Statistics
| Branch: | Revision:

root / cpus.c @ bcba2a72

History | View | Annotate | Download (32.8 kB)

1
/*
2
 * QEMU System Emulator
3
 *
4
 * Copyright (c) 2003-2008 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24

    
25
/* Needed early for CONFIG_BSD etc. */
26
#include "config-host.h"
27

    
28
#include "monitor.h"
29
#include "sysemu.h"
30
#include "gdbstub.h"
31
#include "dma.h"
32
#include "kvm.h"
33
#include "qmp-commands.h"
34

    
35
#include "qemu-thread.h"
36
#include "cpus.h"
37
#include "qtest.h"
38
#include "main-loop.h"
39

    
40
#ifndef _WIN32
41
#include "compatfd.h"
42
#endif
43

    
44
#ifdef CONFIG_LINUX
45

    
46
#include <sys/prctl.h>
47

    
48
#ifndef PR_MCE_KILL
49
#define PR_MCE_KILL 33
50
#endif
51

    
52
#ifndef PR_MCE_KILL_SET
53
#define PR_MCE_KILL_SET 1
54
#endif
55

    
56
#ifndef PR_MCE_KILL_EARLY
57
#define PR_MCE_KILL_EARLY 1
58
#endif
59

    
60
#endif /* CONFIG_LINUX */
61

    
62
static CPUArchState *next_cpu;
63

    
64
static bool cpu_thread_is_idle(CPUArchState *env)
65
{
66
    if (env->stop || env->queued_work_first) {
67
        return false;
68
    }
69
    if (env->stopped || !runstate_is_running()) {
70
        return true;
71
    }
72
    if (!env->halted || qemu_cpu_has_work(env) || kvm_irqchip_in_kernel()) {
73
        return false;
74
    }
75
    return true;
76
}
77

    
78
static bool all_cpu_threads_idle(void)
79
{
80
    CPUArchState *env;
81

    
82
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
83
        if (!cpu_thread_is_idle(env)) {
84
            return false;
85
        }
86
    }
87
    return true;
88
}
89

    
90
/***********************************************************/
91
/* guest cycle counter */
92

    
93
/* Conversion factor from emulated instructions to virtual clock ticks.  */
94
static int icount_time_shift;
95
/* Arbitrarily pick 1MIPS as the minimum allowable speed.  */
96
#define MAX_ICOUNT_SHIFT 10
97
/* Compensate for varying guest execution speed.  */
98
static int64_t qemu_icount_bias;
99
static QEMUTimer *icount_rt_timer;
100
static QEMUTimer *icount_vm_timer;
101
static QEMUTimer *icount_warp_timer;
102
static int64_t vm_clock_warp_start;
103
static int64_t qemu_icount;
104

    
105
typedef struct TimersState {
106
    int64_t cpu_ticks_prev;
107
    int64_t cpu_ticks_offset;
108
    int64_t cpu_clock_offset;
109
    int32_t cpu_ticks_enabled;
110
    int64_t dummy;
111
} TimersState;
112

    
113
TimersState timers_state;
114

    
115
/* Return the virtual CPU time, based on the instruction counter.  */
116
int64_t cpu_get_icount(void)
117
{
118
    int64_t icount;
119
    CPUArchState *env = cpu_single_env;
120

    
121
    icount = qemu_icount;
122
    if (env) {
123
        if (!can_do_io(env)) {
124
            fprintf(stderr, "Bad clock read\n");
125
        }
126
        icount -= (env->icount_decr.u16.low + env->icount_extra);
127
    }
128
    return qemu_icount_bias + (icount << icount_time_shift);
129
}
130

    
131
/* return the host CPU cycle counter and handle stop/restart */
132
int64_t cpu_get_ticks(void)
133
{
134
    if (use_icount) {
135
        return cpu_get_icount();
136
    }
137
    if (!timers_state.cpu_ticks_enabled) {
138
        return timers_state.cpu_ticks_offset;
139
    } else {
140
        int64_t ticks;
141
        ticks = cpu_get_real_ticks();
142
        if (timers_state.cpu_ticks_prev > ticks) {
143
            /* Note: non increasing ticks may happen if the host uses
144
               software suspend */
145
            timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
146
        }
147
        timers_state.cpu_ticks_prev = ticks;
148
        return ticks + timers_state.cpu_ticks_offset;
149
    }
150
}
151

    
152
/* return the host CPU monotonic timer and handle stop/restart */
153
int64_t cpu_get_clock(void)
154
{
155
    int64_t ti;
156
    if (!timers_state.cpu_ticks_enabled) {
157
        return timers_state.cpu_clock_offset;
158
    } else {
159
        ti = get_clock();
160
        return ti + timers_state.cpu_clock_offset;
161
    }
162
}
163

    
164
/* enable cpu_get_ticks() */
165
void cpu_enable_ticks(void)
166
{
167
    if (!timers_state.cpu_ticks_enabled) {
168
        timers_state.cpu_ticks_offset -= cpu_get_real_ticks();
169
        timers_state.cpu_clock_offset -= get_clock();
170
        timers_state.cpu_ticks_enabled = 1;
171
    }
172
}
173

    
174
/* disable cpu_get_ticks() : the clock is stopped. You must not call
175
   cpu_get_ticks() after that.  */
176
void cpu_disable_ticks(void)
177
{
178
    if (timers_state.cpu_ticks_enabled) {
179
        timers_state.cpu_ticks_offset = cpu_get_ticks();
180
        timers_state.cpu_clock_offset = cpu_get_clock();
181
        timers_state.cpu_ticks_enabled = 0;
182
    }
183
}
184

