layers, then it is strongly advised to run it in combination
940 2f9606b3 aliguori
with TLS and x509 certificates. This provides securely encrypted
941 2f9606b3 aliguori
data stream, avoiding risk of compromising of the security
942 2f9606b3 aliguori
credentials. This can be enabled, by combining the 'sasl' option
943 2f9606b3 aliguori
with the aforementioned TLS + x509 options:
944 2f9606b3 aliguori
945 2f9606b3 aliguori
@example
946 2f9606b3 aliguori
qemu [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
947 2f9606b3 aliguori
@end example
948 2f9606b3 aliguori
949 2f9606b3 aliguori
950 f858dcae ths
@node vnc_generate_cert
951 f858dcae ths
@subsection Generating certificates for VNC
952 f858dcae ths
953 f858dcae ths
The GNU TLS packages provides a command called @code{certtool} which can
954 f858dcae ths
be used to generate certificates and keys in PEM format. At a minimum it
955 f858dcae ths
is neccessary to setup a certificate authority, and issue certificates to
956 f858dcae ths
each server. If using certificates for authentication, then each client
957 f858dcae ths
will also need to be issued a certificate. The recommendation is for the
958 f858dcae ths
server to keep its certificates in either @code{/etc/pki/qemu} or for
959 f858dcae ths
unprivileged users in @code{$HOME/.pki/qemu}.
960 f858dcae ths
961 f858dcae ths
@menu
962 f858dcae ths
* vnc_generate_ca::
963 f858dcae ths
* vnc_generate_server::
964 f858dcae ths
* vnc_generate_client::
965 f858dcae ths
@end menu
966 f858dcae ths
@node vnc_generate_ca
967 f858dcae ths
@subsubsection Setup the Certificate Authority
968 f858dcae ths
969 f858dcae ths
This step only needs to be performed once per organization / organizational
970 f858dcae ths
unit. First the CA needs a private key. This key must be kept VERY secret
971 f858dcae ths
and secure. If this key is compromised the entire trust chain of the certificates
972 f858dcae ths
issued with it is lost.
973 f858dcae ths
974 f858dcae ths
@example
975 f858dcae ths
# certtool --generate-privkey > ca-key.pem
976 f858dcae ths
@end example
977 f858dcae ths
978 f858dcae ths
A CA needs to have a public certificate. For simplicity it can be a self-signed
979 f858dcae ths
certificate, or one issue by a commercial certificate issuing authority. To
980 f858dcae ths
generate a self-signed certificate requires one core piece of information, the
981 f858dcae ths
name of the organization.
982 f858dcae ths
983 f858dcae ths
@example
984 f858dcae ths
# cat > ca.info <<EOF
985 f858dcae ths
cn = Name of your organization
986 f858dcae ths
ca
987 f858dcae ths
cert_signing_key
988 f858dcae ths
EOF
989 f858dcae ths
# certtool --generate-self-signed \
990 f858dcae ths
           --load-privkey ca-key.pem
991 f858dcae ths
           --template ca.info \
992 f858dcae ths
           --outfile ca-cert.pem
993 f858dcae ths
@end example
994 f858dcae ths
995 f858dcae ths
The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
996 f858dcae ths
TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
997 f858dcae ths
998 f858dcae ths
@node vnc_generate_server
999 f858dcae ths
@subsubsection Issuing server certificates
1000 f858dcae ths
1001 f858dcae ths
Each server (or host) needs to be issued with a key and certificate. When connecting
1002 f858dcae ths
the certificate is sent to the client which validates it against the CA certificate.
1003 f858dcae ths
The core piece of information for a server certificate is the hostname. This should
1004 f858dcae ths
be the fully qualified hostname that the client will connect with, since the client
1005 f858dcae ths
will typically also verify the hostname in the certificate. On the host holding the
1006 f858dcae ths
secure CA private key:
1007 f858dcae ths
1008 f858dcae ths
@example
1009 f858dcae ths
# cat > server.info <<EOF
1010 f858dcae ths
organization = Name  of your organization
1011 f858dcae ths
cn = server.foo.example.com
1012 f858dcae ths
tls_www_server
1013 f858dcae ths
encryption_key
1014 f858dcae ths
signing_key
1015 f858dcae ths
EOF
1016 f858dcae ths
# certtool --generate-privkey > server-key.pem
1017 f858dcae ths
# certtool --generate-certificate \
1018 f858dcae ths
           --load-ca-certificate ca-cert.pem \
1019 f858dcae ths
           --load-ca-privkey ca-key.pem \
1020 f858dcae ths
           --load-privkey server server-key.pem \
1021 f858dcae ths
           --template server.info \
1022 f858dcae ths
           --outfile server-cert.pem
1023 f858dcae ths
@end example
1024 f858dcae ths
1025 f858dcae ths
The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1026 f858dcae ths
to the server for which they were generated. The @code{server-key.pem} is security
1027 f858dcae ths
sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1028 f858dcae ths
1029 f858dcae ths
@node vnc_generate_client
1030 f858dcae ths
@subsubsection Issuing client certificates
1031 f858dcae ths
1032 f858dcae ths
If the QEMU VNC server is to use the @code{x509verify} option to validate client
1033 f858dcae ths
certificates as its authentication mechanism, each client also needs to be issued
1034 f858dcae ths
a certificate. The client certificate contains enough metadata to uniquely identify
1035 f858dcae ths
the client, typically organization, state, city, building, etc. On the host holding
1036 f858dcae ths
the secure CA private key:
1037 f858dcae ths
1038 f858dcae ths
@example
1039 f858dcae ths
# cat > client.info <<EOF
1040 f858dcae ths
country = GB
1041 f858dcae ths
state = London
1042 f858dcae ths
locality = London
1043 f858dcae ths
organiazation = Name of your organization
1044 f858dcae ths
cn = client.foo.example.com
1045 f858dcae ths
tls_www_client
1046 f858dcae ths
encryption_key
1047 f858dcae ths
signing_key
1048 f858dcae ths
EOF
1049 f858dcae ths
# certtool --generate-privkey > client-key.pem
1050 f858dcae ths
# certtool --generate-certificate \
1051 f858dcae ths
           --load-ca-certificate ca-cert.pem \
1052 f858dcae ths
           --load-ca-privkey ca-key.pem \
1053 f858dcae ths
           --load-privkey client-key.pem \
1054 f858dcae ths
           --template client.info \
1055 f858dcae ths
           --outfile client-cert.pem
1056 f858dcae ths
@end example
1057 f858dcae ths
1058 f858dcae ths
The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1059 f858dcae ths
copied to the client for which they were generated.
1060 f858dcae ths
1061 2f9606b3 aliguori
1062 2f9606b3 aliguori
@node vnc_setup_sasl
1063 2f9606b3 aliguori
1064 2f9606b3 aliguori
@subsection Configuring SASL mechanisms
1065 2f9606b3 aliguori
1066 2f9606b3 aliguori
The following documentation assumes use of the Cyrus SASL implementation on a
1067 2f9606b3 aliguori
Linux host, but the principals should apply to any other SASL impl. When SASL
1068 2f9606b3 aliguori
is enabled, the mechanism configuration will be loaded from system default
1069 2f9606b3 aliguori
SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1070 2f9606b3 aliguori
unprivileged user, an environment variable SASL_CONF_PATH can be used
1071 2f9606b3 aliguori
to make it search alternate locations for the service config.
1072 2f9606b3 aliguori
1073 2f9606b3 aliguori
The default configuration might contain
1074 2f9606b3 aliguori
1075 2f9606b3 aliguori
@example
1076 2f9606b3 aliguori
mech_list: digest-md5
1077 2f9606b3 aliguori
sasldb_path: /etc/qemu/passwd.db
1078 2f9606b3 aliguori
@end example
1079 2f9606b3 aliguori
1080 2f9606b3 aliguori
This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1081 2f9606b3 aliguori
Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1082 2f9606b3 aliguori
in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1083 2f9606b3 aliguori
command. While this mechanism is easy to configure and use, it is not
1084 2f9606b3 aliguori
considered secure by modern standards, so only suitable for developers /
1085 2f9606b3 aliguori
ad-hoc testing.
1086 2f9606b3 aliguori
1087 2f9606b3 aliguori
A more serious deployment might use Kerberos, which is done with the 'gssapi'
1088 2f9606b3 aliguori
mechanism
1089 2f9606b3 aliguori
1090 2f9606b3 aliguori
@example
1091 2f9606b3 aliguori
mech_list: gssapi
1092 2f9606b3 aliguori
keytab: /etc/qemu/krb5.tab
1093 2f9606b3 aliguori
@end example
1094 2f9606b3 aliguori
1095 2f9606b3 aliguori
For this to work the administrator of your KDC must generate a Kerberos
1096 2f9606b3 aliguori
principal for the server, with a name of  'qemu/somehost.example.com@@EXAMPLE.COM'
1097 2f9606b3 aliguori
replacing 'somehost.example.com' with the fully qualified host name of the
1098 2f9606b3 aliguori
machine running QEMU, and 'EXAMPLE.COM' with the Keberos Realm.
1099 2f9606b3 aliguori
1100 2f9606b3 aliguori
Other configurations will be left as an exercise for the reader. It should
1101 2f9606b3 aliguori
be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1102 2f9606b3 aliguori
encryption. For all other mechanisms, VNC should always be configured to
1103 2f9606b3 aliguori
use TLS and x509 certificates to protect security credentials from snooping.
1104 2f9606b3 aliguori
1105 0806e3f6 bellard
@node gdb_usage
1106 da415d54 bellard
@section GDB usage
1107 da415d54 bellard
1108 da415d54 bellard
QEMU has a primitive support to work with gdb, so that you can do
1109 0806e3f6 bellard
'Ctrl-C' while the virtual machine is running and inspect its state.
