Statistics
| Branch: | Revision:

root / hw / spapr.c @ bc4caf49

History | View | Annotate | Download (25.2 kB)

1
/*
2
 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3
 *
4
 * Copyright (c) 2004-2007 Fabrice Bellard
5
 * Copyright (c) 2007 Jocelyn Mayer
6
 * Copyright (c) 2010 David Gibson, IBM Corporation.
7
 *
8
 * Permission is hereby granted, free of charge, to any person obtaining a copy
9
 * of this software and associated documentation files (the "Software"), to deal
10
 * in the Software without restriction, including without limitation the rights
11
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12
 * copies of the Software, and to permit persons to whom the Software is
13
 * furnished to do so, subject to the following conditions:
14
 *
15
 * The above copyright notice and this permission notice shall be included in
16
 * all copies or substantial portions of the Software.
17
 *
18
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24
 * THE SOFTWARE.
25
 *
26
 */
27
#include "sysemu.h"
28
#include "hw.h"
29
#include "elf.h"
30
#include "net.h"
31
#include "blockdev.h"
32
#include "cpus.h"
33
#include "kvm.h"
34
#include "kvm_ppc.h"
35

    
36
#include "hw/boards.h"
37
#include "hw/ppc.h"
38
#include "hw/loader.h"
39

    
40
#include "hw/spapr.h"
41
#include "hw/spapr_vio.h"
42
#include "hw/spapr_pci.h"
43
#include "hw/xics.h"
44

    
45
#include "kvm.h"
46
#include "kvm_ppc.h"
47
#include "pci.h"
48

    
49
#include "exec-memory.h"
50

    
51
#include <libfdt.h>
52

    
53
/* SLOF memory layout:
54
 *
55
 * SLOF raw image loaded at 0, copies its romfs right below the flat
56
 * device-tree, then position SLOF itself 31M below that
57
 *
58
 * So we set FW_OVERHEAD to 40MB which should account for all of that
59
 * and more
60
 *
61
 * We load our kernel at 4M, leaving space for SLOF initial image
62
 */
63
#define FDT_MAX_SIZE            0x10000
64
#define RTAS_MAX_SIZE           0x10000
65
#define FW_MAX_SIZE             0x400000
66
#define FW_FILE_NAME            "slof.bin"
67
#define FW_OVERHEAD             0x2800000
68
#define KERNEL_LOAD_ADDR        FW_MAX_SIZE
69

    
70
#define MIN_RMA_SLOF            128UL
71

    
72
#define TIMEBASE_FREQ           512000000ULL
73

    
74
#define MAX_CPUS                256
75
#define XICS_IRQS               1024
76

    
77
#define SPAPR_PCI_BUID          0x800000020000001ULL
78
#define SPAPR_PCI_MEM_WIN_ADDR  (0x10000000000ULL + 0xA0000000)
79
#define SPAPR_PCI_MEM_WIN_SIZE  0x20000000
80
#define SPAPR_PCI_IO_WIN_ADDR   (0x10000000000ULL + 0x80000000)
81

    
82
#define PHANDLE_XICP            0x00001111
83

    
84
sPAPREnvironment *spapr;
85

    
86
qemu_irq spapr_allocate_irq(uint32_t hint, uint32_t *irq_num,
87
                            enum xics_irq_type type)
88
{
89
    uint32_t irq;
90
    qemu_irq qirq;
91

    
92
    if (hint) {
93
        irq = hint;
94
        /* FIXME: we should probably check for collisions somehow */
95
    } else {
96
        irq = spapr->next_irq++;
97
    }
98

    
99
    qirq = xics_assign_irq(spapr->icp, irq, type);
100
    if (!qirq) {
101
        return NULL;
102
    }
103

    
104
    if (irq_num) {
105
        *irq_num = irq;
106
    }
107

    
108
    return qirq;
109
}
110

    
111
static int spapr_set_associativity(void *fdt, sPAPREnvironment *spapr)
112
{
113
    int ret = 0, offset;
114
    CPUPPCState *env;
115
    char cpu_model[32];
116
    int smt = kvmppc_smt_threads();
117

