Statistics
| Branch: | Revision:

root / hw / pflash_cfi02.c @ bda254da

History | View | Annotate | Download (21.9 kB)

1
/*
2
 *  CFI parallel flash with AMD command set emulation
3
 *
4
 *  Copyright (c) 2005 Jocelyn Mayer
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18
 */
19

    
20
/*
21
 * For now, this code can emulate flashes of 1, 2 or 4 bytes width.
22
 * Supported commands/modes are:
23
 * - flash read
24
 * - flash write
25
 * - flash ID read
26
 * - sector erase
27
 * - chip erase
28
 * - unlock bypass command
29
 * - CFI queries
30
 *
31
 * It does not support flash interleaving.
32
 * It does not implement boot blocs with reduced size
33
 * It does not implement software data protection as found in many real chips
34
 * It does not implement erase suspend/resume commands
35
 * It does not implement multiple sectors erase
36
 */
37

    
38
#include "hw.h"
39
#include "flash.h"
40
#include "qemu-timer.h"
41
#include "block.h"
42
#include "exec-memory.h"
43

    
44
//#define PFLASH_DEBUG
45
#ifdef PFLASH_DEBUG
46
#define DPRINTF(fmt, ...)                          \
47
do {                                               \
48
    printf("PFLASH: " fmt , ## __VA_ARGS__);       \
49
} while (0)
50
#else
51
#define DPRINTF(fmt, ...) do { } while (0)
52
#endif
53

    
54
#define PFLASH_LAZY_ROMD_THRESHOLD 42
55

    
56
struct pflash_t {
57
    BlockDriverState *bs;
58
    target_phys_addr_t base;
59
    uint32_t sector_len;
60
    uint32_t chip_len;
61
    int mappings;
62
    int width;
63
    int wcycle; /* if 0, the flash is read normally */
64
    int bypass;
65
    int ro;
66
    uint8_t cmd;
67
    uint8_t status;
68
    uint16_t ident[4];
69
    uint16_t unlock_addr[2];
70
    uint8_t cfi_len;
71
    uint8_t cfi_table[0x52];
72
    QEMUTimer *timer;
73
    /* The device replicates the flash memory across its memory space.  Emulate
74
     * that by having a container (.mem) filled with an array of aliases
75
     * (.mem_mappings) pointing to the flash memory (.orig_mem).
76
     */
77
    MemoryRegion mem;
78
    MemoryRegion *mem_mappings;    /* array; one per mapping */
79
    MemoryRegion orig_mem;
80
    int rom_mode;
81
    int read_counter; /* used for lazy switch-back to rom mode */
82
    void *storage;
83
};
84

    
85
/*
86
 * Set up replicated mappings of the same region.
87
 */
88
static void pflash_setup_mappings(pflash_t *pfl)
89
{
90
    unsigned i;
91
    target_phys_addr_t size = memory_region_size(&pfl->orig_mem);
92

    
93
    memory_region_init(&pfl->mem, "pflash", pfl->mappings * size);
94
    pfl->mem_mappings = g_new(MemoryRegion, pfl->mappings);
95
    for (i = 0; i < pfl->mappings; ++i) {
96
        memory_region_init_alias(&pfl->mem_mappings[i], "pflash-alias",
97
                                 &pfl->orig_mem, 0, size);
98
        memory_region_add_subregion(&pfl->mem, i * size, &pfl->mem_mappings[i]);
99
    }
100
}
101

    
102
static void pflash_register_memory(pflash_t *pfl, int rom_mode)
103
{
104
    memory_region_rom_device_set_readable(&pfl->orig_mem, rom_mode);
105
    pfl->rom_mode = rom_mode;
106
}
107

    
108
static void pflash_timer (void *opaque)
109
{
110
    pflash_t *pfl = opaque;
111

    
112
    DPRINTF("%s: command %02x done\n", __func__, pfl->cmd);
113
    /* Reset flash */
114
    pfl->status ^= 0x80;
115
    if (pfl->bypass) {
116
        pfl->wcycle = 2;
117
    } else {
118
        pflash_register_memory(pfl, 1);
119
        pfl->wcycle = 0;
120
    }
121
    pfl->cmd = 0;
122
}
123

    
124
static uint32_t pflash_read (pflash_t *pfl, target_phys_addr_t offset,
125
                             int width, int be)
126
{
127
    target_phys_addr_t boff;
128
    uint32_t ret;
129
    uint8_t *p;
130