1110 da415d54 bellard
1111 9d4520d0 bellard
In order to use gdb, launch qemu with the '-s' option. It will wait for a
1112 da415d54 bellard
gdb connection:
1113 da415d54 bellard
@example
1114 debc7065 bellard
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1115 debc7065 bellard
       -append "root=/dev/hda"
1116 da415d54 bellard
Connected to host network interface: tun0
1117 da415d54 bellard
Waiting gdb connection on port 1234
1118 da415d54 bellard
@end example
1119 da415d54 bellard
1120 da415d54 bellard
Then launch gdb on the 'vmlinux' executable:
1121 da415d54 bellard
@example
1122 da415d54 bellard
> gdb vmlinux
1123 da415d54 bellard
@end example
1124 da415d54 bellard
1125 da415d54 bellard
In gdb, connect to QEMU:
1126 da415d54 bellard
@example
1127 6c9bf893 bellard
(gdb) target remote localhost:1234
1128 da415d54 bellard
@end example
1129 da415d54 bellard
1130 da415d54 bellard
Then you can use gdb normally. For example, type 'c' to launch the kernel:
1131 da415d54 bellard
@example
1132 da415d54 bellard
(gdb) c
1133 da415d54 bellard
@end example
1134 da415d54 bellard
1135 0806e3f6 bellard
Here are some useful tips in order to use gdb on system code:
1136 0806e3f6 bellard
1137 0806e3f6 bellard
@enumerate
1138 0806e3f6 bellard
@item
1139 0806e3f6 bellard
Use @code{info reg} to display all the CPU registers.
1140 0806e3f6 bellard
@item
1141 0806e3f6 bellard
Use @code{x/10i $eip} to display the code at the PC position.
1142 0806e3f6 bellard
@item
1143 0806e3f6 bellard
Use @code{set architecture i8086} to dump 16 bit code. Then use
1144 294e8637 bellard
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1145 0806e3f6 bellard
@end enumerate
1146 0806e3f6 bellard
1147 60897d36 edgar_igl
Advanced debugging options:
1148 60897d36 edgar_igl
1149 60897d36 edgar_igl
The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
1150 94d45e44 edgar_igl
@table @code
1151 60897d36 edgar_igl
@item maintenance packet qqemu.sstepbits
1152 60897d36 edgar_igl
1153 60897d36 edgar_igl
This will display the MASK bits used to control the single stepping IE:
1154 60897d36 edgar_igl
@example
1155 60897d36 edgar_igl
(gdb) maintenance packet qqemu.sstepbits
1156 60897d36 edgar_igl
sending: "qqemu.sstepbits"
1157 60897d36 edgar_igl
received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1158 60897d36 edgar_igl
@end example
1159 60897d36 edgar_igl
@item maintenance packet qqemu.sstep
1160 60897d36 edgar_igl
1161 60897d36 edgar_igl
This will display the current value of the mask used when single stepping IE:
1162 60897d36 edgar_igl
@example
1163 60897d36 edgar_igl
(gdb) maintenance packet qqemu.sstep
1164 60897d36 edgar_igl
sending: "qqemu.sstep"
1165 60897d36 edgar_igl
received: "0x7"
1166 60897d36 edgar_igl
@end example
1167 60897d36 edgar_igl
@item maintenance packet Qqemu.sstep=HEX_VALUE
1168 60897d36 edgar_igl
1169 60897d36 edgar_igl
This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1170 60897d36 edgar_igl
@example
1171 60897d36 edgar_igl
(gdb) maintenance packet Qqemu.sstep=0x5
1172 60897d36 edgar_igl
sending: "qemu.sstep=0x5"
1173 60897d36 edgar_igl
received: "OK"
1174 60897d36 edgar_igl
@end example
1175 94d45e44 edgar_igl
@end table
1176 60897d36 edgar_igl
1177 debc7065 bellard
@node pcsys_os_specific
1178 1a084f3d bellard
@section Target OS specific information
1179 1a084f3d bellard
1180 1a084f3d bellard
@subsection Linux
1181 1a084f3d bellard
1182 15a34c63 bellard
To have access to SVGA graphic modes under X11, use the @code{vesa} or
1183 15a34c63 bellard
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1184 15a34c63 bellard
color depth in the guest and the host OS.
1185 1a084f3d bellard
1186 e3371e62 bellard
When using a 2.6 guest Linux kernel, you should add the option
1187 e3371e62 bellard
@code{clock=pit} on the kernel command line because the 2.6 Linux
1188 e3371e62 bellard
kernels make very strict real time clock checks by default that QEMU
1189 e3371e62 bellard
cannot simulate exactly.
1190 e3371e62 bellard
1191 7c3fc84d bellard
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1192 7c3fc84d bellard
not activated because QEMU is slower with this patch. The QEMU
1193 7c3fc84d bellard
Accelerator Module is also much slower in this case. Earlier Fedora
1194 4be456f1 ths
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1195 7c3fc84d bellard
patch by default. Newer kernels don't have it.
1196 7c3fc84d bellard
1197 1a084f3d bellard
@subsection Windows
1198 1a084f3d bellard
1199 1a084f3d bellard
If you have a slow host, using Windows 95 is better as it gives the
1200 1a084f3d bellard
best speed. Windows 2000 is also a good choice.
1201 1a084f3d bellard
1202 e3371e62 bellard
@subsubsection SVGA graphic modes support
1203 e3371e62 bellard
1204 e3371e62 bellard
QEMU emulates a Cirrus Logic GD5446 Video
1205 15a34c63 bellard
card. All Windows versions starting from Windows 95 should recognize
1206 15a34c63 bellard
and use this graphic card. For optimal performances, use 16 bit color
1207 15a34c63 bellard
depth in the guest and the host OS.
1208 1a084f3d bellard
1209 3cb0853a bellard
If you are using Windows XP as guest OS and if you want to use high
1210 3cb0853a bellard
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1211 3cb0853a bellard
1280x1024x16), then you should use the VESA VBE virtual graphic card
1212 3cb0853a bellard
(option @option{-std-vga}).
1213 3cb0853a bellard
1214 e3371e62 bellard
@subsubsection CPU usage reduction
1215 e3371e62 bellard
1216 e3371e62 bellard
Windows 9x does not correctly use the CPU HLT
1217 15a34c63 bellard
instruction. The result is that it takes host CPU cycles even when
1218 15a34c63 bellard
idle. You can install the utility from
1219 15a34c63 bellard
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1220 15a34c63 bellard
problem. Note that no such tool is needed for NT, 2000 or XP.
1221 1a084f3d bellard
1222 9d0a8e6f bellard
@subsubsection Windows 2000 disk full problem
1223 e3371e62 bellard
1224 9d0a8e6f bellard
Windows 2000 has a bug which gives a disk full problem during its
1225 9d0a8e6f bellard
installation. When installing it, use the @option{-win2k-hack} QEMU
1226 9d0a8e6f bellard
option to enable a specific workaround. After Windows 2000 is
1227 9d0a8e6f bellard
installed, you no longer need this option (this option slows down the
1228 9d0a8e6f bellard
IDE transfers).
1229 e3371e62 bellard
1230 6cc721cf bellard
@subsubsection Windows 2000 shutdown
1231 6cc721cf bellard
1232 6cc721cf bellard
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1233 6cc721cf bellard
can. It comes from the fact that Windows 2000 does not automatically
1234 6cc721cf bellard
use the APM driver provided by the BIOS.
1235 6cc721cf bellard
1236 6cc721cf bellard
In order to correct that, do the following (thanks to Struan
1237 6cc721cf bellard
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1238 6cc721cf bellard
Add/Troubleshoot a device => Add a new device & Next => No, select the
1239 6cc721cf bellard
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1240 6cc721cf bellard
(again) a few times. Now the driver is installed and Windows 2000 now
1241 5fafdf24 ths
correctly instructs QEMU to shutdown at the appropriate moment.
1242 6cc721cf bellard
1243 6cc721cf bellard
@subsubsection Share a directory between Unix and Windows
1244 6cc721cf bellard
1245 6cc721cf bellard
See @ref{sec_invocation} about the help of the option @option{-smb}.
1246 6cc721cf bellard
1247 2192c332 bellard
@subsubsection Windows XP security problem
1248 e3371e62 bellard
1249 e3371e62 bellard
Some releases of Windows XP install correctly but give a security
1250 e3371e62 bellard
error when booting:
1251 e3371e62 bellard
@example
1252 e3371e62 bellard
A problem is preventing Windows from accurately checking the
1253 e3371e62 bellard
license for this computer. Error code: 0x800703e6.
1254 e3371e62 bellard
@end example
1255 e3371e62 bellard
1256 2192c332 bellard
The workaround is to install a service pack for XP after a boot in safe
1257 2192c332 bellard
mode. Then reboot, and the problem should go away. Since there is no
1258 2192c332 bellard
network while in safe mode, its recommended to download the full
1259 2192c332 bellard
installation of SP1 or SP2 and transfer that via an ISO or using the
1260 2192c332 bellard
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1261 e3371e62 bellard
1262 a0a821a4 bellard
@subsection MS-DOS and FreeDOS
1263 a0a821a4 bellard
1264 a0a821a4 bellard
@subsubsection CPU usage reduction
1265 a0a821a4 bellard
1266 a0a821a4 bellard
DOS does not correctly use the CPU HLT instruction. The result is that
1267 a0a821a4 bellard
it takes host CPU cycles even when idle. You can install the utility
1268 a0a821a4 bellard
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1269 a0a821a4 bellard
problem.