    
118
    assert(spapr->cpu_model);
119

    
120
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
121
        uint32_t associativity[] = {cpu_to_be32(0x5),
122
                                    cpu_to_be32(0x0),
123
                                    cpu_to_be32(0x0),
124
                                    cpu_to_be32(0x0),
125
                                    cpu_to_be32(env->numa_node),
126
                                    cpu_to_be32(env->cpu_index)};
127

    
128
        if ((env->cpu_index % smt) != 0) {
129
            continue;
130
        }
131

    
132
        snprintf(cpu_model, 32, "/cpus/%s@%x", spapr->cpu_model,
133
                 env->cpu_index);
134

    
135
        offset = fdt_path_offset(fdt, cpu_model);
136
        if (offset < 0) {
137
            return offset;
138
        }
139

    
140
        ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
141
                          sizeof(associativity));
142
        if (ret < 0) {
143
            return ret;
144
        }
145
    }
146
    return ret;
147
}
148

    
149
static void *spapr_create_fdt_skel(const char *cpu_model,
150
                                   target_phys_addr_t rma_size,
151
                                   target_phys_addr_t initrd_base,
152
                                   target_phys_addr_t initrd_size,
153
                                   target_phys_addr_t kernel_size,
154
                                   const char *boot_device,
155
                                   const char *kernel_cmdline,
156
                                   long hash_shift)
157
{
158
    void *fdt;
159
    CPUPPCState *env;
160
    uint64_t mem_reg_property[2];
161
    uint32_t start_prop = cpu_to_be32(initrd_base);
162
    uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
163
    uint32_t pft_size_prop[] = {0, cpu_to_be32(hash_shift)};
164
    char hypertas_prop[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt"
165
        "\0hcall-tce\0hcall-vio\0hcall-splpar\0hcall-bulk";
166
    uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
167
    int i;
168
    char *modelname;
169
    int smt = kvmppc_smt_threads();
170
    unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
171
    uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
172
    uint32_t associativity[] = {cpu_to_be32(0x4), cpu_to_be32(0x0),
173
                                cpu_to_be32(0x0), cpu_to_be32(0x0),
174
                                cpu_to_be32(0x0)};
175
    char mem_name[32];
176
    target_phys_addr_t node0_size, mem_start;
177

    
178
#define _FDT(exp) \
179
    do { \
180
        int ret = (exp);                                           \
181
        if (ret < 0) {                                             \
182
            fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
183
                    #exp, fdt_strerror(ret));                      \
184
            exit(1);                                               \
185
        }                                                          \
186
    } while (0)
187

    
188
    fdt = g_malloc0(FDT_MAX_SIZE);
189
    _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
190

    
191
    if (kernel_size) {
192
        _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
193
    }
194
    if (initrd_size) {
195
        _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
196
    }
197
    _FDT((fdt_finish_reservemap(fdt)));
198

    
199
    /* Root node */
200
    _FDT((fdt_begin_node(fdt, "")));
201
    _FDT((fdt_property_string(fdt, "device_type", "chrp")));
202
    _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
203

    
204
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
205
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
206

    
207
    /* /chosen */
208
    _FDT((fdt_begin_node(fdt, "chosen")));
209

    
210
    /* Set Form1_affinity */
211
    _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
212

    
213
    _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
214
    _FDT((fdt_property(fdt, "linux,initrd-start",
215
                       &start_prop, sizeof(start_prop))));
216
    _FDT((fdt_property(fdt, "linux,initrd-end",
217
                       &end_prop, sizeof(end_prop))));
218
    if (kernel_size) {
219
        uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
220
                              cpu_to_be64(kernel_size) };
221

    
222
        _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
223
    }
224
    _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device)));
225

    
226
    _FDT((fdt_end_node(fdt)));
227

    
228
    /* memory node(s) */
229
    node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size;
230
    if (rma_size > node0_size) {
231
        rma_size = node0_size;
232
    }
233

