Statistics
| Branch: | Revision:

root / hw / onenand.c @ baaa86d9

History | View | Annotate | Download (21.4 kB)

1
/*
2
 * OneNAND flash memories emulation.
3
 *
4
 * Copyright (C) 2008 Nokia Corporation
5
 * Written by Andrzej Zaborowski <andrew@openedhand.com>
6
 *
7
 * This program is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU General Public License as
9
 * published by the Free Software Foundation; either version 2 or
10
 * (at your option) version 3 of the License.
11
 *
12
 * This program is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
 * GNU General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU General Public License along
18
 * with this program; if not, see <http://www.gnu.org/licenses/>.
19
 */
20

    
21
#include "qemu-common.h"
22
#include "hw.h"
23
#include "flash.h"
24
#include "irq.h"
25
#include "blockdev.h"
26

    
27
/* 11 for 2kB-page OneNAND ("2nd generation") and 10 for 1kB-page chips */
28
#define PAGE_SHIFT        11
29

    
30
/* Fixed */
31
#define BLOCK_SHIFT        (PAGE_SHIFT + 6)
32

    
33
typedef struct {
34
    struct {
35
        uint16_t man;
36
        uint16_t dev;
37
        uint16_t ver;
38
    } id;
39
    int shift;
40
    target_phys_addr_t base;
41
    qemu_irq intr;
42
    qemu_irq rdy;
43
    BlockDriverState *bdrv;
44
    BlockDriverState *bdrv_cur;
45
    uint8_t *image;
46
    uint8_t *otp;
47
    uint8_t *current;
48
    ram_addr_t ram;
49
    uint8_t *boot[2];
50
    uint8_t *data[2][2];
51
    int iomemtype;
52
    int cycle;
53
    int otpmode;
54

    
55
    uint16_t addr[8];
56
    uint16_t unladdr[8];
57
    int bufaddr;
58
    int count;
59
    uint16_t command;
60
    uint16_t config[2];
61
    uint16_t status;
62
    uint16_t intstatus;
63
    uint16_t wpstatus;
64

    
65
    ECCState ecc;
66

    
67
    int density_mask;
68
    int secs;
69
    int secs_cur;
70
    int blocks;
71
    uint8_t *blockwp;
72
} OneNANDState;
73

    
74
enum {
75
    ONEN_BUF_BLOCK = 0,
76
    ONEN_BUF_BLOCK2 = 1,
77
    ONEN_BUF_DEST_BLOCK = 2,
78
    ONEN_BUF_DEST_PAGE = 3,
79
    ONEN_BUF_PAGE = 7,
80
};
81

    
82
enum {
83
    ONEN_ERR_CMD = 1 << 10,
84
    ONEN_ERR_ERASE = 1 << 11,
85
    ONEN_ERR_PROG = 1 << 12,
86
    ONEN_ERR_LOAD = 1 << 13,
87
};
88

    
89
enum {
90
    ONEN_INT_RESET = 1 << 4,
91
    ONEN_INT_ERASE = 1 << 5,
92
    ONEN_INT_PROG = 1 << 6,
93
    ONEN_INT_LOAD = 1 << 7,
94
    ONEN_INT = 1 << 15,
95
};
96

    
97
enum {
98
    ONEN_LOCK_LOCKTIGHTEN = 1 << 0,
99
    ONEN_LOCK_LOCKED = 1 << 1,
100
    ONEN_LOCK_UNLOCKED = 1 << 2,
101
};
102

    
103
void onenand_base_update(void *opaque, target_phys_addr_t new)
104
{
105
    OneNANDState *s = (OneNANDState *) opaque;
106