1270 a0a821a4 bellard
1271 debc7065 bellard
@node QEMU System emulator for non PC targets
1272 3f9f3aa1 bellard
@chapter QEMU System emulator for non PC targets
1273 3f9f3aa1 bellard
1274 3f9f3aa1 bellard
QEMU is a generic emulator and it emulates many non PC
1275 3f9f3aa1 bellard
machines. Most of the options are similar to the PC emulator. The
1276 4be456f1 ths
differences are mentioned in the following sections.
1277 3f9f3aa1 bellard
1278 debc7065 bellard
@menu
1279 debc7065 bellard
* QEMU PowerPC System emulator::
1280 24d4de45 ths
* Sparc32 System emulator::
1281 24d4de45 ths
* Sparc64 System emulator::
1282 24d4de45 ths
* MIPS System emulator::
1283 24d4de45 ths
* ARM System emulator::
1284 24d4de45 ths
* ColdFire System emulator::
1285 debc7065 bellard
@end menu
1286 debc7065 bellard
1287 debc7065 bellard
@node QEMU PowerPC System emulator
1288 3f9f3aa1 bellard
@section QEMU PowerPC System emulator
1289 1a084f3d bellard
1290 15a34c63 bellard
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1291 15a34c63 bellard
or PowerMac PowerPC system.
1292 1a084f3d bellard
1293 b671f9ed bellard
QEMU emulates the following PowerMac peripherals:
1294 1a084f3d bellard
1295 15a34c63 bellard
@itemize @minus
1296 5fafdf24 ths
@item
1297 006f3a48 blueswir1
UniNorth or Grackle PCI Bridge
1298 15a34c63 bellard
@item
1299 15a34c63 bellard
PCI VGA compatible card with VESA Bochs Extensions
1300 5fafdf24 ths
@item
1301 15a34c63 bellard
2 PMAC IDE interfaces with hard disk and CD-ROM support
1302 5fafdf24 ths
@item
1303 15a34c63 bellard
NE2000 PCI adapters
1304 15a34c63 bellard
@item
1305 15a34c63 bellard
Non Volatile RAM
1306 15a34c63 bellard
@item
1307 15a34c63 bellard
VIA-CUDA with ADB keyboard and mouse.
1308 1a084f3d bellard
@end itemize
1309 1a084f3d bellard
1310 b671f9ed bellard
QEMU emulates the following PREP peripherals:
1311 52c00a5f bellard
1312 52c00a5f bellard
@itemize @minus
1313 5fafdf24 ths
@item
1314 15a34c63 bellard
PCI Bridge
1315 15a34c63 bellard
@item
1316 15a34c63 bellard
PCI VGA compatible card with VESA Bochs Extensions
1317 5fafdf24 ths
@item
1318 52c00a5f bellard
2 IDE interfaces with hard disk and CD-ROM support
1319 52c00a5f bellard
@item
1320 52c00a5f bellard
Floppy disk
1321 5fafdf24 ths
@item
1322 15a34c63 bellard
NE2000 network adapters
1323 52c00a5f bellard
@item
1324 52c00a5f bellard
Serial port
1325 52c00a5f bellard
@item
1326 52c00a5f bellard
PREP Non Volatile RAM
1327 15a34c63 bellard
@item
1328 15a34c63 bellard
PC compatible keyboard and mouse.
1329 52c00a5f bellard
@end itemize
1330 52c00a5f bellard
1331 15a34c63 bellard
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1332 3f9f3aa1 bellard
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1333 52c00a5f bellard
1334 992e5acd blueswir1
Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
1335 006f3a48 blueswir1
for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1336 006f3a48 blueswir1
v2) portable firmware implementation. The goal is to implement a 100%
1337 006f3a48 blueswir1
IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
1338 992e5acd blueswir1
1339 15a34c63 bellard
@c man begin OPTIONS
1340 15a34c63 bellard
1341 15a34c63 bellard
The following options are specific to the PowerPC emulation:
1342 15a34c63 bellard
1343 15a34c63 bellard
@table @option
1344 15a34c63 bellard
1345 4e257e5e Kevin Wolf
@item -g @var{W}x@var{H}[x@var{DEPTH}]
1346 15a34c63 bellard
1347 15a34c63 bellard
Set the initial VGA graphic mode. The default is 800x600x15.
1348 15a34c63 bellard
1349 4e257e5e Kevin Wolf
@item -prom-env @var{string}
1350 95efd11c blueswir1
1351 95efd11c blueswir1
Set OpenBIOS variables in NVRAM, for example:
1352 95efd11c blueswir1
1353 95efd11c blueswir1
@example
1354 95efd11c blueswir1
qemu-system-ppc -prom-env 'auto-boot?=false' \
1355 95efd11c blueswir1
 -prom-env 'boot-device=hd:2,\yaboot' \
1356 95efd11c blueswir1
 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1357 95efd11c blueswir1
@end example
1358 95efd11c blueswir1
1359 95efd11c blueswir1
These variables are not used by Open Hack'Ware.
1360 95efd11c blueswir1
1361 15a34c63 bellard
@end table
1362 15a34c63 bellard
1363 5fafdf24 ths
@c man end
1364 15a34c63 bellard
1365 15a34c63 bellard
1366 52c00a5f bellard
More information is available at
1367 3f9f3aa1 bellard
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1368 52c00a5f bellard
1369 24d4de45 ths
@node Sparc32 System emulator
1370 24d4de45 ths
@section Sparc32 System emulator
1371 e80cfcfc bellard
1372 34a3d239 blueswir1
Use the executable @file{qemu-system-sparc} to simulate the following
1373 34a3d239 blueswir1
Sun4m architecture machines:
1374 34a3d239 blueswir1
@itemize @minus
1375 34a3d239 blueswir1
@item
1376 34a3d239 blueswir1
SPARCstation 4
1377 34a3d239 blueswir1
@item
1378 34a3d239 blueswir1
SPARCstation 5
1379 34a3d239 blueswir1
@item
1380 34a3d239 blueswir1
SPARCstation 10
1381 34a3d239 blueswir1
@item
1382 34a3d239 blueswir1
SPARCstation 20
1383 34a3d239 blueswir1
@item
1384 34a3d239 blueswir1
SPARCserver 600MP
1385 34a3d239 blueswir1
@item
1386 34a3d239 blueswir1
SPARCstation LX
1387 34a3d239 blueswir1
@item
1388 34a3d239 blueswir1
SPARCstation Voyager
1389 34a3d239 blueswir1
@item
1390 34a3d239 blueswir1
SPARCclassic
1391 34a3d239 blueswir1
@item
1392 34a3d239 blueswir1
SPARCbook
1393 34a3d239 blueswir1
@end itemize
1394 34a3d239 blueswir1
1395 34a3d239 blueswir1
The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1396 34a3d239 blueswir1
but Linux limits the number of usable CPUs to 4.
1397 e80cfcfc bellard
1398 34a3d239 blueswir1
It's also possible to simulate a SPARCstation 2 (sun4c architecture),
1399 34a3d239 blueswir1
SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
1400 34a3d239 blueswir1
emulators are not usable yet.
1401 34a3d239 blueswir1
1402 34a3d239 blueswir1
QEMU emulates the following sun4m/sun4c/sun4d peripherals:
1403 e80cfcfc bellard
1404 e80cfcfc bellard
@itemize @minus
1405 3475187d bellard
@item
1406 7d85892b blueswir1
IOMMU or IO-UNITs
1407 e80cfcfc bellard
@item
1408 e80cfcfc bellard
TCX Frame buffer
1409 5fafdf24 ths
@item
1410 e80cfcfc bellard
Lance (Am7990) Ethernet
1411 e80cfcfc bellard
@item
1412 34a3d239 blueswir1
Non Volatile RAM M48T02/M48T08
1413 e80cfcfc bellard
@item
1414 3475187d bellard
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1415 3475187d bellard
and power/reset logic
1416 3475187d bellard
@item
1417 3475187d bellard
ESP SCSI controller with hard disk and CD-ROM support
1418 3475187d bellard
@item
1419 6a3b9cc9 blueswir1
Floppy drive (not on SS-600MP)
1420 a2502b58 blueswir1
@item
1421 a2502b58 blueswir1
CS4231 sound device (only on SS-5, not working yet)
1422 e80cfcfc bellard
@end itemize
1423 e80cfcfc bellard
1424 6a3b9cc9 blueswir1
The number of peripherals is fixed in the architecture.  Maximum
1425 6a3b9cc9 blueswir1
memory size depends on the machine type, for SS-5 it is 256MB and for
1426 7d85892b blueswir1
others 2047MB.
1427 3475187d bellard
1428 30a604f3 bellard
Since version 0.8.2, QEMU uses OpenBIOS
1429 0986ac3b bellard
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1430 0986ac3b bellard
firmware implementation. The goal is to implement a 100% IEEE
1431 0986ac3b bellard
1275-1994 (referred to as Open Firmware) compliant firmware.
1432 3475187d bellard
1433 3475187d bellard
A sample Linux 2.6 series kernel and ram disk image are available on
1434 34a3d239 blueswir1
the QEMU web site. There are still issues with NetBSD and OpenBSD, but
1435 34a3d239 blueswir1
some kernel versions work. Please note that currently Solaris kernels
1436 34a3d239 blueswir1
don't work probably due to interface issues between OpenBIOS and
1437 34a3d239 blueswir1
Solaris.
1438 3475187d bellard
1439 3475187d bellard
@c man begin OPTIONS
1440 3475187d bellard
1441 a2502b58 blueswir1
The following options are specific to the Sparc32 emulation:
1442 3475187d bellard
1443 3475187d bellard
@table @option
1444 3475187d bellard
1445 4e257e5e Kevin Wolf
@item -g @var{W}x@var{H}x[x@var{DEPTH}]
1446 3475187d bellard
1447 a2502b58 blueswir1
Set the initial TCX graphic mode. The default is 1024x768x8, currently
1448 a2502b58 blueswir1
the only other possible mode is 1024x768x24.