    
234
    /* RMA */
235
    mem_reg_property[0] = 0;
236
    mem_reg_property[1] = cpu_to_be64(rma_size);
237
    _FDT((fdt_begin_node(fdt, "memory@0")));
238
    _FDT((fdt_property_string(fdt, "device_type", "memory")));
239
    _FDT((fdt_property(fdt, "reg", mem_reg_property,
240
        sizeof(mem_reg_property))));
241
    _FDT((fdt_property(fdt, "ibm,associativity", associativity,
242
        sizeof(associativity))));
243
    _FDT((fdt_end_node(fdt)));
244

    
245
    /* RAM: Node 0 */
246
    if (node0_size > rma_size) {
247
        mem_reg_property[0] = cpu_to_be64(rma_size);
248
        mem_reg_property[1] = cpu_to_be64(node0_size - rma_size);
249

    
250
        sprintf(mem_name, "memory@" TARGET_FMT_lx, rma_size);
251
        _FDT((fdt_begin_node(fdt, mem_name)));
252
        _FDT((fdt_property_string(fdt, "device_type", "memory")));
253
        _FDT((fdt_property(fdt, "reg", mem_reg_property,
254
                           sizeof(mem_reg_property))));
255
        _FDT((fdt_property(fdt, "ibm,associativity", associativity,
256
                           sizeof(associativity))));
257
        _FDT((fdt_end_node(fdt)));
258
    }
259

    
260
    /* RAM: Node 1 and beyond */
261
    mem_start = node0_size;
262
    for (i = 1; i < nb_numa_nodes; i++) {
263
        mem_reg_property[0] = cpu_to_be64(mem_start);
264
        mem_reg_property[1] = cpu_to_be64(node_mem[i]);
265
        associativity[3] = associativity[4] = cpu_to_be32(i);
266
        sprintf(mem_name, "memory@" TARGET_FMT_lx, mem_start);
267
        _FDT((fdt_begin_node(fdt, mem_name)));
268
        _FDT((fdt_property_string(fdt, "device_type", "memory")));
269
        _FDT((fdt_property(fdt, "reg", mem_reg_property,
270
            sizeof(mem_reg_property))));
271
        _FDT((fdt_property(fdt, "ibm,associativity", associativity,
272
            sizeof(associativity))));
273
        _FDT((fdt_end_node(fdt)));
274
        mem_start += node_mem[i];
275
    }
276

    
277
    /* cpus */
278
    _FDT((fdt_begin_node(fdt, "cpus")));
279

    
280
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
281
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
282

    
283
    modelname = g_strdup(cpu_model);
284

    
285
    for (i = 0; i < strlen(modelname); i++) {
286
        modelname[i] = toupper(modelname[i]);
287
    }
288

    
289
    /* This is needed during FDT finalization */
290
    spapr->cpu_model = g_strdup(modelname);
291

    
292
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
293
        int index = env->cpu_index;
294
        uint32_t servers_prop[smp_threads];
295
        uint32_t gservers_prop[smp_threads * 2];
296
        char *nodename;
297
        uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
298
                           0xffffffff, 0xffffffff};
299
        uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
300
        uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
301

    
302
        if ((index % smt) != 0) {
303
            continue;
304
        }
305

    
306
        if (asprintf(&nodename, "%s@%x", modelname, index) < 0) {
307
            fprintf(stderr, "Allocation failure\n");
308
            exit(1);
309
        }
310

    
311
        _FDT((fdt_begin_node(fdt, nodename)));
312

    
313
        free(nodename);
314

    
315
        _FDT((fdt_property_cell(fdt, "reg", index)));
316
        _FDT((fdt_property_string(fdt, "device_type", "cpu")));
317

    
318
        _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
319
        _FDT((fdt_property_cell(fdt, "dcache-block-size",
320
                                env->dcache_line_size)));
321
        _FDT((fdt_property_cell(fdt, "icache-block-size",
322
                                env->icache_line_size)));
323
        _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq)));
324
        _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq)));
325
        _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
326
        _FDT((fdt_property(fdt, "ibm,pft-size",
327
                           pft_size_prop, sizeof(pft_size_prop))));
328
        _FDT((fdt_property_string(fdt, "status", "okay")));
329
        _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
330