    
185
/* Correlation between real and virtual time is always going to be
186
   fairly approximate, so ignore small variation.
187
   When the guest is idle real and virtual time will be aligned in
188
   the IO wait loop.  */
189
#define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
190

    
191
static void icount_adjust(void)
192
{
193
    int64_t cur_time;
194
    int64_t cur_icount;
195
    int64_t delta;
196
    static int64_t last_delta;
197
    /* If the VM is not running, then do nothing.  */
198
    if (!runstate_is_running()) {
199
        return;
200
    }
201
    cur_time = cpu_get_clock();
202
    cur_icount = qemu_get_clock_ns(vm_clock);
203
    delta = cur_icount - cur_time;
204
    /* FIXME: This is a very crude algorithm, somewhat prone to oscillation.  */
205
    if (delta > 0
206
        && last_delta + ICOUNT_WOBBLE < delta * 2
207
        && icount_time_shift > 0) {
208
        /* The guest is getting too far ahead.  Slow time down.  */
209
        icount_time_shift--;
210
    }
211
    if (delta < 0
212
        && last_delta - ICOUNT_WOBBLE > delta * 2
213
        && icount_time_shift < MAX_ICOUNT_SHIFT) {
214
        /* The guest is getting too far behind.  Speed time up.  */
215
        icount_time_shift++;
216
    }
217
    last_delta = delta;
218
    qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
219
}
220

    
221
static void icount_adjust_rt(void *opaque)
222
{
223
    qemu_mod_timer(icount_rt_timer,
224
                   qemu_get_clock_ms(rt_clock) + 1000);
225
    icount_adjust();
226
}
227

    
228
static void icount_adjust_vm(void *opaque)
229
{
230
    qemu_mod_timer(icount_vm_timer,
231
                   qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
232
    icount_adjust();
233
}
234

    
235
static int64_t qemu_icount_round(int64_t count)
236
{
237
    return (count + (1 << icount_time_shift) - 1) >> icount_time_shift;
238
}
239

    
240
static void icount_warp_rt(void *opaque)
241
{
242
    if (vm_clock_warp_start == -1) {
243
        return;
244
    }
245

    
246
    if (runstate_is_running()) {
247
        int64_t clock = qemu_get_clock_ns(rt_clock);
248
        int64_t warp_delta = clock - vm_clock_warp_start;
249
        if (use_icount == 1) {
250
            qemu_icount_bias += warp_delta;
251
        } else {
252
            /*
253
             * In adaptive mode, do not let the vm_clock run too
254
             * far ahead of real time.
255
             */
256
            int64_t cur_time = cpu_get_clock();
257
            int64_t cur_icount = qemu_get_clock_ns(vm_clock);
258
            int64_t delta = cur_time - cur_icount;
259
            qemu_icount_bias += MIN(warp_delta, delta);
260
        }
261
        if (qemu_clock_expired(vm_clock)) {
262
            qemu_notify_event();
263
        }
264
    }
265
    vm_clock_warp_start = -1;
266
}
267

    
268
void qtest_clock_warp(int64_t dest)
269
{
270
    int64_t clock = qemu_get_clock_ns(vm_clock);
271
    assert(qtest_enabled());
272
    while (clock < dest) {
273
        int64_t deadline = qemu_clock_deadline(vm_clock);
274
        int64_t warp = MIN(dest - clock, deadline);
275
        qemu_icount_bias += warp;
276
        qemu_run_timers(vm_clock);
277
        clock = qemu_get_clock_ns(vm_clock);
278
    }
279
    qemu_notify_event();
280
}
281

    
282
void qemu_clock_warp(QEMUClock *clock)
283
{
284
    int64_t deadline;
285

    
286
    /*
287
     * There are too many global variables to make the "warp" behavior
288
     * applicable to other clocks.  But a clock argument removes the
289
     * need for if statements all over the place.
290
     */
291
    if (clock != vm_clock || !use_icount) {
292
        return;
293
    }
294

    
295
    /*
296
     * If the CPUs have been sleeping, advance the vm_clock timer now.  This
297
     * ensures that the deadline for the timer is computed correctly below.
298
     * This also makes sure that the insn counter is synchronized before the
299
     * CPU starts running, in case the CPU is woken by an event other than
300
     * the earliest vm_clock timer.
301
     */
302
    icount_warp_rt(NULL);
303
    if (!all_cpu_threads_idle() || !qemu_clock_has_timers(vm_clock)) {
304
        qemu_del_timer(icount_warp_timer);
305
        return;
306
    }
307

    
308
    if (qtest_enabled()) {
309
        /* When testing, qtest commands advance icount.  */
310
        return;
311
    }
312

    
313
    vm_clock_warp_start = qemu_get_clock_ns(rt_clock);
314
    deadline = qemu_clock_deadline(vm_clock);
315
    if (deadline > 0) {
316
        /*
317
         * Ensure the vm_clock proceeds even when the virtual CPU goes to
318
         * sleep.  Otherwise, the CPU might be waiting for a future timer
319
         * interrupt to wake it up, but the interrupt never comes because
320
         * the vCPU isn't running any insns and thus doesn't advance the
321
         * vm_clock.
322
         *
323
         * An extreme solution for this problem would be to never let VCPUs
324
         * sleep in icount mode if there is a pending vm_clock timer; rather
325
         * time could just advance to the next vm_clock event.  Instead, we
326
         * do stop VCPUs and only advance vm_clock after some "real" time,
327
         * (related to the time left until the next event) has passed.  This
328
         * rt_clock timer will do this.  This avoids that the warps are too
329
         * visible externally---for example, you will not be sending network
330
         * packets continuously instead of every 100ms.
331
         */
332
        qemu_mod_timer(icount_warp_timer, vm_clock_warp_start + deadline);
333
    } else {
334
        qemu_notify_event();
335
    }
336
}
337