    
107
    s->base = new;
108

    
109
    /* XXX: We should use IO_MEM_ROMD but we broke it earlier...
110
     * Both 0x0000 ... 0x01ff and 0x8000 ... 0x800f can be used to
111
     * write boot commands.  Also take note of the BWPS bit.  */
112
    cpu_register_physical_memory(s->base + (0x0000 << s->shift),
113
                    0x0200 << s->shift, s->iomemtype);
114
    cpu_register_physical_memory(s->base + (0x0200 << s->shift),
115
                    0xbe00 << s->shift,
116
                    (s->ram +(0x0200 << s->shift)) | IO_MEM_RAM);
117
    if (s->iomemtype)
118
        cpu_register_physical_memory_offset(s->base + (0xc000 << s->shift),
119
                    0x4000 << s->shift, s->iomemtype, (0xc000 << s->shift));
120
}
121

    
122
void onenand_base_unmap(void *opaque)
123
{
124
    OneNANDState *s = (OneNANDState *) opaque;
125

    
126
    cpu_register_physical_memory(s->base,
127
                    0x10000 << s->shift, IO_MEM_UNASSIGNED);
128
}
129

    
130
static void onenand_intr_update(OneNANDState *s)
131
{
132
    qemu_set_irq(s->intr, ((s->intstatus >> 15) ^ (~s->config[0] >> 6)) & 1);
133
}
134

    
135
/* Hot reset (Reset OneNAND command) or warm reset (RP pin low) */
136
static void onenand_reset(OneNANDState *s, int cold)
137
{
138
    memset(&s->addr, 0, sizeof(s->addr));
139
    s->command = 0;
140
    s->count = 1;
141
    s->bufaddr = 0;
142
    s->config[0] = 0x40c0;
143
    s->config[1] = 0x0000;
144
    onenand_intr_update(s);
145
    qemu_irq_raise(s->rdy);
146
    s->status = 0x0000;
147
    s->intstatus = cold ? 0x8080 : 0x8010;
148
    s->unladdr[0] = 0;
149
    s->unladdr[1] = 0;
150
    s->wpstatus = 0x0002;
151
    s->cycle = 0;
152
    s->otpmode = 0;
153
    s->bdrv_cur = s->bdrv;
154
    s->current = s->image;
155
    s->secs_cur = s->secs;
156

    
157
    if (cold) {
158
        /* Lock the whole flash */
159
        memset(s->blockwp, ONEN_LOCK_LOCKED, s->blocks);
160

    
161
        if (s->bdrv && bdrv_read(s->bdrv, 0, s->boot[0], 8) < 0)
162
            hw_error("%s: Loading the BootRAM failed.\n", __FUNCTION__);
163
    }
164
}
165

    
166
static inline int onenand_load_main(OneNANDState *s, int sec, int secn,
167
                void *dest)
168
{
169
    if (s->bdrv_cur)
170
        return bdrv_read(s->bdrv_cur, sec, dest, secn) < 0;
171
    else if (sec + secn > s->secs_cur)
172
        return 1;
173

    
174
    memcpy(dest, s->current + (sec << 9), secn << 9);
175

    
176
    return 0;
177
}
178

    
179
static inline int onenand_prog_main(OneNANDState *s, int sec, int secn,
180
                void *src)
181
{
182
    int result = 0;
183

    
184
    if (secn > 0) {
185
        uint32_t size = (uint32_t) secn * 512;
186
        const uint8_t *sp = (const uint8_t *) src;
187
        uint8_t *dp = 0;
188
        if (s->bdrv_cur) {
189
            dp = g_malloc(size);
190
            if (!dp || bdrv_read(s->bdrv_cur, sec, dp, secn) < 0) {
191
                result = 1;
192
            }
193
        } else {
194
            if (sec + secn > s->secs_cur) {
195
                result = 1;
196
            } else {
197
                dp = (uint8_t *) s->current + (sec << 9);
198
            }
199
        }
200
        if (!result) {
201
            uint32_t i;
202
            for (i = 0; i < size; i++) {
203
                dp[i] &= sp[i];
204
            }
205
            if (s->bdrv_cur) {
206
                result = bdrv_write(s->bdrv_cur, sec, dp, secn) < 0;
207
            }
208
        }
209
        if (dp && s->bdrv_cur) {
210
            g_free(dp);
211
        }
212
    }
213