1449 3475187d bellard
1450 4e257e5e Kevin Wolf
@item -prom-env @var{string}
1451 66508601 blueswir1
1452 66508601 blueswir1
Set OpenBIOS variables in NVRAM, for example:
1453 66508601 blueswir1
1454 66508601 blueswir1
@example
1455 66508601 blueswir1
qemu-system-sparc -prom-env 'auto-boot?=false' \
1456 66508601 blueswir1
 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1457 66508601 blueswir1
@end example
1458 66508601 blueswir1
1459 34a3d239 blueswir1
@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic|SPARCbook|SS-2|SS-1000|SS-2000]
1460 a2502b58 blueswir1
1461 a2502b58 blueswir1
Set the emulated machine type. Default is SS-5.
1462 a2502b58 blueswir1
1463 3475187d bellard
@end table
1464 3475187d bellard
1465 5fafdf24 ths
@c man end
1466 3475187d bellard
1467 24d4de45 ths
@node Sparc64 System emulator
1468 24d4de45 ths
@section Sparc64 System emulator
1469 e80cfcfc bellard
1470 34a3d239 blueswir1
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1471 34a3d239 blueswir1
(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
1472 34a3d239 blueswir1
Niagara (T1) machine. The emulator is not usable for anything yet, but
1473 34a3d239 blueswir1
it can launch some kernels.
1474 b756921a bellard
1475 c7ba218d blueswir1
QEMU emulates the following peripherals:
1476 83469015 bellard
1477 83469015 bellard
@itemize @minus
1478 83469015 bellard
@item
1479 5fafdf24 ths
UltraSparc IIi APB PCI Bridge
1480 83469015 bellard
@item
1481 83469015 bellard
PCI VGA compatible card with VESA Bochs Extensions
1482 83469015 bellard
@item
1483 34a3d239 blueswir1
PS/2 mouse and keyboard
1484 34a3d239 blueswir1
@item
1485 83469015 bellard
Non Volatile RAM M48T59
1486 83469015 bellard
@item
1487 83469015 bellard
PC-compatible serial ports
1488 c7ba218d blueswir1
@item
1489 c7ba218d blueswir1
2 PCI IDE interfaces with hard disk and CD-ROM support
1490 34a3d239 blueswir1
@item
1491 34a3d239 blueswir1
Floppy disk
1492 83469015 bellard
@end itemize
1493 83469015 bellard
1494 c7ba218d blueswir1
@c man begin OPTIONS
1495 c7ba218d blueswir1
1496 c7ba218d blueswir1
The following options are specific to the Sparc64 emulation:
1497 c7ba218d blueswir1
1498 c7ba218d blueswir1
@table @option
1499 c7ba218d blueswir1
1500 4e257e5e Kevin Wolf
@item -prom-env @var{string}
1501 34a3d239 blueswir1
1502 34a3d239 blueswir1
Set OpenBIOS variables in NVRAM, for example:
1503 34a3d239 blueswir1
1504 34a3d239 blueswir1
@example
1505 34a3d239 blueswir1
qemu-system-sparc64 -prom-env 'auto-boot?=false'
1506 34a3d239 blueswir1
@end example
1507 34a3d239 blueswir1
1508 34a3d239 blueswir1
@item -M [sun4u|sun4v|Niagara]
1509 c7ba218d blueswir1
1510 c7ba218d blueswir1
Set the emulated machine type. The default is sun4u.
1511 c7ba218d blueswir1
1512 c7ba218d blueswir1
@end table
1513 c7ba218d blueswir1
1514 c7ba218d blueswir1
@c man end
1515 c7ba218d blueswir1
1516 24d4de45 ths
@node MIPS System emulator
1517 24d4de45 ths
@section MIPS System emulator
1518 9d0a8e6f bellard
1519 d9aedc32 ths
Four executables cover simulation of 32 and 64-bit MIPS systems in
1520 d9aedc32 ths
both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
1521 d9aedc32 ths
@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
1522 88cb0a02 aurel32
Five different machine types are emulated:
1523 24d4de45 ths
1524 24d4de45 ths
@itemize @minus
1525 24d4de45 ths
@item
1526 24d4de45 ths
A generic ISA PC-like machine "mips"
1527 24d4de45 ths
@item
1528 24d4de45 ths
The MIPS Malta prototype board "malta"
1529 24d4de45 ths
@item
1530 d9aedc32 ths
An ACER Pica "pica61". This machine needs the 64-bit emulator.
1531 6bf5b4e8 ths
@item
1532 f0fc6f8f ths
MIPS emulator pseudo board "mipssim"
1533 88cb0a02 aurel32
@item
1534 88cb0a02 aurel32
A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
1535 24d4de45 ths
@end itemize
1536 24d4de45 ths
1537 24d4de45 ths
The generic emulation is supported by Debian 'Etch' and is able to
1538 24d4de45 ths
install Debian into a virtual disk image. The following devices are
1539 24d4de45 ths
emulated:
1540 3f9f3aa1 bellard
1541 3f9f3aa1 bellard
@itemize @minus
1542 5fafdf24 ths
@item
1543 6bf5b4e8 ths
A range of MIPS CPUs, default is the 24Kf
1544 3f9f3aa1 bellard
@item
1545 3f9f3aa1 bellard
PC style serial port
1546 3f9f3aa1 bellard
@item
1547 24d4de45 ths
PC style IDE disk
1548 24d4de45 ths
@item
1549 3f9f3aa1 bellard
NE2000 network card
1550 3f9f3aa1 bellard
@end itemize
1551 3f9f3aa1 bellard
1552 24d4de45 ths
The Malta emulation supports the following devices:
1553 24d4de45 ths
1554 24d4de45 ths
@itemize @minus
1555 24d4de45 ths
@item
1556 0b64d008 ths
Core board with MIPS 24Kf CPU and Galileo system controller
1557 24d4de45 ths
@item
1558 24d4de45 ths
PIIX4 PCI/USB/SMbus controller
1559 24d4de45 ths
@item
1560 24d4de45 ths
The Multi-I/O chip's serial device
1561 24d4de45 ths
@item
1562 3a2eeac0 Stefan Weil
PCI network cards (PCnet32 and others)
1563 24d4de45 ths
@item
1564 24d4de45 ths
Malta FPGA serial device
1565 24d4de45 ths
@item
1566 1f605a76 aurel32
Cirrus (default) or any other PCI VGA graphics card
1567 24d4de45 ths
@end itemize
1568 24d4de45 ths
1569 24d4de45 ths
The ACER Pica emulation supports:
1570 24d4de45 ths
1571 24d4de45 ths
@itemize @minus
1572 24d4de45 ths
@item
1573 24d4de45 ths
MIPS R4000 CPU
1574 24d4de45 ths
@item
1575 24d4de45 ths
PC-style IRQ and DMA controllers
1576 24d4de45 ths
@item
1577 24d4de45 ths
PC Keyboard
1578 24d4de45 ths
@item
1579 24d4de45 ths
IDE controller
1580 24d4de45 ths
@end itemize
1581 3f9f3aa1 bellard
1582 f0fc6f8f ths
The mipssim pseudo board emulation provides an environment similiar
1583 f0fc6f8f ths
to what the proprietary MIPS emulator uses for running Linux.
1584 f0fc6f8f ths
It supports:
1585 6bf5b4e8 ths
1586 6bf5b4e8 ths
@itemize @minus
1587 6bf5b4e8 ths
@item
1588 6bf5b4e8 ths
A range of MIPS CPUs, default is the 24Kf
1589 6bf5b4e8 ths
@item
1590 6bf5b4e8 ths
PC style serial port
1591 6bf5b4e8 ths
@item
1592 6bf5b4e8 ths
MIPSnet network emulation
1593 6bf5b4e8 ths
@end itemize
1594 6bf5b4e8 ths
1595 88cb0a02 aurel32
The MIPS Magnum R4000 emulation supports:
1596 88cb0a02 aurel32
1597 88cb0a02 aurel32
@itemize @minus
1598 88cb0a02 aurel32
@item
1599 88cb0a02 aurel32
MIPS R4000 CPU
1600 88cb0a02 aurel32
@item
1601 88cb0a02 aurel32
PC-style IRQ controller
1602 88cb0a02 aurel32
@item
1603 88cb0a02 aurel32
PC Keyboard
1604 88cb0a02 aurel32
@item
1605 88cb0a02 aurel32
SCSI controller
1606 88cb0a02 aurel32
@item
1607 88cb0a02 aurel32
G364 framebuffer
1608 88cb0a02 aurel32
@end itemize
1609 88cb0a02 aurel32
1610 88cb0a02 aurel32
1611 24d4de45 ths
@node ARM System emulator
1612 24d4de45 ths
@section ARM System emulator
1613 3f9f3aa1 bellard
1614 3f9f3aa1 bellard
Use the executable @file{qemu-system-arm} to simulate a ARM
1615 3f9f3aa1 bellard
machine. The ARM Integrator/CP board is emulated with the following
1616 3f9f3aa1 bellard
devices:
1617 3f9f3aa1 bellard
1618 3f9f3aa1 bellard
@itemize @minus
1619 3f9f3aa1 bellard
@item
1620 9ee6e8bb pbrook
ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
1621 3f9f3aa1 bellard
@item
1622 3f9f3aa1 bellard
Two PL011 UARTs
1623 5fafdf24 ths
@item
1624 3f9f3aa1 bellard
SMC 91c111 Ethernet adapter
1625 00a9bf19 pbrook
@item
1626 00a9bf19 pbrook
PL110 LCD controller
1627 00a9bf19 pbrook
@item
1628 00a9bf19 pbrook
PL050 KMI with PS/2 keyboard and mouse.