    
331
        /* Build interrupt servers and gservers properties */
332
        for (i = 0; i < smp_threads; i++) {
333
            servers_prop[i] = cpu_to_be32(index + i);
334
            /* Hack, direct the group queues back to cpu 0 */
335
            gservers_prop[i*2] = cpu_to_be32(index + i);
336
            gservers_prop[i*2 + 1] = 0;
337
        }
338
        _FDT((fdt_property(fdt, "ibm,ppc-interrupt-server#s",
339
                           servers_prop, sizeof(servers_prop))));
340
        _FDT((fdt_property(fdt, "ibm,ppc-interrupt-gserver#s",
341
                           gservers_prop, sizeof(gservers_prop))));
342

    
343
        if (env->mmu_model & POWERPC_MMU_1TSEG) {
344
            _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
345
                               segs, sizeof(segs))));
346
        }
347

    
348
        /* Advertise VMX/VSX (vector extensions) if available
349
         *   0 / no property == no vector extensions
350
         *   1               == VMX / Altivec available
351
         *   2               == VSX available */
352
        if (env->insns_flags & PPC_ALTIVEC) {
353
            uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
354

    
355
            _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx)));
356
        }
357

    
358
        /* Advertise DFP (Decimal Floating Point) if available
359
         *   0 / no property == no DFP
360
         *   1               == DFP available */
361
        if (env->insns_flags2 & PPC2_DFP) {
362
            _FDT((fdt_property_cell(fdt, "ibm,dfp", 1)));
363
        }
364

    
365
        _FDT((fdt_end_node(fdt)));
366
    }
367

    
368
    g_free(modelname);
369

    
370
    _FDT((fdt_end_node(fdt)));
371

    
372
    /* RTAS */
373
    _FDT((fdt_begin_node(fdt, "rtas")));
374

    
375
    _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop,
376
                       sizeof(hypertas_prop))));
377

    
378
    _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
379
        refpoints, sizeof(refpoints))));
380

    
381
    _FDT((fdt_end_node(fdt)));
382

    
383
    /* interrupt controller */
384
    _FDT((fdt_begin_node(fdt, "interrupt-controller")));
385

    
386
    _FDT((fdt_property_string(fdt, "device_type",
387
                              "PowerPC-External-Interrupt-Presentation")));
388
    _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
389
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
390
    _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
391
                       interrupt_server_ranges_prop,
392
                       sizeof(interrupt_server_ranges_prop))));
393
    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
394
    _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
395
    _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
396

    
397
    _FDT((fdt_end_node(fdt)));
398

    
399
    /* vdevice */
400
    _FDT((fdt_begin_node(fdt, "vdevice")));
401

    
402
    _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
403
    _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
404
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
405
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
406
    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
407
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
408

    
409
    _FDT((fdt_end_node(fdt)));
410

    
411
    _FDT((fdt_end_node(fdt))); /* close root node */
412
    _FDT((fdt_finish(fdt)));
413

    
414
    return fdt;
415
}
416

    
417
static void spapr_finalize_fdt(sPAPREnvironment *spapr,
418
                               target_phys_addr_t fdt_addr,
419
                               target_phys_addr_t rtas_addr,
420
                               target_phys_addr_t rtas_size)
421
{
422
    int ret;
423
    void *fdt;
424
    sPAPRPHBState *phb;
425

    
426
    fdt = g_malloc(FDT_MAX_SIZE);
427

    
428
    /* open out the base tree into a temp buffer for the final tweaks */
429
    _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
430

    
431
    ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
432
    if (ret < 0) {
433
        fprintf(stderr, "couldn't setup vio devices in fdt\n");
434
        exit(1);
435
    }
436