    
214
    return result;
215
}
216

    
217
static inline int onenand_load_spare(OneNANDState *s, int sec, int secn,
218
                void *dest)
219
{
220
    uint8_t buf[512];
221

    
222
    if (s->bdrv_cur) {
223
        if (bdrv_read(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0)
224
            return 1;
225
        memcpy(dest, buf + ((sec & 31) << 4), secn << 4);
226
    } else if (sec + secn > s->secs_cur)
227
        return 1;
228
    else
229
        memcpy(dest, s->current + (s->secs_cur << 9) + (sec << 4), secn << 4);
230
 
231
    return 0;
232
}
233

    
234
static inline int onenand_prog_spare(OneNANDState *s, int sec, int secn,
235
                void *src)
236
{
237
    int result = 0;
238
    if (secn > 0) {
239
        const uint8_t *sp = (const uint8_t *) src;
240
        uint8_t *dp = 0, *dpp = 0;
241
        if (s->bdrv_cur) {
242
            dp = g_malloc(512);
243
            if (!dp || bdrv_read(s->bdrv_cur,
244
                                s->secs_cur + (sec >> 5),
245
                                dp, 1) < 0) {
246
                result = 1;
247
            } else {
248
                dpp = dp + ((sec & 31) << 4);
249
            }
250
        } else {
251
            if (sec + secn > s->secs_cur) {
252
                result = 1;
253
            } else {
254
                dpp = s->current + (s->secs_cur << 9) + (sec << 4);
255
            }
256
        }
257
        if (!result) {
258
            uint32_t i;
259
            for (i = 0; i < (secn << 4); i++) {
260
                dpp[i] &= sp[i];
261
            }
262
            if (s->bdrv_cur) {
263
                result = bdrv_write(s->bdrv_cur, s->secs_cur + (sec >> 5),
264
                                dp, 1) < 0;
265
            }
266
        }
267
        if (dp) {
268
            g_free(dp);
269
        }
270
    }
271
    return result;
272
}
273

    
274
static inline int onenand_erase(OneNANDState *s, int sec, int num)
275
{
276
    uint8_t *blankbuf, *tmpbuf;
277
    blankbuf = g_malloc(512);
278
    if (!blankbuf) {
279
        return 1;
280
    }
281
    tmpbuf = g_malloc(512);
282
    if (!tmpbuf) {
283
        g_free(blankbuf);
284
        return 1;
285
    }
286
    memset(blankbuf, 0xff, 512);
287
    for (; num > 0; num--, sec++) {
288
        if (s->bdrv_cur) {
289
            int erasesec = s->secs_cur + (sec >> 5);
290
            if (bdrv_write(s->bdrv_cur, sec, blankbuf, 1)) {
291
                goto fail;
292
            }
293
            if (bdrv_read(s->bdrv_cur, erasesec, tmpbuf, 1) < 0) {
294
                goto fail;
295
            }
296
            memcpy(tmpbuf + ((sec & 31) << 4), blankbuf, 1 << 4);
297
            if (bdrv_write(s->bdrv_cur, erasesec, tmpbuf, 1) < 0) {
298
                goto fail;
299
            }
300
        } else {
301
            if (sec + 1 > s->secs_cur) {
302
                goto fail;
303
            }
304
            memcpy(s->current + (sec << 9), blankbuf, 512);
305
            memcpy(s->current + (s->secs_cur << 9) + (sec << 4),
306
                   blankbuf, 1 << 4);
307
        }
308
    }
309

    
310
    g_free(tmpbuf);
311
    g_free(blankbuf);
312
    return 0;
313

    
314
fail:
315
    g_free(tmpbuf);
316
    g_free(blankbuf);
317
    return 1;
318
}
319