1629 a1bb27b1 pbrook
@item
1630 a1bb27b1 pbrook
PL181 MultiMedia Card Interface with SD card.
1631 00a9bf19 pbrook
@end itemize
1632 00a9bf19 pbrook
1633 00a9bf19 pbrook
The ARM Versatile baseboard is emulated with the following devices:
1634 00a9bf19 pbrook
1635 00a9bf19 pbrook
@itemize @minus
1636 00a9bf19 pbrook
@item
1637 9ee6e8bb pbrook
ARM926E, ARM1136 or Cortex-A8 CPU
1638 00a9bf19 pbrook
@item
1639 00a9bf19 pbrook
PL190 Vectored Interrupt Controller
1640 00a9bf19 pbrook
@item
1641 00a9bf19 pbrook
Four PL011 UARTs
1642 5fafdf24 ths
@item
1643 00a9bf19 pbrook
SMC 91c111 Ethernet adapter
1644 00a9bf19 pbrook
@item
1645 00a9bf19 pbrook
PL110 LCD controller
1646 00a9bf19 pbrook
@item
1647 00a9bf19 pbrook
PL050 KMI with PS/2 keyboard and mouse.
1648 00a9bf19 pbrook
@item
1649 00a9bf19 pbrook
PCI host bridge.  Note the emulated PCI bridge only provides access to
1650 00a9bf19 pbrook
PCI memory space.  It does not provide access to PCI IO space.
1651 4be456f1 ths
This means some devices (eg. ne2k_pci NIC) are not usable, and others
1652 4be456f1 ths
(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
1653 00a9bf19 pbrook
mapped control registers.
1654 e6de1bad pbrook
@item
1655 e6de1bad pbrook
PCI OHCI USB controller.
1656 e6de1bad pbrook
@item
1657 e6de1bad pbrook
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
1658 a1bb27b1 pbrook
@item
1659 a1bb27b1 pbrook
PL181 MultiMedia Card Interface with SD card.
1660 3f9f3aa1 bellard
@end itemize
1661 3f9f3aa1 bellard
1662 0ef849d7 Paul Brook
The ARM RealView Emulation/Platform baseboard is emulated with the following
1663 0ef849d7 Paul Brook
devices:
1664 d7739d75 pbrook
1665 d7739d75 pbrook
@itemize @minus
1666 d7739d75 pbrook
@item
1667 f7c70325 Paul Brook
ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
1668 d7739d75 pbrook
@item
1669 d7739d75 pbrook
ARM AMBA Generic/Distributed Interrupt Controller
1670 d7739d75 pbrook
@item
1671 d7739d75 pbrook
Four PL011 UARTs
1672 5fafdf24 ths
@item
1673 0ef849d7 Paul Brook
SMC 91c111 or SMSC LAN9118 Ethernet adapter
1674 d7739d75 pbrook
@item
1675 d7739d75 pbrook
PL110 LCD controller
1676 d7739d75 pbrook
@item
1677 d7739d75 pbrook
PL050 KMI with PS/2 keyboard and mouse
1678 d7739d75 pbrook
@item
1679 d7739d75 pbrook
PCI host bridge
1680 d7739d75 pbrook
@item
1681 d7739d75 pbrook
PCI OHCI USB controller
1682 d7739d75 pbrook
@item
1683 d7739d75 pbrook
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
1684 a1bb27b1 pbrook
@item
1685 a1bb27b1 pbrook
PL181 MultiMedia Card Interface with SD card.
1686 d7739d75 pbrook
@end itemize
1687 d7739d75 pbrook
1688 b00052e4 balrog
The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
1689 b00052e4 balrog
and "Terrier") emulation includes the following peripherals:
1690 b00052e4 balrog
1691 b00052e4 balrog
@itemize @minus
1692 b00052e4 balrog
@item
1693 b00052e4 balrog
Intel PXA270 System-on-chip (ARM V5TE core)
1694 b00052e4 balrog
@item
1695 b00052e4 balrog
NAND Flash memory
1696 b00052e4 balrog
@item
1697 b00052e4 balrog
IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
1698 b00052e4 balrog
@item
1699 b00052e4 balrog
On-chip OHCI USB controller
1700 b00052e4 balrog
@item
1701 b00052e4 balrog
On-chip LCD controller
1702 b00052e4 balrog
@item
1703 b00052e4 balrog
On-chip Real Time Clock
1704 b00052e4 balrog
@item
1705 b00052e4 balrog
TI ADS7846 touchscreen controller on SSP bus
1706 b00052e4 balrog
@item
1707 b00052e4 balrog
Maxim MAX1111 analog-digital converter on I@math{^2}C bus
1708 b00052e4 balrog
@item
1709 b00052e4 balrog
GPIO-connected keyboard controller and LEDs
1710 b00052e4 balrog
@item
1711 549444e1 balrog
Secure Digital card connected to PXA MMC/SD host
1712 b00052e4 balrog
@item
1713 b00052e4 balrog
Three on-chip UARTs
1714 b00052e4 balrog
@item
1715 b00052e4 balrog
WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
1716 b00052e4 balrog
@end itemize
1717 b00052e4 balrog
1718 02645926 balrog
The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
1719 02645926 balrog
following elements:
1720 02645926 balrog
1721 02645926 balrog
@itemize @minus
1722 02645926 balrog
@item
1723 02645926 balrog
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
1724 02645926 balrog
@item
1725 02645926 balrog
ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
1726 02645926 balrog
@item
1727 02645926 balrog
On-chip LCD controller
1728 02645926 balrog
@item
1729 02645926 balrog
On-chip Real Time Clock
1730 02645926 balrog
@item
1731 02645926 balrog
TI TSC2102i touchscreen controller / analog-digital converter / Audio
1732 02645926 balrog
CODEC, connected through MicroWire and I@math{^2}S busses
1733 02645926 balrog
@item
1734 02645926 balrog
GPIO-connected matrix keypad
1735 02645926 balrog
@item
1736 02645926 balrog
Secure Digital card connected to OMAP MMC/SD host
1737 02645926 balrog
@item
1738 02645926 balrog
Three on-chip UARTs
1739 02645926 balrog
@end itemize
1740 02645926 balrog
1741 c30bb264 balrog
Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
1742 c30bb264 balrog
emulation supports the following elements:
1743 c30bb264 balrog
1744 c30bb264 balrog
@itemize @minus
1745 c30bb264 balrog
@item
1746 c30bb264 balrog
Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
1747 c30bb264 balrog
@item
1748 c30bb264 balrog
RAM and non-volatile OneNAND Flash memories
1749 c30bb264 balrog
@item
1750 c30bb264 balrog
Display connected to EPSON remote framebuffer chip and OMAP on-chip
1751 c30bb264 balrog
display controller and a LS041y3 MIPI DBI-C controller
1752 c30bb264 balrog
@item
1753 c30bb264 balrog
TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
1754 c30bb264 balrog
driven through SPI bus
1755 c30bb264 balrog
@item
1756 c30bb264 balrog
National Semiconductor LM8323-controlled qwerty keyboard driven
1757 c30bb264 balrog
through I@math{^2}C bus
1758 c30bb264 balrog
@item
1759 c30bb264 balrog
Secure Digital card connected to OMAP MMC/SD host
1760 c30bb264 balrog
@item
1761 c30bb264 balrog
Three OMAP on-chip UARTs and on-chip STI debugging console
1762 c30bb264 balrog
@item
1763 2d564691 balrog
A Bluetooth(R) transciever and HCI connected to an UART
1764 2d564691 balrog
@item
1765 c30bb264 balrog
Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
1766 c30bb264 balrog
TUSB6010 chip - only USB host mode is supported
1767 c30bb264 balrog
@item
1768 c30bb264 balrog
TI TMP105 temperature sensor driven through I@math{^2}C bus
1769 c30bb264 balrog
@item
1770 c30bb264 balrog
TI TWL92230C power management companion with an RTC on I@math{^2}C bus
1771 c30bb264 balrog
@item
1772 c30bb264 balrog
Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
1773 c30bb264 balrog
through CBUS
1774 c30bb264 balrog
@end itemize
1775 c30bb264 balrog
1776 9ee6e8bb pbrook
The Luminary Micro Stellaris LM3S811EVB emulation includes the following
1777 9ee6e8bb pbrook
devices:
1778 9ee6e8bb pbrook
1779 9ee6e8bb pbrook
@itemize @minus
1780 9ee6e8bb pbrook
@item
1781 9ee6e8bb pbrook
Cortex-M3 CPU core.
1782 9ee6e8bb pbrook
@item
1783 9ee6e8bb pbrook
64k Flash and 8k SRAM.
1784 9ee6e8bb pbrook
@item
1785 9ee6e8bb pbrook
Timers, UARTs, ADC and I@math{^2}C interface.
1786 9ee6e8bb pbrook
@item
1787 9ee6e8bb pbrook
OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
1788 9ee6e8bb pbrook
@end itemize
1789 9ee6e8bb pbrook
1790 9ee6e8bb pbrook
The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
1791 9ee6e8bb pbrook
devices:
1792 9ee6e8bb pbrook
1793 9ee6e8bb pbrook
@itemize @minus
1794 9ee6e8bb pbrook
@item
1795 9ee6e8bb pbrook
Cortex-M3 CPU core.
1796 9ee6e8bb pbrook
@item
1797 9ee6e8bb pbrook
256k Flash and 64k SRAM.