    
338
static const VMStateDescription vmstate_timers = {
339
    .name = "timer",
340
    .version_id = 2,
341
    .minimum_version_id = 1,
342
    .minimum_version_id_old = 1,
343
    .fields      = (VMStateField[]) {
344
        VMSTATE_INT64(cpu_ticks_offset, TimersState),
345
        VMSTATE_INT64(dummy, TimersState),
346
        VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
347
        VMSTATE_END_OF_LIST()
348
    }
349
};
350

    
351
void configure_icount(const char *option)
352
{
353
    vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
354
    if (!option) {
355
        return;
356
    }
357

    
358
    icount_warp_timer = qemu_new_timer_ns(rt_clock, icount_warp_rt, NULL);
359
    if (strcmp(option, "auto") != 0) {
360
        icount_time_shift = strtol(option, NULL, 0);
361
        use_icount = 1;
362
        return;
363
    }
364

    
365
    use_icount = 2;
366

    
367
    /* 125MIPS seems a reasonable initial guess at the guest speed.
368
       It will be corrected fairly quickly anyway.  */
369
    icount_time_shift = 3;
370

    
371
    /* Have both realtime and virtual time triggers for speed adjustment.
372
       The realtime trigger catches emulated time passing too slowly,
373
       the virtual time trigger catches emulated time passing too fast.
374
       Realtime triggers occur even when idle, so use them less frequently
375
       than VM triggers.  */
376
    icount_rt_timer = qemu_new_timer_ms(rt_clock, icount_adjust_rt, NULL);
377
    qemu_mod_timer(icount_rt_timer,
378
                   qemu_get_clock_ms(rt_clock) + 1000);
379
    icount_vm_timer = qemu_new_timer_ns(vm_clock, icount_adjust_vm, NULL);
380
    qemu_mod_timer(icount_vm_timer,
381
                   qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
382
}
383

    
384
/***********************************************************/
385
void hw_error(const char *fmt, ...)
386
{
387
    va_list ap;
388
    CPUArchState *env;
389

    
390
    va_start(ap, fmt);
391
    fprintf(stderr, "qemu: hardware error: ");
392
    vfprintf(stderr, fmt, ap);
393
    fprintf(stderr, "\n");
394
    for(env = first_cpu; env != NULL; env = env->next_cpu) {
395
        fprintf(stderr, "CPU #%d:\n", env->cpu_index);
396
#ifdef TARGET_I386
397
        cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
398
#else
399
        cpu_dump_state(env, stderr, fprintf, 0);
400
#endif
401
    }
402
    va_end(ap);
403
    abort();
404
}
405

    
406
void cpu_synchronize_all_states(void)
407
{
408
    CPUArchState *cpu;
409

    
410
    for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
411
        cpu_synchronize_state(cpu);
412
    }
413
}
414

    
415
void cpu_synchronize_all_post_reset(void)
416
{
417
    CPUArchState *cpu;
418

    
419
    for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
420
        cpu_synchronize_post_reset(cpu);
421
    }
422
}
423

    
424
void cpu_synchronize_all_post_init(void)
425
{
426
    CPUArchState *cpu;
427

    
428
    for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
429
        cpu_synchronize_post_init(cpu);
430
    }
431
}
432

    
433
int cpu_is_stopped(CPUArchState *env)
434
{
435
    return !runstate_is_running() || env->stopped;
436
}
437

    
438
static void do_vm_stop(RunState state)
439
{
440
    if (runstate_is_running()) {
441
        cpu_disable_ticks();
442
        pause_all_vcpus();
443
        runstate_set(state);
444
        vm_state_notify(0, state);
445
        bdrv_drain_all();
446
        bdrv_flush_all();
447
        monitor_protocol_event(QEVENT_STOP, NULL);
448
    }
449
}
450

    
451
static int cpu_can_run(CPUArchState *env)
452
{
453
    if (env->stop) {
454
        return 0;
455
    }
456
    if (env->stopped || !runstate_is_running()) {
457
        return 0;
458
    }
459
    return 1;
460
}
461

    
462
static void cpu_handle_guest_debug(CPUArchState *env)
463
{
464
    gdb_set_stop_cpu(env);
465
    qemu_system_debug_request();
466
    env->stopped = 1;
467
}
468

    
469
static void cpu_signal(int sig)
470
{
471
    if (cpu_single_env) {
472
        cpu_exit(cpu_single_env);
473
    }
474
    exit_request = 1;
475
}
476

    
477
#ifdef CONFIG_LINUX
478
static void sigbus_reraise(void)
479
{
480
    sigset_t set;
481
    struct sigaction action;
482

    
483
    memset(&action, 0, sizeof(action));
484
    action.sa_handler = SIG_DFL;
485
    if (!sigaction(SIGBUS, &action, NULL)) {
486
        raise(SIGBUS);
487
        sigemptyset(&set);
488
        sigaddset(&set, SIGBUS);
489
        sigprocmask(SIG_UNBLOCK, &set, NULL);
490
    }
491
    perror("Failed to re-raise SIGBUS!\n");
492
    abort();
493
}
494