    
320
static void onenand_command(OneNANDState *s, int cmd)
321
{
322
    int b;
323
    int sec;
324
    void *buf;
325
#define SETADDR(block, page)                        \
326
    sec = (s->addr[page] & 3) +                        \
327
            ((((s->addr[page] >> 2) & 0x3f) +        \
328
              (((s->addr[block] & 0xfff) |        \
329
                (s->addr[block] >> 15 ?                \
330
                 s->density_mask : 0)) << 6)) << (PAGE_SHIFT - 9));
331
#define SETBUF_M()                                \
332
    buf = (s->bufaddr & 8) ?                        \
333
            s->data[(s->bufaddr >> 2) & 1][0] : s->boot[0];        \
334
    buf += (s->bufaddr & 3) << 9;
335
#define SETBUF_S()                                \
336
    buf = (s->bufaddr & 8) ?                        \
337
            s->data[(s->bufaddr >> 2) & 1][1] : s->boot[1];        \
338
    buf += (s->bufaddr & 3) << 4;
339

    
340
    switch (cmd) {
341
    case 0x00:        /* Load single/multiple sector data unit into buffer */
342
        SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
343

    
344
        SETBUF_M()
345
        if (onenand_load_main(s, sec, s->count, buf))
346
            s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
347

    
348
#if 0
349
        SETBUF_S()
350
        if (onenand_load_spare(s, sec, s->count, buf))
351
            s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
352
#endif
353

    
354
        /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
355
         * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
356
         * then we need two split the read/write into two chunks.
357
         */
358
        s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
359
        break;
360
    case 0x13:        /* Load single/multiple spare sector into buffer */
361
        SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
362

    
363
        SETBUF_S()
364
        if (onenand_load_spare(s, sec, s->count, buf))
365
            s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
366

    
367
        /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
368
         * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
369
         * then we need two split the read/write into two chunks.
370
         */
371
        s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
372
        break;
373
    case 0x80:        /* Program single/multiple sector data unit from buffer */
374
        SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
375

    
376
        SETBUF_M()
377
        if (onenand_prog_main(s, sec, s->count, buf))
378
            s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
379

    
380
#if 0
381
        SETBUF_S()
382
        if (onenand_prog_spare(s, sec, s->count, buf))
383
            s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
384
#endif
385

    
386
        /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
387
         * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
388
         * then we need two split the read/write into two chunks.
389
         */
390
        s->intstatus |= ONEN_INT | ONEN_INT_PROG;
391
        break;
392
    case 0x1a:        /* Program single/multiple spare area sector from buffer */
393
        SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
394

    
395
        SETBUF_S()
396
        if (onenand_prog_spare(s, sec, s->count, buf))
397
            s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
398

    
399
        /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
400
         * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
401
         * then we need two split the read/write into two chunks.
402
         */
403
        s->intstatus |= ONEN_INT | ONEN_INT_PROG;
404
        break;
405
    case 0x1b:        /* Copy-back program */
406
        SETBUF_S()
407

    
408
        SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
409
        if (onenand_load_main(s, sec, s->count, buf))
410
            s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
411

    
412
        SETADDR(ONEN_BUF_DEST_BLOCK, ONEN_BUF_DEST_PAGE)
413
        if (onenand_prog_main(s, sec, s->count, buf))
414
            s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
415

    
416
        /* TODO: spare areas */
417

    
418
        s->intstatus |= ONEN_INT | ONEN_INT_PROG;
419
        break;
420

    
421
    case 0x23:        /* Unlock NAND array block(s) */
422
        s->intstatus |= ONEN_INT;
423

    
424
        /* XXX the previous (?) area should be locked automatically */
425
        for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
426
            if (b >= s->blocks) {
427
                s->status |= ONEN_ERR_CMD;
428
                break;
429
            }
430
            if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
431
                break;
432

    
433
            s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
434
        }
435
        break;
436
    case 0x27:        /* Unlock All NAND array blocks */
437
        s->intstatus |= ONEN_INT;
438

    
439
        for (b = 0; b < s->blocks; b ++) {
440
            if (b >= s->blocks) {
441
                s->status |= ONEN_ERR_CMD;
442
                break;
443
            }
444
            if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
445
                break;
446

    
447
            s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
448
        }
449
        break;
450