1798 9ee6e8bb pbrook
@item
1799 9ee6e8bb pbrook
Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
1800 9ee6e8bb pbrook
@item
1801 9ee6e8bb pbrook
OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
1802 9ee6e8bb pbrook
@end itemize
1803 9ee6e8bb pbrook
1804 57cd6e97 balrog
The Freecom MusicPal internet radio emulation includes the following
1805 57cd6e97 balrog
elements:
1806 57cd6e97 balrog
1807 57cd6e97 balrog
@itemize @minus
1808 57cd6e97 balrog
@item
1809 57cd6e97 balrog
Marvell MV88W8618 ARM core.
1810 57cd6e97 balrog
@item
1811 57cd6e97 balrog
32 MB RAM, 256 KB SRAM, 8 MB flash.
1812 57cd6e97 balrog
@item
1813 57cd6e97 balrog
Up to 2 16550 UARTs
1814 57cd6e97 balrog
@item
1815 57cd6e97 balrog
MV88W8xx8 Ethernet controller
1816 57cd6e97 balrog
@item
1817 57cd6e97 balrog
MV88W8618 audio controller, WM8750 CODEC and mixer
1818 57cd6e97 balrog
@item
1819 57cd6e97 balrog
128?64 display with brightness control
1820 57cd6e97 balrog
@item
1821 57cd6e97 balrog
2 buttons, 2 navigation wheels with button function
1822 57cd6e97 balrog
@end itemize
1823 57cd6e97 balrog
1824 997641a8 balrog
The Siemens SX1 models v1 and v2 (default) basic emulation.
1825 997641a8 balrog
The emulaton includes the following elements:
1826 997641a8 balrog
1827 997641a8 balrog
@itemize @minus
1828 997641a8 balrog
@item
1829 997641a8 balrog
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
1830 997641a8 balrog
@item
1831 997641a8 balrog
ROM and RAM memories (ROM firmware image can be loaded with -pflash)
1832 997641a8 balrog
V1
1833 997641a8 balrog
1 Flash of 16MB and 1 Flash of 8MB
1834 997641a8 balrog
V2
1835 997641a8 balrog
1 Flash of 32MB
1836 997641a8 balrog
@item
1837 997641a8 balrog
On-chip LCD controller
1838 997641a8 balrog
@item
1839 997641a8 balrog
On-chip Real Time Clock
1840 997641a8 balrog
@item
1841 997641a8 balrog
Secure Digital card connected to OMAP MMC/SD host
1842 997641a8 balrog
@item
1843 997641a8 balrog
Three on-chip UARTs
1844 997641a8 balrog
@end itemize
1845 997641a8 balrog
1846 4af39611 Paul Brook
The "Syborg" Symbian Virtual Platform base model includes the following
1847 4af39611 Paul Brook
elements:
1848 4af39611 Paul Brook
1849 4af39611 Paul Brook
@itemize @minus
1850 4af39611 Paul Brook
@item
1851 4af39611 Paul Brook
ARM Cortex-A8 CPU
1852 4af39611 Paul Brook
@item
1853 4af39611 Paul Brook
Interrupt controller
1854 4af39611 Paul Brook
@item
1855 4af39611 Paul Brook
Timer
1856 4af39611 Paul Brook
@item
1857 4af39611 Paul Brook
Real Time Clock
1858 4af39611 Paul Brook
@item
1859 4af39611 Paul Brook
Keyboard
1860 4af39611 Paul Brook
@item
1861 4af39611 Paul Brook
Framebuffer
1862 4af39611 Paul Brook
@item
1863 4af39611 Paul Brook
Touchscreen
1864 4af39611 Paul Brook
@item
1865 4af39611 Paul Brook
UARTs
1866 4af39611 Paul Brook
@end itemize
1867 4af39611 Paul Brook
1868 3f9f3aa1 bellard
A Linux 2.6 test image is available on the QEMU web site. More
1869 3f9f3aa1 bellard
information is available in the QEMU mailing-list archive.
1870 9d0a8e6f bellard
1871 d2c639d6 blueswir1
@c man begin OPTIONS
1872 d2c639d6 blueswir1
1873 d2c639d6 blueswir1
The following options are specific to the ARM emulation:
1874 d2c639d6 blueswir1
1875 d2c639d6 blueswir1
@table @option
1876 d2c639d6 blueswir1
1877 d2c639d6 blueswir1
@item -semihosting
1878 d2c639d6 blueswir1
Enable semihosting syscall emulation.
1879 d2c639d6 blueswir1
1880 d2c639d6 blueswir1
On ARM this implements the "Angel" interface.
1881 d2c639d6 blueswir1
1882 d2c639d6 blueswir1
Note that this allows guest direct access to the host filesystem,
1883 d2c639d6 blueswir1
so should only be used with trusted guest OS.
1884 d2c639d6 blueswir1
1885 d2c639d6 blueswir1
@end table
1886 d2c639d6 blueswir1
1887 24d4de45 ths
@node ColdFire System emulator
1888 24d4de45 ths
@section ColdFire System emulator
1889 209a4e69 pbrook
1890 209a4e69 pbrook
Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
1891 209a4e69 pbrook
The emulator is able to boot a uClinux kernel.
1892 707e011b pbrook
1893 707e011b pbrook
The M5208EVB emulation includes the following devices:
1894 707e011b pbrook
1895 707e011b pbrook
@itemize @minus
1896 5fafdf24 ths
@item
1897 707e011b pbrook
MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
1898 707e011b pbrook
@item
1899 707e011b pbrook
Three Two on-chip UARTs.
1900 707e011b pbrook
@item
1901 707e011b pbrook
Fast Ethernet Controller (FEC)
1902 707e011b pbrook
@end itemize
1903 707e011b pbrook
1904 707e011b pbrook
The AN5206 emulation includes the following devices:
1905 209a4e69 pbrook
1906 209a4e69 pbrook
@itemize @minus
1907 5fafdf24 ths
@item
1908 209a4e69 pbrook
MCF5206 ColdFire V2 Microprocessor.
1909 209a4e69 pbrook
@item
1910 209a4e69 pbrook
Two on-chip UARTs.
1911 209a4e69 pbrook
@end itemize
1912 209a4e69 pbrook
1913 d2c639d6 blueswir1
@c man begin OPTIONS
1914 d2c639d6 blueswir1
1915 d2c639d6 blueswir1
The following options are specific to the ARM emulation:
1916 d2c639d6 blueswir1
1917 d2c639d6 blueswir1
@table @option
1918 d2c639d6 blueswir1
1919 d2c639d6 blueswir1
@item -semihosting
1920 d2c639d6 blueswir1
Enable semihosting syscall emulation.
1921 d2c639d6 blueswir1
1922 d2c639d6 blueswir1
On M68K this implements the "ColdFire GDB" interface used by libgloss.
1923 d2c639d6 blueswir1
1924 d2c639d6 blueswir1
Note that this allows guest direct access to the host filesystem,
1925 d2c639d6 blueswir1
so should only be used with trusted guest OS.
1926 d2c639d6 blueswir1
1927 d2c639d6 blueswir1
@end table
1928 d2c639d6 blueswir1
1929 5fafdf24 ths
@node QEMU User space emulator
1930 5fafdf24 ths
@chapter QEMU User space emulator
1931 83195237 bellard
1932 83195237 bellard
@menu
1933 83195237 bellard
* Supported Operating Systems ::
1934 83195237 bellard
* Linux User space emulator::
1935 83195237 bellard
* Mac OS X/Darwin User space emulator ::
1936 84778508 blueswir1
* BSD User space emulator ::
1937 83195237 bellard
@end menu
1938 83195237 bellard
1939 83195237 bellard
@node Supported Operating Systems
1940 83195237 bellard
@section Supported Operating Systems
1941 83195237 bellard
1942 83195237 bellard
The following OS are supported in user space emulation:
1943 83195237 bellard
1944 83195237 bellard
@itemize @minus
1945 83195237 bellard
@item
1946 4be456f1 ths
Linux (referred as qemu-linux-user)
1947 83195237 bellard
@item
1948 4be456f1 ths
Mac OS X/Darwin (referred as qemu-darwin-user)
1949 84778508 blueswir1
@item
1950 84778508 blueswir1
BSD (referred as qemu-bsd-user)
1951 83195237 bellard
@end itemize
1952 83195237 bellard
1953 83195237 bellard
@node Linux User space emulator
1954 83195237 bellard
@section Linux User space emulator
1955 386405f7 bellard
1956 debc7065 bellard
@menu
1957 debc7065 bellard
* Quick Start::
1958 debc7065 bellard
* Wine launch::
1959 debc7065 bellard
* Command line options::
1960 79737e4a pbrook
* Other binaries::
1961 debc7065 bellard
@end menu
1962 debc7065 bellard
1963 debc7065 bellard
@node Quick Start
1964 83195237 bellard
@subsection Quick Start
1965 df0f11a0 bellard
1966 1f673135 bellard
In order to launch a Linux process, QEMU needs the process executable
1967 5fafdf24 ths
itself and all the target (x86) dynamic libraries used by it.
1968 386405f7 bellard
1969 1f673135 bellard
@itemize
1970 386405f7 bellard
1971 1f673135 bellard
@item On x86, you can just try to launch any process by using the native
1972 1f673135 bellard
libraries:
1973 386405f7 bellard
1974 5fafdf24 ths
@example
1975 1f673135 bellard
qemu-i386 -L / /bin/ls
1976 1f673135 bellard
@end example
1977 386405f7 bellard
1978 1f673135 bellard
@code{-L /} tells that the x86 dynamic linker must be searched with a
1979 1f673135 bellard
@file{/} prefix.