    
495
static void sigbus_handler(int n, struct qemu_signalfd_siginfo *siginfo,
496
                           void *ctx)
497
{
498
    if (kvm_on_sigbus(siginfo->ssi_code,
499
                      (void *)(intptr_t)siginfo->ssi_addr)) {
500
        sigbus_reraise();
501
    }
502
}
503

    
504
static void qemu_init_sigbus(void)
505
{
506
    struct sigaction action;
507

    
508
    memset(&action, 0, sizeof(action));
509
    action.sa_flags = SA_SIGINFO;
510
    action.sa_sigaction = (void (*)(int, siginfo_t*, void*))sigbus_handler;
511
    sigaction(SIGBUS, &action, NULL);
512

    
513
    prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
514
}
515

    
516
static void qemu_kvm_eat_signals(CPUArchState *env)
517
{
518
    struct timespec ts = { 0, 0 };
519
    siginfo_t siginfo;
520
    sigset_t waitset;
521
    sigset_t chkset;
522
    int r;
523

    
524
    sigemptyset(&waitset);
525
    sigaddset(&waitset, SIG_IPI);
526
    sigaddset(&waitset, SIGBUS);
527

    
528
    do {
529
        r = sigtimedwait(&waitset, &siginfo, &ts);
530
        if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
531
            perror("sigtimedwait");
532
            exit(1);
533
        }
534

    
535
        switch (r) {
536
        case SIGBUS:
537
            if (kvm_on_sigbus_vcpu(env, siginfo.si_code, siginfo.si_addr)) {
538
                sigbus_reraise();
539
            }
540
            break;
541
        default:
542
            break;
543
        }
544

    
545
        r = sigpending(&chkset);
546
        if (r == -1) {
547
            perror("sigpending");
548
            exit(1);
549
        }
550
    } while (sigismember(&chkset, SIG_IPI) || sigismember(&chkset, SIGBUS));
551
}
552

    
553
#else /* !CONFIG_LINUX */
554

    
555
static void qemu_init_sigbus(void)
556
{
557
}
558

    
559
static void qemu_kvm_eat_signals(CPUArchState *env)
560
{
561
}
562
#endif /* !CONFIG_LINUX */
563

    
564
#ifndef _WIN32
565
static void dummy_signal(int sig)
566
{
567
}
568

    
569
static void qemu_kvm_init_cpu_signals(CPUArchState *env)
570
{
571
    int r;
572
    sigset_t set;
573
    struct sigaction sigact;
574

    
575
    memset(&sigact, 0, sizeof(sigact));
576
    sigact.sa_handler = dummy_signal;
577
    sigaction(SIG_IPI, &sigact, NULL);
578

    
579
    pthread_sigmask(SIG_BLOCK, NULL, &set);
580
    sigdelset(&set, SIG_IPI);
581
    sigdelset(&set, SIGBUS);
582
    r = kvm_set_signal_mask(env, &set);
583
    if (r) {
584
        fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
585
        exit(1);
586
    }
587
}
588

    
589
static void qemu_tcg_init_cpu_signals(void)
590
{
591
    sigset_t set;
592
    struct sigaction sigact;
593

    
594
    memset(&sigact, 0, sizeof(sigact));
595
    sigact.sa_handler = cpu_signal;
596
    sigaction(SIG_IPI, &sigact, NULL);
597

    
598
    sigemptyset(&set);
599
    sigaddset(&set, SIG_IPI);
600
    pthread_sigmask(SIG_UNBLOCK, &set, NULL);
601
}
602

    
603
#else /* _WIN32 */
604
static void qemu_kvm_init_cpu_signals(CPUArchState *env)
605
{
606
    abort();
607
}
608

    
609
static void qemu_tcg_init_cpu_signals(void)
610
{
611
}
612
#endif /* _WIN32 */
613

    
614
QemuMutex qemu_global_mutex;
615
static QemuCond qemu_io_proceeded_cond;
616
static bool iothread_requesting_mutex;
617

    
618
static QemuThread io_thread;
619

    
620
static QemuThread *tcg_cpu_thread;
621
static QemuCond *tcg_halt_cond;
622

    
623
/* cpu creation */
624
static QemuCond qemu_cpu_cond;
625
/* system init */
626
static QemuCond qemu_pause_cond;
627
static QemuCond qemu_work_cond;
628

    
629
void qemu_init_cpu_loop(void)
630
{
631
    qemu_init_sigbus();
632
    qemu_cond_init(&qemu_cpu_cond);
633
    qemu_cond_init(&qemu_pause_cond);
634
    qemu_cond_init(&qemu_work_cond);
635
    qemu_cond_init(&qemu_io_proceeded_cond);
636
    qemu_mutex_init(&qemu_global_mutex);
637

    
638
    qemu_thread_get_self(&io_thread);
639
}
640

    
641
void run_on_cpu(CPUArchState *env, void (*func)(void *data), void *data)
642
{
643
    struct qemu_work_item wi;
644

    
645
    if (qemu_cpu_is_self(env)) {
646
        func(data);
647
        return;
648
    }
649

    
650
    wi.func = func;
651
    wi.data = data;
652
    if (!env->queued_work_first) {
653
        env->queued_work_first = &wi;
654
    } else {
655
        env->queued_work_last->next = &wi;
656
    }
657
    env->queued_work_last = &wi;
658
    wi.next = NULL;
659
    wi.done = false;
660