    
437
    QLIST_FOREACH(phb, &spapr->phbs, list) {
438
        ret = spapr_populate_pci_devices(phb, PHANDLE_XICP, fdt);
439
    }
440

    
441
    if (ret < 0) {
442
        fprintf(stderr, "couldn't setup PCI devices in fdt\n");
443
        exit(1);
444
    }
445

    
446
    /* RTAS */
447
    ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
448
    if (ret < 0) {
449
        fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
450
    }
451

    
452
    /* Advertise NUMA via ibm,associativity */
453
    if (nb_numa_nodes > 1) {
454
        ret = spapr_set_associativity(fdt, spapr);
455
        if (ret < 0) {
456
            fprintf(stderr, "Couldn't set up NUMA device tree properties\n");
457
        }
458
    }
459

    
460
    spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
461

    
462
    _FDT((fdt_pack(fdt)));
463

    
464
    if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
465
        hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
466
                 fdt_totalsize(fdt), FDT_MAX_SIZE);
467
        exit(1);
468
    }
469

    
470
    cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
471

    
472
    g_free(fdt);
473
}
474

    
475
static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
476
{
477
    return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
478
}
479

    
480
static void emulate_spapr_hypercall(CPUPPCState *env)
481
{
482
    env->gpr[3] = spapr_hypercall(env, env->gpr[3], &env->gpr[4]);
483
}
484

    
485
static void spapr_reset(void *opaque)
486
{
487
    sPAPREnvironment *spapr = (sPAPREnvironment *)opaque;
488

    
489
    fprintf(stderr, "sPAPR reset\n");
490

    
491
    /* flush out the hash table */
492
    memset(spapr->htab, 0, spapr->htab_size);
493

    
494
    /* Load the fdt */
495
    spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
496
                       spapr->rtas_size);
497

    
498
    /* Set up the entry state */
499
    first_cpu->gpr[3] = spapr->fdt_addr;
500
    first_cpu->gpr[5] = 0;
501
    first_cpu->halted = 0;
502
    first_cpu->nip = spapr->entry_point;
503

    
504
}
505

    
506
static void spapr_cpu_reset(void *opaque)
507
{
508
    CPUPPCState *env = opaque;
509

    
510
    cpu_state_reset(env);
511
}
512

    
513
/* pSeries LPAR / sPAPR hardware init */
514
static void ppc_spapr_init(ram_addr_t ram_size,
515
                           const char *boot_device,
516
                           const char *kernel_filename,
517
                           const char *kernel_cmdline,
518
                           const char *initrd_filename,
519
                           const char *cpu_model)
520
{
521
    CPUPPCState *env;
522
    int i;
523
    MemoryRegion *sysmem = get_system_memory();
524
    MemoryRegion *ram = g_new(MemoryRegion, 1);
525
    target_phys_addr_t rma_alloc_size, rma_size;
526
    uint32_t initrd_base = 0;
527
    long kernel_size = 0, initrd_size = 0;
528
    long load_limit, rtas_limit, fw_size;
529
    long pteg_shift = 17;
530
    char *filename;
531

    
532
    spapr = g_malloc0(sizeof(*spapr));
533
    QLIST_INIT(&spapr->phbs);
534

    
535
    cpu_ppc_hypercall = emulate_spapr_hypercall;
536

    
537
    /* Allocate RMA if necessary */
538
    rma_alloc_size = kvmppc_alloc_rma("ppc_spapr.rma", sysmem);
539

    
540
    if (rma_alloc_size == -1) {
541
        hw_error("qemu: Unable to create RMA\n");
542
        exit(1);
543
    }
544
    if (rma_alloc_size && (rma_alloc_size < ram_size)) {
545
        rma_size = rma_alloc_size;
546
    } else {
547
        rma_size = ram_size;
548
    }
549

    
550
    /* We place the device tree and RTAS just below either the top of the RMA,
551
     * or just below 2GB, whichever is lowere, so that it can be
552
     * processed with 32-bit real mode code if necessary */
553
    rtas_limit = MIN(rma_size, 0x80000000);
554
    spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
555
    spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
556
    load_limit = spapr->fdt_addr - FW_OVERHEAD;
557