1980 386405f7 bellard
1981 dbcf5e82 ths
@item Since QEMU is also a linux process, you can launch qemu with
1982 dbcf5e82 ths
qemu (NOTE: you can only do that if you compiled QEMU from the sources):
1983 386405f7 bellard
1984 5fafdf24 ths
@example
1985 1f673135 bellard
qemu-i386 -L / qemu-i386 -L / /bin/ls
1986 1f673135 bellard
@end example
1987 386405f7 bellard
1988 1f673135 bellard
@item On non x86 CPUs, you need first to download at least an x86 glibc
1989 1f673135 bellard
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
1990 1f673135 bellard
@code{LD_LIBRARY_PATH} is not set:
1991 df0f11a0 bellard
1992 1f673135 bellard
@example
1993 5fafdf24 ths
unset LD_LIBRARY_PATH
1994 1f673135 bellard
@end example
1995 1eb87257 bellard
1996 1f673135 bellard
Then you can launch the precompiled @file{ls} x86 executable:
1997 1eb87257 bellard
1998 1f673135 bellard
@example
1999 1f673135 bellard
qemu-i386 tests/i386/ls
2000 1f673135 bellard
@end example
2001 1f673135 bellard
You can look at @file{qemu-binfmt-conf.sh} so that
2002 1f673135 bellard
QEMU is automatically launched by the Linux kernel when you try to
2003 1f673135 bellard
launch x86 executables. It requires the @code{binfmt_misc} module in the
2004 1f673135 bellard
Linux kernel.
2005 1eb87257 bellard
2006 1f673135 bellard
@item The x86 version of QEMU is also included. You can try weird things such as:
2007 1f673135 bellard
@example
2008 debc7065 bellard
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2009 debc7065 bellard
          /usr/local/qemu-i386/bin/ls-i386
2010 1f673135 bellard
@end example
2011 1eb20527 bellard
2012 1f673135 bellard
@end itemize
2013 1eb20527 bellard
2014 debc7065 bellard
@node Wine launch
2015 83195237 bellard
@subsection Wine launch
2016 1eb20527 bellard
2017 1f673135 bellard
@itemize
2018 386405f7 bellard
2019 1f673135 bellard
@item Ensure that you have a working QEMU with the x86 glibc
2020 1f673135 bellard
distribution (see previous section). In order to verify it, you must be
2021 1f673135 bellard
able to do:
2022 386405f7 bellard
2023 1f673135 bellard
@example
2024 1f673135 bellard
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2025 1f673135 bellard
@end example
2026 386405f7 bellard
2027 1f673135 bellard
@item Download the binary x86 Wine install
2028 5fafdf24 ths
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2029 386405f7 bellard
2030 1f673135 bellard
@item Configure Wine on your account. Look at the provided script
2031 debc7065 bellard
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2032 1f673135 bellard
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2033 386405f7 bellard
2034 1f673135 bellard
@item Then you can try the example @file{putty.exe}:
2035 386405f7 bellard
2036 1f673135 bellard
@example
2037 debc7065 bellard
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2038 debc7065 bellard
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2039 1f673135 bellard
@end example
2040 386405f7 bellard
2041 1f673135 bellard
@end itemize
2042 fd429f2f bellard
2043 debc7065 bellard
@node Command line options
2044 83195237 bellard
@subsection Command line options
2045 1eb20527 bellard
2046 1f673135 bellard
@example
2047 379f6698 Paul Brook
usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] program [arguments...]
2048 1f673135 bellard
@end example
2049 1eb20527 bellard
2050 1f673135 bellard
@table @option
2051 1f673135 bellard
@item -h
2052 1f673135 bellard
Print the help
2053 3b46e624 ths
@item -L path
2054 1f673135 bellard
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2055 1f673135 bellard
@item -s size
2056 1f673135 bellard
Set the x86 stack size in bytes (default=524288)
2057 34a3d239 blueswir1
@item -cpu model
2058 34a3d239 blueswir1
Select CPU model (-cpu ? for list and additional feature selection)
2059 379f6698 Paul Brook
@item -B offset
2060 379f6698 Paul Brook
Offset guest address by the specified number of bytes.  This is useful when
2061 379f6698 Paul Brook
the address region rewuired by guest applications is reserved on the host.
2062 379f6698 Paul Brook
Ths option is currently only supported on some hosts.
2063 386405f7 bellard
@end table
2064 386405f7 bellard
2065 1f673135 bellard
Debug options:
2066 386405f7 bellard
2067 1f673135 bellard
@table @option
2068 1f673135 bellard
@item -d
2069 1f673135 bellard
Activate log (logfile=/tmp/qemu.log)
2070 1f673135 bellard
@item -p pagesize
2071 1f673135 bellard
Act as if the host page size was 'pagesize' bytes
2072 34a3d239 blueswir1
@item -g port
2073 34a3d239 blueswir1
Wait gdb connection to port
2074 1b530a6d aurel32
@item -singlestep
2075 1b530a6d aurel32
Run the emulation in single step mode.
2076 1f673135 bellard
@end table
2077 386405f7 bellard
2078 b01bcae6 balrog
Environment variables:
2079 b01bcae6 balrog
2080 b01bcae6 balrog
@table @env
2081 b01bcae6 balrog
@item QEMU_STRACE
2082 b01bcae6 balrog
Print system calls and arguments similar to the 'strace' program
2083 b01bcae6 balrog
(NOTE: the actual 'strace' program will not work because the user
2084 b01bcae6 balrog
space emulator hasn't implemented ptrace).  At the moment this is
2085 b01bcae6 balrog
incomplete.  All system calls that don't have a specific argument
2086 b01bcae6 balrog
format are printed with information for six arguments.  Many
2087 b01bcae6 balrog
flag-style arguments don't have decoders and will show up as numbers.
2088 5cfdf930 ths
@end table
2089 b01bcae6 balrog
2090 79737e4a pbrook
@node Other binaries
2091 83195237 bellard
@subsection Other binaries
2092 79737e4a pbrook
2093 79737e4a pbrook
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2094 79737e4a pbrook
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2095 79737e4a pbrook
configurations), and arm-uclinux bFLT format binaries.
2096 79737e4a pbrook
2097 e6e5906b pbrook
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2098 e6e5906b pbrook
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2099 e6e5906b pbrook
coldfire uClinux bFLT format binaries.
2100 e6e5906b pbrook
2101 79737e4a pbrook
The binary format is detected automatically.
2102 79737e4a pbrook
2103 34a3d239 blueswir1
@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2104 34a3d239 blueswir1
2105 a785e42e blueswir1
@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2106 a785e42e blueswir1
(Sparc64 CPU, 32 bit ABI).
2107 a785e42e blueswir1
2108 a785e42e blueswir1
@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2109 a785e42e blueswir1
SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2110 a785e42e blueswir1
2111 83195237 bellard
@node Mac OS X/Darwin User space emulator
2112 83195237 bellard
@section Mac OS X/Darwin User space emulator
2113 83195237 bellard
2114 83195237 bellard
@menu
2115 83195237 bellard
* Mac OS X/Darwin Status::
2116 83195237 bellard
* Mac OS X/Darwin Quick Start::
2117 83195237 bellard
* Mac OS X/Darwin Command line options::
2118 83195237 bellard
@end menu
2119 83195237 bellard
2120 83195237 bellard
@node Mac OS X/Darwin Status
2121 83195237 bellard
@subsection Mac OS X/Darwin Status
2122 83195237 bellard
2123 83195237 bellard
@itemize @minus
2124 83195237 bellard
@item
2125 83195237 bellard
target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2126 83195237 bellard
@item
2127 83195237 bellard
target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2128 83195237 bellard
@item
2129 dbcf5e82 ths
target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2130 83195237 bellard
@item
2131 83195237 bellard
target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2132 83195237 bellard
@end itemize
2133 83195237 bellard
2134 83195237 bellard
[1] If you're host commpage can be executed by qemu.
2135 83195237 bellard
2136 83195237 bellard
@node Mac OS X/Darwin Quick Start
2137 83195237 bellard
@subsection Quick Start
2138 83195237 bellard
2139 83195237 bellard
In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2140 83195237 bellard
itself and all the target dynamic libraries used by it. If you don't have the FAT
2141 83195237 bellard
libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2142 83195237 bellard
CD or compile them by hand.
2143 83195237 bellard
2144 83195237 bellard
@itemize
2145 83195237 bellard
2146 83195237 bellard
@item On x86, you can just try to launch any process by using the native
2147 83195237 bellard
libraries:
2148 83195237 bellard
2149 5fafdf24 ths
@example
2150 dbcf5e82 ths
qemu-i386 /bin/ls
2151 83195237 bellard
@end example
2152 83195237 bellard
2153 83195237 bellard
or to run the ppc version of the executable:
2154 83195237 bellard
2155 5fafdf24 ths
@example
2156 dbcf5e82 ths
qemu-ppc /bin/ls
2157 83195237 bellard
@end example
2158 83195237 bellard
2159 83195237 bellard
@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2160 83195237 bellard
are installed:
2161 83195237 bellard
2162 5fafdf24 ths
@example
2163 dbcf5e82 ths
qemu-i386 -L /opt/x86_root/ /bin/ls
2164 83195237 bellard
@end example
2165 83195237 bellard
2166 83195237 bellard
@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2167 83195237 bellard
@file{/opt/x86_root/usr/bin/dyld}.
2168 83195237 bellard
2169 83195237 bellard
@end itemize
2170 83195237 bellard
2171 83195237 bellard
@node Mac OS X/Darwin Command line options
2172 83195237 bellard
@subsection Command line options
2173 83195237 bellard
2174 83195237 bellard
@example
2175 dbcf5e82 ths
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2176 83195237 bellard
@end example
2177 83195237 bellard
2178 83195237 bellard
@table @option
2179 83195237 bellard
@item -h
2180 83195237 bellard
Print the help
2181 3b46e624 ths
@item -L path
2182 83195237 bellard
Set the library root path (default=/)
2183 83195237 bellard
@item -s size
2184 83195237 bellard
Set the stack size in bytes (default=524288)
2185 83195237 bellard
@end table
2186 83195237 bellard
2187 83195237 bellard
Debug options:
2188 83195237 bellard
2189 83195237 bellard
@table @option
2190 83195237 bellard
@item -d
2191 83195237 bellard
Activate log (logfile=/tmp/qemu.log)
2192 83195237 bellard
@item -p pagesize
2193 83195237 bellard
Act as if the host page size was 'pagesize' bytes
2194 1b530a6d aurel32
@item -singlestep
2195 1b530a6d aurel32
Run the emulation in single step mode.