    
661
    qemu_cpu_kick(env);
662
    while (!wi.done) {
663
        CPUArchState *self_env = cpu_single_env;
664

    
665
        qemu_cond_wait(&qemu_work_cond, &qemu_global_mutex);
666
        cpu_single_env = self_env;
667
    }
668
}
669

    
670
static void flush_queued_work(CPUArchState *env)
671
{
672
    struct qemu_work_item *wi;
673

    
674
    if (!env->queued_work_first) {
675
        return;
676
    }
677

    
678
    while ((wi = env->queued_work_first)) {
679
        env->queued_work_first = wi->next;
680
        wi->func(wi->data);
681
        wi->done = true;
682
    }
683
    env->queued_work_last = NULL;
684
    qemu_cond_broadcast(&qemu_work_cond);
685
}
686

    
687
static void qemu_wait_io_event_common(CPUArchState *env)
688
{
689
    if (env->stop) {
690
        env->stop = 0;
691
        env->stopped = 1;
692
        qemu_cond_signal(&qemu_pause_cond);
693
    }
694
    flush_queued_work(env);
695
    env->thread_kicked = false;
696
}
697

    
698
static void qemu_tcg_wait_io_event(void)
699
{
700
    CPUArchState *env;
701

    
702
    while (all_cpu_threads_idle()) {
703
       /* Start accounting real time to the virtual clock if the CPUs
704
          are idle.  */
705
        qemu_clock_warp(vm_clock);
706
        qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
707
    }
708

    
709
    while (iothread_requesting_mutex) {
710
        qemu_cond_wait(&qemu_io_proceeded_cond, &qemu_global_mutex);
711
    }
712

    
713
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
714
        qemu_wait_io_event_common(env);
715
    }
716
}
717

    
718
static void qemu_kvm_wait_io_event(CPUArchState *env)
719
{
720
    while (cpu_thread_is_idle(env)) {
721
        qemu_cond_wait(env->halt_cond, &qemu_global_mutex);
722
    }
723

    
724
    qemu_kvm_eat_signals(env);
725
    qemu_wait_io_event_common(env);
726
}
727

    
728
static void *qemu_kvm_cpu_thread_fn(void *arg)
729
{
730
    CPUArchState *env = arg;
731
    int r;
732

    
733
    qemu_mutex_lock(&qemu_global_mutex);
734
    qemu_thread_get_self(env->thread);
735
    env->thread_id = qemu_get_thread_id();
736
    cpu_single_env = env;
737

    
738
    r = kvm_init_vcpu(env);
739
    if (r < 0) {
740
        fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r));
741
        exit(1);
742
    }
743

    
744
    qemu_kvm_init_cpu_signals(env);
745

    
746
    /* signal CPU creation */
747
    env->created = 1;
748
    qemu_cond_signal(&qemu_cpu_cond);
749

    
750
    while (1) {
751
        if (cpu_can_run(env)) {
752
            r = kvm_cpu_exec(env);
753
            if (r == EXCP_DEBUG) {
754
                cpu_handle_guest_debug(env);
755
            }
756
        }
757
        qemu_kvm_wait_io_event(env);
758
    }
759

    
760
    return NULL;
761
}
762

    
763
static void *qemu_dummy_cpu_thread_fn(void *arg)
764
{
765
#ifdef _WIN32
766
    fprintf(stderr, "qtest is not supported under Windows\n");
767
    exit(1);
768
#else
769
    CPUArchState *env = arg;
770
    sigset_t waitset;
771
    int r;
772

    
773
    qemu_mutex_lock_iothread();
774
    qemu_thread_get_self(env->thread);
775
    env->thread_id = qemu_get_thread_id();
776

    
777
    sigemptyset(&waitset);
778
    sigaddset(&waitset, SIG_IPI);
779

    
780
    /* signal CPU creation */
781
    env->created = 1;
782
    qemu_cond_signal(&qemu_cpu_cond);
783

    
784
    cpu_single_env = env;
785
    while (1) {
786
        cpu_single_env = NULL;
787
        qemu_mutex_unlock_iothread();
788
        do {
789
            int sig;
790
            r = sigwait(&waitset, &sig);
791
        } while (r == -1 && (errno == EAGAIN || errno == EINTR));
792
        if (r == -1) {
793
            perror("sigwait");
794
            exit(1);
795
        }
796
        qemu_mutex_lock_iothread();
797
        cpu_single_env = env;
798
        qemu_wait_io_event_common(env);
799
    }
800

    
801
    return NULL;
802
#endif
803
}
804

    
805
static void tcg_exec_all(void);
806

    
807
static void *qemu_tcg_cpu_thread_fn(void *arg)
808
{
809
    CPUArchState *env = arg;
810

    
811
    qemu_tcg_init_cpu_signals();
812
    qemu_thread_get_self(env->thread);
813

    
814
    /* signal CPU creation */
815
    qemu_mutex_lock(&qemu_global_mutex);
816
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
817
        env->thread_id = qemu_get_thread_id();
818
        env->created = 1;
819
    }
820
    qemu_cond_signal(&qemu_cpu_cond);
821

    
822
    /* wait for initial kick-off after machine start */
823
    while (first_cpu->stopped) {
824
        qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
825

    
826
        /* process any pending work */
827
        for (env = first_cpu; env != NULL; env = env->next_cpu) {
828
            qemu_wait_io_event_common(env);
829
        }
830
    }
831