    
558
    /* init CPUs */
559
    if (cpu_model == NULL) {
560
        cpu_model = kvm_enabled() ? "host" : "POWER7";
561
    }
562
    for (i = 0; i < smp_cpus; i++) {
563
        env = cpu_init(cpu_model);
564

    
565
        if (!env) {
566
            fprintf(stderr, "Unable to find PowerPC CPU definition\n");
567
            exit(1);
568
        }
569
        /* Set time-base frequency to 512 MHz */
570
        cpu_ppc_tb_init(env, TIMEBASE_FREQ);
571
        qemu_register_reset(spapr_cpu_reset, env);
572

    
573
        env->hreset_vector = 0x60;
574
        env->hreset_excp_prefix = 0;
575
        env->gpr[3] = env->cpu_index;
576
    }
577

    
578
    /* allocate RAM */
579
    spapr->ram_limit = ram_size;
580
    if (spapr->ram_limit > rma_alloc_size) {
581
        ram_addr_t nonrma_base = rma_alloc_size;
582
        ram_addr_t nonrma_size = spapr->ram_limit - rma_alloc_size;
583

    
584
        memory_region_init_ram(ram, "ppc_spapr.ram", nonrma_size);
585
        vmstate_register_ram_global(ram);
586
        memory_region_add_subregion(sysmem, nonrma_base, ram);
587
    }
588

    
589
    /* allocate hash page table.  For now we always make this 16mb,
590
     * later we should probably make it scale to the size of guest
591
     * RAM */
592
    spapr->htab_size = 1ULL << (pteg_shift + 7);
593
    spapr->htab = qemu_memalign(spapr->htab_size, spapr->htab_size);
594

    
595
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
596
        env->external_htab = spapr->htab;
597
        env->htab_base = -1;
598
        env->htab_mask = spapr->htab_size - 1;
599

    
600
        /* Tell KVM that we're in PAPR mode */
601
        env->spr[SPR_SDR1] = (unsigned long)spapr->htab |
602
                             ((pteg_shift + 7) - 18);
603
        env->spr[SPR_HIOR] = 0;
604

    
605
        if (kvm_enabled()) {
606
            kvmppc_set_papr(env);
607
        }
608
    }
609

    
610
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
611
    spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr,
612
                                           rtas_limit - spapr->rtas_addr);
613
    if (spapr->rtas_size < 0) {
614
        hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
615
        exit(1);
616
    }
617
    if (spapr->rtas_size > RTAS_MAX_SIZE) {
618
        hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n",
619
                 spapr->rtas_size, RTAS_MAX_SIZE);
620
        exit(1);
621
    }
622
    g_free(filename);
623

    
624

    
625
    /* Set up Interrupt Controller */
626
    spapr->icp = xics_system_init(XICS_IRQS);
627
    spapr->next_irq = 16;
628

    
629
    /* Set up VIO bus */
630
    spapr->vio_bus = spapr_vio_bus_init();
631

    
632
    for (i = 0; i < MAX_SERIAL_PORTS; i++) {
633
        if (serial_hds[i]) {
634
            spapr_vty_create(spapr->vio_bus, serial_hds[i]);
635
        }
636
    }
637

    
638
    /* Set up PCI */
639
    spapr_create_phb(spapr, "pci", SPAPR_PCI_BUID,
640
                     SPAPR_PCI_MEM_WIN_ADDR,
641
                     SPAPR_PCI_MEM_WIN_SIZE,
642
                     SPAPR_PCI_IO_WIN_ADDR);
643

    
644
    for (i = 0; i < nb_nics; i++) {
645
        NICInfo *nd = &nd_table[i];
646

    
647
        if (!nd->model) {
648
            nd->model = g_strdup("ibmveth");
649
        }
650

    
651
        if (strcmp(nd->model, "ibmveth") == 0) {
652
            spapr_vlan_create(spapr->vio_bus, nd);
653
        } else {
654
            pci_nic_init_nofail(&nd_table[i], nd->model, NULL);
655
        }
656
    }
657