2196 83195237 bellard
@end table
2197 83195237 bellard
2198 84778508 blueswir1
@node BSD User space emulator
2199 84778508 blueswir1
@section BSD User space emulator
2200 84778508 blueswir1
2201 84778508 blueswir1
@menu
2202 84778508 blueswir1
* BSD Status::
2203 84778508 blueswir1
* BSD Quick Start::
2204 84778508 blueswir1
* BSD Command line options::
2205 84778508 blueswir1
@end menu
2206 84778508 blueswir1
2207 84778508 blueswir1
@node BSD Status
2208 84778508 blueswir1
@subsection BSD Status
2209 84778508 blueswir1
2210 84778508 blueswir1
@itemize @minus
2211 84778508 blueswir1
@item
2212 84778508 blueswir1
target Sparc64 on Sparc64: Some trivial programs work.
2213 84778508 blueswir1
@end itemize
2214 84778508 blueswir1
2215 84778508 blueswir1
@node BSD Quick Start
2216 84778508 blueswir1
@subsection Quick Start
2217 84778508 blueswir1
2218 84778508 blueswir1
In order to launch a BSD process, QEMU needs the process executable
2219 84778508 blueswir1
itself and all the target dynamic libraries used by it.
2220 84778508 blueswir1
2221 84778508 blueswir1
@itemize
2222 84778508 blueswir1
2223 84778508 blueswir1
@item On Sparc64, you can just try to launch any process by using the native
2224 84778508 blueswir1
libraries:
2225 84778508 blueswir1
2226 84778508 blueswir1
@example
2227 84778508 blueswir1
qemu-sparc64 /bin/ls
2228 84778508 blueswir1
@end example
2229 84778508 blueswir1
2230 84778508 blueswir1
@end itemize
2231 84778508 blueswir1
2232 84778508 blueswir1
@node BSD Command line options
2233 84778508 blueswir1
@subsection Command line options
2234 84778508 blueswir1
2235 84778508 blueswir1
@example
2236 84778508 blueswir1
usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2237 84778508 blueswir1
@end example
2238 84778508 blueswir1
2239 84778508 blueswir1
@table @option
2240 84778508 blueswir1
@item -h
2241 84778508 blueswir1
Print the help
2242 84778508 blueswir1
@item -L path
2243 84778508 blueswir1
Set the library root path (default=/)
2244 84778508 blueswir1
@item -s size
2245 84778508 blueswir1
Set the stack size in bytes (default=524288)
2246 84778508 blueswir1
@item -bsd type
2247 84778508 blueswir1
Set the type of the emulated BSD Operating system. Valid values are
2248 84778508 blueswir1
FreeBSD, NetBSD and OpenBSD (default).
2249 84778508 blueswir1
@end table
2250 84778508 blueswir1
2251 84778508 blueswir1
Debug options:
2252 84778508 blueswir1
2253 84778508 blueswir1
@table @option
2254 84778508 blueswir1
@item -d
2255 84778508 blueswir1
Activate log (logfile=/tmp/qemu.log)
2256 84778508 blueswir1
@item -p pagesize
2257 84778508 blueswir1
Act as if the host page size was 'pagesize' bytes
2258 1b530a6d aurel32
@item -singlestep
2259 1b530a6d aurel32
Run the emulation in single step mode.
2260 84778508 blueswir1
@end table
2261 84778508 blueswir1
2262 15a34c63 bellard
@node compilation
2263 15a34c63 bellard
@chapter Compilation from the sources
2264 15a34c63 bellard
2265 debc7065 bellard
@menu
2266 debc7065 bellard
* Linux/Unix::
2267 debc7065 bellard
* Windows::
2268 debc7065 bellard
* Cross compilation for Windows with Linux::
2269 debc7065 bellard
* Mac OS X::
2270 debc7065 bellard
@end menu
2271 debc7065 bellard
2272 debc7065 bellard
@node Linux/Unix
2273 7c3fc84d bellard
@section Linux/Unix
2274 7c3fc84d bellard
2275 7c3fc84d bellard
@subsection Compilation
2276 7c3fc84d bellard
2277 7c3fc84d bellard
First you must decompress the sources:
2278 7c3fc84d bellard
@example
2279 7c3fc84d bellard
cd /tmp
2280 7c3fc84d bellard
tar zxvf qemu-x.y.z.tar.gz
2281 7c3fc84d bellard
cd qemu-x.y.z
2282 7c3fc84d bellard
@end example
2283 7c3fc84d bellard
2284 7c3fc84d bellard
Then you configure QEMU and build it (usually no options are needed):
2285 7c3fc84d bellard
@example
2286 7c3fc84d bellard
./configure
2287 7c3fc84d bellard
make
2288 7c3fc84d bellard
@end example
2289 7c3fc84d bellard
2290 7c3fc84d bellard
Then type as root user:
2291 7c3fc84d bellard
@example
2292 7c3fc84d bellard
make install
2293 7c3fc84d bellard
@end example
2294 7c3fc84d bellard
to install QEMU in @file{/usr/local}.
2295 7c3fc84d bellard
2296 debc7065 bellard
@node Windows
2297 15a34c63 bellard
@section Windows
2298 15a34c63 bellard
2299 15a34c63 bellard
@itemize
2300 15a34c63 bellard
@item Install the current versions of MSYS and MinGW from
2301 15a34c63 bellard
@url{http://www.mingw.org/}. You can find detailed installation
2302 15a34c63 bellard
instructions in the download section and the FAQ.
2303 15a34c63 bellard
2304 5fafdf24 ths
@item Download
2305 15a34c63 bellard
the MinGW development library of SDL 1.2.x
2306 debc7065 bellard
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2307 15a34c63 bellard
@url{http://www.libsdl.org}. Unpack it in a temporary place, and
2308 15a34c63 bellard
unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
2309 15a34c63 bellard
directory. Edit the @file{sdl-config} script so that it gives the
2310 15a34c63 bellard
correct SDL directory when invoked.
2311 15a34c63 bellard
2312 15a34c63 bellard
@item Extract the current version of QEMU.
2313 5fafdf24 ths
2314 15a34c63 bellard
@item Start the MSYS shell (file @file{msys.bat}).
2315 15a34c63 bellard
2316 5fafdf24 ths
@item Change to the QEMU directory. Launch @file{./configure} and
2317 15a34c63 bellard
@file{make}.  If you have problems using SDL, verify that
2318 15a34c63 bellard
@file{sdl-config} can be launched from the MSYS command line.
2319 15a34c63 bellard
2320 5fafdf24 ths
@item You can install QEMU in @file{Program Files/Qemu} by typing
2321 15a34c63 bellard
@file{make install}. Don't forget to copy @file{SDL.dll} in
2322 15a34c63 bellard
@file{Program Files/Qemu}.
2323 15a34c63 bellard
2324 15a34c63 bellard
@end itemize
2325 15a34c63 bellard
2326 debc7065 bellard
@node Cross compilation for Windows with Linux
2327 15a34c63 bellard
@section Cross compilation for Windows with Linux
2328 15a34c63 bellard
2329 15a34c63 bellard
@itemize
2330 15a34c63 bellard
@item
2331 15a34c63 bellard
Install the MinGW cross compilation tools available at
2332 15a34c63 bellard
@url{http://www.mingw.org/}.
2333 15a34c63 bellard
2334 5fafdf24 ths
@item
2335 15a34c63 bellard
Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
2336 15a34c63 bellard
unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
2337 15a34c63 bellard
variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
2338 15a34c63 bellard
the QEMU configuration script.
2339 15a34c63 bellard
2340 5fafdf24 ths
@item
2341 15a34c63 bellard
Configure QEMU for Windows cross compilation:
2342 15a34c63 bellard
@example
2343 15a34c63 bellard
./configure --enable-mingw32
2344 15a34c63 bellard
@end example
2345 15a34c63 bellard
If necessary, you can change the cross-prefix according to the prefix
2346 4be456f1 ths
chosen for the MinGW tools with --cross-prefix. You can also use
2347 15a34c63 bellard
--prefix to set the Win32 install path.
2348 15a34c63 bellard
2349 5fafdf24 ths
@item You can install QEMU in the installation directory by typing
2350 15a34c63 bellard
@file{make install}. Don't forget to copy @file{SDL.dll} in the
2351 5fafdf24 ths
installation directory.
2352 15a34c63 bellard
2353 15a34c63 bellard
@end itemize
2354 15a34c63 bellard
2355 15a34c63 bellard
Note: Currently, Wine does not seem able to launch
2356 15a34c63 bellard
QEMU for Win32.
2357 15a34c63 bellard
2358 debc7065 bellard
@node Mac OS X
2359 15a34c63 bellard
@section Mac OS X
2360 15a34c63 bellard
2361 15a34c63 bellard
The Mac OS X patches are not fully merged in QEMU, so you should look
2362 15a34c63 bellard
at the QEMU mailing list archive to have all the necessary
2363 15a34c63 bellard
information.
2364 15a34c63 bellard
2365 debc7065 bellard
@node Index
2366 debc7065 bellard
@chapter Index
2367 debc7065 bellard
@printindex cp
2368 debc7065 bellard
2369 debc7065 bellard
@bye