    
832
    while (1) {
833
        tcg_exec_all();
834
        if (use_icount && qemu_clock_deadline(vm_clock) <= 0) {
835
            qemu_notify_event();
836
        }
837
        qemu_tcg_wait_io_event();
838
    }
839

    
840
    return NULL;
841
}
842

    
843
static void qemu_cpu_kick_thread(CPUArchState *env)
844
{
845
#ifndef _WIN32
846
    int err;
847

    
848
    err = pthread_kill(env->thread->thread, SIG_IPI);
849
    if (err) {
850
        fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
851
        exit(1);
852
    }
853
#else /* _WIN32 */
854
    if (!qemu_cpu_is_self(env)) {
855
        CPUState *cpu = ENV_GET_CPU(env);
856
        SuspendThread(cpu->hThread);
857
        cpu_signal(0);
858
        ResumeThread(cpu->hThread);
859
    }
860
#endif
861
}
862

    
863
void qemu_cpu_kick(void *_env)
864
{
865
    CPUArchState *env = _env;
866

    
867
    qemu_cond_broadcast(env->halt_cond);
868
    if (!tcg_enabled() && !env->thread_kicked) {
869
        qemu_cpu_kick_thread(env);
870
        env->thread_kicked = true;
871
    }
872
}
873

    
874
void qemu_cpu_kick_self(void)
875
{
876
#ifndef _WIN32
877
    assert(cpu_single_env);
878

    
879
    if (!cpu_single_env->thread_kicked) {
880
        qemu_cpu_kick_thread(cpu_single_env);
881
        cpu_single_env->thread_kicked = true;
882
    }
883
#else
884
    abort();
885
#endif
886
}
887

    
888
int qemu_cpu_is_self(void *_env)
889
{
890
    CPUArchState *env = _env;
891

    
892
    return qemu_thread_is_self(env->thread);
893
}
894

    
895
void qemu_mutex_lock_iothread(void)
896
{
897
    if (!tcg_enabled()) {
898
        qemu_mutex_lock(&qemu_global_mutex);
899
    } else {
900
        iothread_requesting_mutex = true;
901
        if (qemu_mutex_trylock(&qemu_global_mutex)) {
902
            qemu_cpu_kick_thread(first_cpu);
903
            qemu_mutex_lock(&qemu_global_mutex);
904
        }
905
        iothread_requesting_mutex = false;
906
        qemu_cond_broadcast(&qemu_io_proceeded_cond);
907
    }
908
}
909

    
910
void qemu_mutex_unlock_iothread(void)
911
{
912
    qemu_mutex_unlock(&qemu_global_mutex);
913
}
914

    
915
static int all_vcpus_paused(void)
916
{
917
    CPUArchState *penv = first_cpu;
918

    
919
    while (penv) {
920
        if (!penv->stopped) {
921
            return 0;
922
        }
923
        penv = penv->next_cpu;
924
    }
925

    
926
    return 1;
927
}
928

    
929
void pause_all_vcpus(void)
930
{
931
    CPUArchState *penv = first_cpu;
932

    
933
    qemu_clock_enable(vm_clock, false);
934
    while (penv) {
935
        penv->stop = 1;
936
        qemu_cpu_kick(penv);
937
        penv = penv->next_cpu;
938
    }
939

    
940
    if (!qemu_thread_is_self(&io_thread)) {
941
        cpu_stop_current();
942
        if (!kvm_enabled()) {
943
            while (penv) {
944
                penv->stop = 0;
945
                penv->stopped = 1;
946
                penv = penv->next_cpu;
947
            }
948
            return;
949
        }
950
    }
951

    
952
    while (!all_vcpus_paused()) {
953
        qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
954
        penv = first_cpu;
955
        while (penv) {
956
            qemu_cpu_kick(penv);
957
            penv = penv->next_cpu;
958
        }
959
    }
960
}
961

    
962
void resume_all_vcpus(void)
963
{
964
    CPUArchState *penv = first_cpu;
965

    
966
    qemu_clock_enable(vm_clock, true);
967
    while (penv) {
968
        penv->stop = 0;
969
        penv->stopped = 0;
970
        qemu_cpu_kick(penv);
971
        penv = penv->next_cpu;
972
    }
973
}
974

    
975
static void qemu_tcg_init_vcpu(void *_env)
976
{
977
    CPUArchState *env = _env;
978
#ifdef _WIN32
979
    CPUState *cpu = ENV_GET_CPU(env);
980
#endif
981

    
982
    /* share a single thread for all cpus with TCG */
983
    if (!tcg_cpu_thread) {
984
        env->thread = g_malloc0(sizeof(QemuThread));
985
        env->halt_cond = g_malloc0(sizeof(QemuCond));
986
        qemu_cond_init(env->halt_cond);
987
        tcg_halt_cond = env->halt_cond;
988
        qemu_thread_create(env->thread, qemu_tcg_cpu_thread_fn, env,
989
                           QEMU_THREAD_JOINABLE);
990
#ifdef _WIN32
991
        cpu->hThread = qemu_thread_get_handle(env->thread);
992
#endif
993
        while (env->created == 0) {
994
            qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
995
        }
996
        tcg_cpu_thread = env->thread;
997
    } else {
998
        env->thread = tcg_cpu_thread;
999
        env->halt_cond = tcg_halt_cond;
1000
    }
1001
}
1002