    
658
    for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
659
        spapr_vscsi_create(spapr->vio_bus);
660
    }
661

    
662
    if (rma_size < (MIN_RMA_SLOF << 20)) {
663
        fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
664
                "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
665
        exit(1);
666
    }
667

    
668
    fprintf(stderr, "sPAPR memory map:\n");
669
    fprintf(stderr, "RTAS                 : 0x%08lx..%08lx\n",
670
            (unsigned long)spapr->rtas_addr,
671
            (unsigned long)(spapr->rtas_addr + spapr->rtas_size - 1));
672
    fprintf(stderr, "FDT                  : 0x%08lx..%08lx\n",
673
            (unsigned long)spapr->fdt_addr,
674
            (unsigned long)(spapr->fdt_addr + FDT_MAX_SIZE - 1));
675

    
676
    if (kernel_filename) {
677
        uint64_t lowaddr = 0;
678

    
679
        kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
680
                               NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
681
        if (kernel_size < 0) {
682
            kernel_size = load_image_targphys(kernel_filename,
683
                                              KERNEL_LOAD_ADDR,
684
                                              load_limit - KERNEL_LOAD_ADDR);
685
        }
686
        if (kernel_size < 0) {
687
            fprintf(stderr, "qemu: could not load kernel '%s'\n",
688
                    kernel_filename);
689
            exit(1);
690
        }
691
        fprintf(stderr, "Kernel               : 0x%08x..%08lx\n",
692
                KERNEL_LOAD_ADDR, KERNEL_LOAD_ADDR + kernel_size - 1);
693

    
694
        /* load initrd */
695
        if (initrd_filename) {
696
            /* Try to locate the initrd in the gap between the kernel
697
             * and the firmware. Add a bit of space just in case
698
             */
699
            initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
700
            initrd_size = load_image_targphys(initrd_filename, initrd_base,
701
                                              load_limit - initrd_base);
702
            if (initrd_size < 0) {
703
                fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
704
                        initrd_filename);
705
                exit(1);
706
            }
707
            fprintf(stderr, "Ramdisk              : 0x%08lx..%08lx\n",
708
                    (long)initrd_base, (long)(initrd_base + initrd_size - 1));
709
        } else {
710
            initrd_base = 0;
711
            initrd_size = 0;
712
        }
713
    }
714

    
715
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, FW_FILE_NAME);
716
    fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
717
    if (fw_size < 0) {
718
        hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
719
        exit(1);
720
    }
721
    g_free(filename);
722
    fprintf(stderr, "Firmware load        : 0x%08x..%08lx\n",
723
            0, fw_size);
724
    fprintf(stderr, "Firmware runtime     : 0x%08lx..%08lx\n",
725
            load_limit, (unsigned long)spapr->fdt_addr);
726

    
727
    spapr->entry_point = 0x100;
728

    
729
    /* SLOF will startup the secondary CPUs using RTAS */
730
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
731
        env->halted = 1;
732
    }
733

    
734
    /* Prepare the device tree */
735
    spapr->fdt_skel = spapr_create_fdt_skel(cpu_model, rma_size,
736
                                            initrd_base, initrd_size,
737
                                            kernel_size,
738
                                            boot_device, kernel_cmdline,
739
                                            pteg_shift + 7);
740
    assert(spapr->fdt_skel != NULL);
741

    
742
    qemu_register_reset(spapr_reset, spapr);
743
}
744

    
745
static QEMUMachine spapr_machine = {
746
    .name = "pseries",
747
    .desc = "pSeries Logical Partition (PAPR compliant)",
748
    .init = ppc_spapr_init,
749
    .max_cpus = MAX_CPUS,
750
    .no_parallel = 1,
751
    .use_scsi = 1,
752
};
753

    
754
static void spapr_machine_init(void)
755
{
756
    qemu_register_machine(&spapr_machine);
757
}
758

    
759
machine_init(spapr_machine_init);