    
451
    case 0x2a:        /* Lock NAND array block(s) */
452
        s->intstatus |= ONEN_INT;
453

    
454
        for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
455
            if (b >= s->blocks) {
456
                s->status |= ONEN_ERR_CMD;
457
                break;
458
            }
459
            if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
460
                break;
461

    
462
            s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKED;
463
        }
464
        break;
465
    case 0x2c:        /* Lock-tight NAND array block(s) */
466
        s->intstatus |= ONEN_INT;
467

    
468
        for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
469
            if (b >= s->blocks) {
470
                s->status |= ONEN_ERR_CMD;
471
                break;
472
            }
473
            if (s->blockwp[b] == ONEN_LOCK_UNLOCKED)
474
                continue;
475

    
476
            s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKTIGHTEN;
477
        }
478
        break;
479

    
480
    case 0x71:        /* Erase-Verify-Read */
481
        s->intstatus |= ONEN_INT;
482
        break;
483
    case 0x95:        /* Multi-block erase */
484
        qemu_irq_pulse(s->intr);
485
        /* Fall through.  */
486
    case 0x94:        /* Block erase */
487
        sec = ((s->addr[ONEN_BUF_BLOCK] & 0xfff) |
488
                        (s->addr[ONEN_BUF_BLOCK] >> 15 ? s->density_mask : 0))
489
                << (BLOCK_SHIFT - 9);
490
        if (onenand_erase(s, sec, 1 << (BLOCK_SHIFT - 9)))
491
            s->status |= ONEN_ERR_CMD | ONEN_ERR_ERASE;
492

    
493
        s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
494
        break;
495
    case 0xb0:        /* Erase suspend */
496
        break;
497
    case 0x30:        /* Erase resume */
498
        s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
499
        break;
500

    
501
    case 0xf0:        /* Reset NAND Flash core */
502
        onenand_reset(s, 0);
503
        break;
504
    case 0xf3:        /* Reset OneNAND */
505
        onenand_reset(s, 0);
506
        break;
507

    
508
    case 0x65:        /* OTP Access */
509
        s->intstatus |= ONEN_INT;
510
        s->bdrv_cur = NULL;
511
        s->current = s->otp;
512
        s->secs_cur = 1 << (BLOCK_SHIFT - 9);
513
        s->addr[ONEN_BUF_BLOCK] = 0;
514
        s->otpmode = 1;
515
        break;
516

    
517
    default:
518
        s->status |= ONEN_ERR_CMD;
519
        s->intstatus |= ONEN_INT;
520
        fprintf(stderr, "%s: unknown OneNAND command %x\n",
521
                        __FUNCTION__, cmd);
522
    }
523

    
524
    onenand_intr_update(s);
525
}
526

    
527
static uint32_t onenand_read(void *opaque, target_phys_addr_t addr)
528
{
529
    OneNANDState *s = (OneNANDState *) opaque;
530
    int offset = addr >> s->shift;
531

    
532
    switch (offset) {
533
    case 0x0000 ... 0xc000:
534
        return lduw_le_p(s->boot[0] + addr);
535

    
536
    case 0xf000:        /* Manufacturer ID */
537
        return s->id.man;
538
    case 0xf001:        /* Device ID */
539
        return s->id.dev;
540
    case 0xf002:        /* Version ID */
541
        return s->id.ver;
542
    /* TODO: get the following values from a real chip!  */
543
    case 0xf003:        /* Data Buffer size */
544
        return 1 << PAGE_SHIFT;
545
    case 0xf004:        /* Boot Buffer size */
546
        return 0x200;
547
    case 0xf005:        /* Amount of buffers */
548
        return 1 | (2 << 8);
549
    case 0xf006:        /* Technology */
550
        return 0;
551

    
552
    case 0xf100 ... 0xf107:        /* Start addresses */
553
        return s->addr[offset - 0xf100];
554

    
555
    case 0xf200:        /* Start buffer */
556
        return (s->bufaddr << 8) | ((s->count - 1) & (1 << (PAGE_SHIFT - 10)));
557