    
1003
static void qemu_kvm_start_vcpu(CPUArchState *env)
1004
{
1005
    env->thread = g_malloc0(sizeof(QemuThread));
1006
    env->halt_cond = g_malloc0(sizeof(QemuCond));
1007
    qemu_cond_init(env->halt_cond);
1008
    qemu_thread_create(env->thread, qemu_kvm_cpu_thread_fn, env,
1009
                       QEMU_THREAD_JOINABLE);
1010
    while (env->created == 0) {
1011
        qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1012
    }
1013
}
1014

    
1015
static void qemu_dummy_start_vcpu(CPUArchState *env)
1016
{
1017
    env->thread = g_malloc0(sizeof(QemuThread));
1018
    env->halt_cond = g_malloc0(sizeof(QemuCond));
1019
    qemu_cond_init(env->halt_cond);
1020
    qemu_thread_create(env->thread, qemu_dummy_cpu_thread_fn, env,
1021
                       QEMU_THREAD_JOINABLE);
1022
    while (env->created == 0) {
1023
        qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1024
    }
1025
}
1026

    
1027
void qemu_init_vcpu(void *_env)
1028
{
1029
    CPUArchState *env = _env;
1030

    
1031
    env->nr_cores = smp_cores;
1032
    env->nr_threads = smp_threads;
1033
    env->stopped = 1;
1034
    if (kvm_enabled()) {
1035
        qemu_kvm_start_vcpu(env);
1036
    } else if (tcg_enabled()) {
1037
        qemu_tcg_init_vcpu(env);
1038
    } else {
1039
        qemu_dummy_start_vcpu(env);
1040
    }
1041
}
1042

    
1043
void cpu_stop_current(void)
1044
{
1045
    if (cpu_single_env) {
1046
        cpu_single_env->stop = 0;
1047
        cpu_single_env->stopped = 1;
1048
        cpu_exit(cpu_single_env);
1049
        qemu_cond_signal(&qemu_pause_cond);
1050
    }
1051
}
1052

    
1053
void vm_stop(RunState state)
1054
{
1055
    if (!qemu_thread_is_self(&io_thread)) {
1056
        qemu_system_vmstop_request(state);
1057
        /*
1058
         * FIXME: should not return to device code in case
1059
         * vm_stop() has been requested.
1060
         */
1061
        cpu_stop_current();
1062
        return;
1063
    }
1064
    do_vm_stop(state);
1065
}
1066

    
1067
/* does a state transition even if the VM is already stopped,
1068
   current state is forgotten forever */
1069
void vm_stop_force_state(RunState state)
1070
{
1071
    if (runstate_is_running()) {
1072
        vm_stop(state);
1073
    } else {
1074
        runstate_set(state);
1075
    }
1076
}
1077

    
1078
static int tcg_cpu_exec(CPUArchState *env)
1079
{
1080
    int ret;
1081
#ifdef CONFIG_PROFILER
1082
    int64_t ti;
1083
#endif
1084

    
1085
#ifdef CONFIG_PROFILER
1086
    ti = profile_getclock();
1087
#endif
1088
    if (use_icount) {
1089
        int64_t count;
1090
        int decr;
1091
        qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
1092
        env->icount_decr.u16.low = 0;
1093
        env->icount_extra = 0;
1094
        count = qemu_icount_round(qemu_clock_deadline(vm_clock));
1095
        qemu_icount += count;
1096
        decr = (count > 0xffff) ? 0xffff : count;
1097
        count -= decr;
1098
        env->icount_decr.u16.low = decr;
1099
        env->icount_extra = count;
1100
    }
1101
    ret = cpu_exec(env);
1102
#ifdef CONFIG_PROFILER
1103
    qemu_time += profile_getclock() - ti;
1104
#endif
1105
    if (use_icount) {
1106
        /* Fold pending instructions back into the
1107
           instruction counter, and clear the interrupt flag.  */
1108
        qemu_icount -= (env->icount_decr.u16.low
1109
                        + env->icount_extra);
1110
        env->icount_decr.u32 = 0;
1111
        env->icount_extra = 0;
1112
    }
1113
    return ret;
1114
}
1115

    
1116
static void tcg_exec_all(void)
1117
{
1118
    int r;
1119

    
1120
    /* Account partial waits to the vm_clock.  */
1121
    qemu_clock_warp(vm_clock);
1122

    
1123
    if (next_cpu == NULL) {
1124
        next_cpu = first_cpu;
1125
    }
1126
    for (; next_cpu != NULL && !exit_request; next_cpu = next_cpu->next_cpu) {
1127
        CPUArchState *env = next_cpu;
1128

    
1129
        qemu_clock_enable(vm_clock,
1130
                          (env->singlestep_enabled & SSTEP_NOTIMER) == 0);
1131

    
1132
        if (cpu_can_run(env)) {
1133
            r = tcg_cpu_exec(env);
1134
            if (r == EXCP_DEBUG) {
1135
                cpu_handle_guest_debug(env);
1136
                break;
1137
            }
1138
        } else if (env->stop || env->stopped) {
1139
            break;
1140
        }
1141
    }
1142
    exit_request = 0;
1143
}
1144

    
1145
void set_numa_modes(void)
1146
{
1147
    CPUArchState *env;
1148
    int i;
1149

    
1150
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1151
        for (i = 0; i < nb_numa_nodes; i++) {
1152
            if (node_cpumask[i] & (1 << env->cpu_index)) {
1153
                env->numa_node = i;
1154
            }
1155
        }
1156
    }
1157
}
1158

    
1159
void set_cpu_log(const char *optarg)
1160
{
1161
    int mask;
1162
    const CPULogItem *item;
1163

    
1164
    mask = cpu_str_to_log_mask(optarg);
1165
    if (!mask) {
1166
        printf("Log items (comma separated):\n");
1167
        for (item = cpu_log_items; item->mask != 0; item++) {
1168
            printf("%-10s %s\n", item->name, item->help);
1169
        }
1170
        exit(1);
1171
    }
1172
    cpu_set_log(mask);
1173
}
1174

    
1175
void set_cpu_log_filename(const char *optarg)
1176
{
1177
    cpu_set_log_filename(optarg);
1178
}
1179

    
1180
void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
1181
{
1182
    /* XXX: implement xxx_cpu_list for targets that still miss it */
1183
#if defined(cpu_list_id)
1184
    cpu_list_id(f, cpu_fprintf, optarg);
1185
#elif defined(cpu_list)
1186
    cpu_list(f, cpu_fprintf); /* deprecated */
1187
#endif
1188
}
1189

    
1190
CpuInfoList *qmp_query_cpus(Error **errp)
1191
{
1192
    CpuInfoList *head = NULL, *cur_item = NULL;
1193
    CPUArchState *env;
1194

    
1195
    for(env = first_cpu; env != NULL; env = env->next_cpu) {
1196
        CpuInfoList *info;
1197

    
1198
        cpu_synchronize_state(env);
1199

    
1200
        info = g_malloc0(sizeof(*info));
1201
        info->value = g_malloc0(sizeof(*info->value));
1202
        info->value->CPU = env->cpu_index;
1203
        info->value->current = (env == first_cpu);
1204
        info->value->halted = env->halted;
1205
        info->value->thread_id = env->thread_id;
1206
#if defined(TARGET_I386)
1207
        info->value->has_pc = true;
1208
        info->value->pc = env->eip + env->segs[R_CS].base;
1209
#elif defined(TARGET_PPC)
1210
        info->value->has_nip = true;
1211
        info->value->nip = env->nip;
1212
#elif defined(TARGET_SPARC)
1213
        info->value->has_pc = true;
1214
        info->value->pc = env->pc;
1215
        info->value->has_npc = true;
1216
        info->value->npc = env->npc;
1217
#elif defined(TARGET_MIPS)
1218
        info->value->has_PC = true;
1219
        info->value->PC = env->active_tc.PC;
1220
#endif
1221

    
1222
        /* XXX: waiting for the qapi to support GSList */
1223
        if (!cur_item) {
1224
            head = cur_item = info;
1225
        } else {
1226
            cur_item->next = info;
1227
            cur_item = info;
1228
        }
1229
    }
1230

    
1231
    return head;
1232
}
1233

    
1234
void qmp_memsave(int64_t addr, int64_t size, const char *filename,
1235
                 bool has_cpu, int64_t cpu_index, Error **errp)
1236
{
1237
    FILE *f;
1238
    uint32_t l;
1239
    CPUArchState *env;
1240
    uint8_t buf[1024];
1241

    
1242
    if (!has_cpu) {
1243
        cpu_index = 0;
1244
    }
1245

    
1246
    for (env = first_cpu; env; env = env->next_cpu) {
1247
        if (cpu_index == env->cpu_index) {
1248
            break;
1249
        }
1250
    }
1251

    
1252
    if (env == NULL) {
1253
        error_set(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index",
1254
                  "a CPU number");
1255
        return;
1256
    }
1257

    
1258
    f = fopen(filename, "wb");
1259
    if (!f) {
1260
        error_set(errp, QERR_OPEN_FILE_FAILED, filename);
1261
        return;
1262
    }
1263

    
1264
    while (size != 0) {
1265
        l = sizeof(buf);
1266
        if (l > size)
1267
            l = size;
1268
        cpu_memory_rw_debug(env, addr, buf, l, 0);
1269
        if (fwrite(buf, 1, l, f) != l) {
1270
            error_set(errp, QERR_IO_ERROR);
1271
            goto exit;
1272
        }
1273
        addr += l;
1274
        size -= l;
1275
    }
1276

    
1277
exit:
1278
    fclose(f);
1279
}
1280

    
1281
void qmp_pmemsave(int64_t addr, int64_t size, const char *filename,
1282
                  Error **errp)
1283
{
1284
    FILE *f;
1285
    uint32_t l;
1286
    uint8_t buf[1024];
1287

    
1288
    f = fopen(filename, "wb");
1289
    if (!f) {
1290
        error_set(errp, QERR_OPEN_FILE_FAILED, filename);
1291
        return;
1292
    }
1293

    
1294
    while (size != 0) {
1295
        l = sizeof(buf);
1296
        if (l > size)
1297
            l = size;
1298
        cpu_physical_memory_rw(addr, buf, l, 0);
1299
        if (fwrite(buf, 1, l, f) != l) {
1300
            error_set(errp, QERR_IO_ERROR);
1301
            goto exit;
1302
        }
1303
        addr += l;
1304
        size -= l;
1305
    }
1306

    
1307
exit:
1308
    fclose(f);
1309
}
1310

    
1311
void qmp_inject_nmi(Error **errp)
1312
{
1313
#if defined(TARGET_I386)
1314
    CPUArchState *env;
1315

    
1316
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1317
        if (!env->apic_state) {
1318
            cpu_interrupt(env, CPU_INTERRUPT_NMI);
1319
        } else {
1320
            apic_deliver_nmi(env->apic_state);
1321
        }
1322
    }
1323
#else
1324
    error_set(errp, QERR_UNSUPPORTED);
1325
#endif
1326
}