    
558
    case 0xf220:        /* Command */
559
        return s->command;
560
    case 0xf221:        /* System Configuration 1 */
561
        return s->config[0] & 0xffe0;
562
    case 0xf222:        /* System Configuration 2 */
563
        return s->config[1];
564

    
565
    case 0xf240:        /* Controller Status */
566
        return s->status;
567
    case 0xf241:        /* Interrupt */
568
        return s->intstatus;
569
    case 0xf24c:        /* Unlock Start Block Address */
570
        return s->unladdr[0];
571
    case 0xf24d:        /* Unlock End Block Address */
572
        return s->unladdr[1];
573
    case 0xf24e:        /* Write Protection Status */
574
        return s->wpstatus;
575

    
576
    case 0xff00:        /* ECC Status */
577
        return 0x00;
578
    case 0xff01:        /* ECC Result of main area data */
579
    case 0xff02:        /* ECC Result of spare area data */
580
    case 0xff03:        /* ECC Result of main area data */
581
    case 0xff04:        /* ECC Result of spare area data */
582
        hw_error("%s: imeplement ECC\n", __FUNCTION__);
583
        return 0x0000;
584
    }
585

    
586
    fprintf(stderr, "%s: unknown OneNAND register %x\n",
587
                    __FUNCTION__, offset);
588
    return 0;
589
}
590

    
591
static void onenand_write(void *opaque, target_phys_addr_t addr,
592
                uint32_t value)
593
{
594
    OneNANDState *s = (OneNANDState *) opaque;
595
    int offset = addr >> s->shift;
596
    int sec;
597

    
598
    switch (offset) {
599
    case 0x0000 ... 0x01ff:
600
    case 0x8000 ... 0x800f:
601
        if (s->cycle) {
602
            s->cycle = 0;
603

    
604
            if (value == 0x0000) {
605
                SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
606
                onenand_load_main(s, sec,
607
                                1 << (PAGE_SHIFT - 9), s->data[0][0]);
608
                s->addr[ONEN_BUF_PAGE] += 4;
609
                s->addr[ONEN_BUF_PAGE] &= 0xff;
610
            }
611
            break;
612
        }
613

    
614
        switch (value) {
615
        case 0x00f0:        /* Reset OneNAND */
616
            onenand_reset(s, 0);
617
            break;
618

    
619
        case 0x00e0:        /* Load Data into Buffer */
620
            s->cycle = 1;
621
            break;
622

    
623
        case 0x0090:        /* Read Identification Data */
624
            memset(s->boot[0], 0, 3 << s->shift);
625
            s->boot[0][0 << s->shift] = s->id.man & 0xff;
626
            s->boot[0][1 << s->shift] = s->id.dev & 0xff;
627
            s->boot[0][2 << s->shift] = s->wpstatus & 0xff;
628
            break;
629

    
630
        default:
631
            fprintf(stderr, "%s: unknown OneNAND boot command %x\n",
632
                            __FUNCTION__, value);
633
        }
634
        break;
635

    
636
    case 0xf100 ... 0xf107:        /* Start addresses */
637
        s->addr[offset - 0xf100] = value;
638
        break;
639

    
640
    case 0xf200:        /* Start buffer */
641
        s->bufaddr = (value >> 8) & 0xf;
642
        if (PAGE_SHIFT == 11)
643
            s->count = (value & 3) ?: 4;
644
        else if (PAGE_SHIFT == 10)
645
            s->count = (value & 1) ?: 2;
646
        break;
647

    
648
    case 0xf220:        /* Command */
649
        if (s->intstatus & (1 << 15))
650
            break;
651
        s->command = value;
652
        onenand_command(s, s->command);
653
        break;
654
    case 0xf221:        /* System Configuration 1 */
655
        s->config[0] = value;
656
        onenand_intr_update(s);
657
        qemu_set_irq(s->rdy, (s->config[0] >> 7) & 1);
658
        break;
659
    case 0xf222:        /* System Configuration 2 */
660
        s->config[1] = value;
661
        break;
662

    
663
    case 0xf241:        /* Interrupt */
664
        s->intstatus &= value;
665
        if ((1 << 15) & ~s->intstatus)
666
            s->status &= ~(ONEN_ERR_CMD | ONEN_ERR_ERASE |
667
                            ONEN_ERR_PROG | ONEN_ERR_LOAD);
668
        onenand_intr_update(s);
669
        break;
670
    case 0xf24c:        /* Unlock Start Block Address */
671
        s->unladdr[0] = value & (s->blocks - 1);
672
        /* For some reason we have to set the end address to by default
673
         * be same as start because the software forgets to write anything
674
         * in there.  */
675
        s->unladdr[1] = value & (s->blocks - 1);
676
        break;
677
    case 0xf24d:        /* Unlock End Block Address */
678
        s->unladdr[1] = value & (s->blocks - 1);
679
        break;
680

    
681
    default:
682
        fprintf(stderr, "%s: unknown OneNAND register %x\n",
683
                        __FUNCTION__, offset);
684
    }
685
}
686

    
687
static CPUReadMemoryFunc * const onenand_readfn[] = {
688
    onenand_read,        /* TODO */
689
    onenand_read,
690
    onenand_read,
691
};
692

    
693
static CPUWriteMemoryFunc * const onenand_writefn[] = {
694
    onenand_write,        /* TODO */
695
    onenand_write,
696
    onenand_write,
697
};
698

    
699
void *onenand_init(BlockDriverState *bdrv,
700
                uint16_t man_id, uint16_t dev_id, uint16_t ver_id,
701
                int regshift, qemu_irq irq)
702
{
703
    OneNANDState *s = (OneNANDState *) g_malloc0(sizeof(*s));
704
    uint32_t size = 1 << (24 + ((dev_id >> 4) & 7));
705
    void *ram;
706

    
707
    s->shift = regshift;
708
    s->intr = irq;
709
    s->rdy = NULL;
710
    s->id.man = man_id;
711
    s->id.dev = dev_id;
712
    s->id.ver = ver_id;
713
    s->blocks = size >> BLOCK_SHIFT;
714
    s->secs = size >> 9;
715
    s->blockwp = g_malloc(s->blocks);
716
    s->density_mask = (dev_id & 0x08) ? (1 << (6 + ((dev_id >> 4) & 7))) : 0;
717
    s->iomemtype = cpu_register_io_memory(onenand_readfn,
718
                    onenand_writefn, s, DEVICE_NATIVE_ENDIAN);
719
    s->bdrv = bdrv;
720
    if (!s->bdrv) {
721
        s->image = memset(g_malloc(size + (size >> 5)),
722
                        0xff, size + (size >> 5));
723
    }
724
    s->otp = memset(g_malloc((64 + 2) << PAGE_SHIFT),
725
                    0xff, (64 + 2) << PAGE_SHIFT);
726
    s->ram = qemu_ram_alloc(NULL, "onenand.ram", 0xc000 << s->shift);
727
    ram = qemu_get_ram_ptr(s->ram);
728
    s->boot[0] = ram + (0x0000 << s->shift);
729
    s->boot[1] = ram + (0x8000 << s->shift);
730
    s->data[0][0] = ram + ((0x0200 + (0 << (PAGE_SHIFT - 1))) << s->shift);
731
    s->data[0][1] = ram + ((0x8010 + (0 << (PAGE_SHIFT - 6))) << s->shift);
732
    s->data[1][0] = ram + ((0x0200 + (1 << (PAGE_SHIFT - 1))) << s->shift);
733
    s->data[1][1] = ram + ((0x8010 + (1 << (PAGE_SHIFT - 6))) << s->shift);
734

    
735
    onenand_reset(s, 1);
736

    
737
    return s;
738
}
739

    
740
void *onenand_raw_otp(void *opaque)
741
{
742
    OneNANDState *s = (OneNANDState *) opaque;
743

    
744
    return s->otp;
745
}