    
131
    DPRINTF("%s: offset " TARGET_FMT_plx "\n", __func__, offset);
132
    ret = -1;
133
    /* Lazy reset to ROMD mode after a certain amount of read accesses */
134
    if (!pfl->rom_mode && pfl->wcycle == 0 &&
135
        ++pfl->read_counter > PFLASH_LAZY_ROMD_THRESHOLD) {
136
        pflash_register_memory(pfl, 1);
137
    }
138
    offset &= pfl->chip_len - 1;
139
    boff = offset & 0xFF;
140
    if (pfl->width == 2)
141
        boff = boff >> 1;
142
    else if (pfl->width == 4)
143
        boff = boff >> 2;
144
    switch (pfl->cmd) {
145
    default:
146
        /* This should never happen : reset state & treat it as a read*/
147
        DPRINTF("%s: unknown command state: %x\n", __func__, pfl->cmd);
148
        pfl->wcycle = 0;
149
        pfl->cmd = 0;
150
    case 0x80:
151
        /* We accept reads during second unlock sequence... */
152
    case 0x00:
153
    flash_read:
154
        /* Flash area read */
155
        p = pfl->storage;
156
        switch (width) {
157
        case 1:
158
            ret = p[offset];
159
//            DPRINTF("%s: data offset %08x %02x\n", __func__, offset, ret);
160
            break;
161
        case 2:
162
            if (be) {
163
                ret = p[offset] << 8;
164
                ret |= p[offset + 1];
165
            } else {
166
                ret = p[offset];
167
                ret |= p[offset + 1] << 8;
168
            }
169
//            DPRINTF("%s: data offset %08x %04x\n", __func__, offset, ret);
170
            break;
171
        case 4:
172
            if (be) {
173
                ret = p[offset] << 24;
174
                ret |= p[offset + 1] << 16;
175
                ret |= p[offset + 2] << 8;
176
                ret |= p[offset + 3];
177
            } else {
178
                ret = p[offset];
179
                ret |= p[offset + 1] << 8;
180
                ret |= p[offset + 2] << 16;
181
                ret |= p[offset + 3] << 24;
182
            }
183
//            DPRINTF("%s: data offset %08x %08x\n", __func__, offset, ret);
184
            break;
185
        }
186
        break;
187
    case 0x90:
188
        /* flash ID read */
189
        switch (boff) {
190
        case 0x00:
191
        case 0x01:
192
            ret = pfl->ident[boff & 0x01];
193
            break;
194
        case 0x02:
195
            ret = 0x00; /* Pretend all sectors are unprotected */
196
            break;
197
        case 0x0E:
198
        case 0x0F:
199
            if (pfl->ident[2 + (boff & 0x01)] == (uint8_t)-1)
200
                goto flash_read;
201
            ret = pfl->ident[2 + (boff & 0x01)];
202
            break;
203
        default:
204
            goto flash_read;
205
        }
206
        DPRINTF("%s: ID " TARGET_FMT_plx " %x\n", __func__, boff, ret);
207
        break;
208
    case 0xA0:
209
    case 0x10:
210
    case 0x30:
211
        /* Status register read */
212
        ret = pfl->status;
213
        DPRINTF("%s: status %x\n", __func__, ret);
214
        /* Toggle bit 6 */
215
        pfl->status ^= 0x40;
216
        break;
217
    case 0x98:
218
        /* CFI query mode */
219
        if (boff > pfl->cfi_len)
220
            ret = 0;
221
        else
222
            ret = pfl->cfi_table[boff];
223
        break;
224
    }
225

    
226
    return ret;
227
}
228

    
229
/* update flash content on disk */
230
static void pflash_update(pflash_t *pfl, int offset,
231
                          int size)
232
{
233
    int offset_end;
234
    if (pfl->bs) {
235
        offset_end = offset + size;
236
        /* round to sectors */
237
        offset = offset >> 9;
238
        offset_end = (offset_end + 511) >> 9;
239
        bdrv_write(pfl->bs, offset, pfl->storage + (offset << 9),
240
                   offset_end - offset);
241
    }
242
}
243

    
244
static void pflash_write (pflash_t *pfl, target_phys_addr_t offset,
245
                          uint32_t value, int width, int be)
246
{
247
    target_phys_addr_t boff;
248
    uint8_t *p;
249
    uint8_t cmd;
250

    
251
    cmd = value;
252
    if (pfl->cmd != 0xA0 && cmd == 0xF0) {
253
#if 0
254
        DPRINTF("%s: flash reset asked (%02x %02x)\n",
255
                __func__, pfl->cmd, cmd);
256
#endif
257
        goto reset_flash;
258
    }
259
    DPRINTF("%s: offset " TARGET_FMT_plx " %08x %d %d\n", __func__,
260
            offset, value, width, pfl->wcycle);
261
    offset &= pfl->chip_len - 1;
262

    
263
    DPRINTF("%s: offset " TARGET_FMT_plx " %08x %d\n", __func__,
264
            offset, value, width);
265
    boff = offset & (pfl->sector_len - 1);
266
    if (pfl->width == 2)
267
        boff = boff >> 1;
268
    else if (pfl->width == 4)
269
        boff = boff >> 2;
270
    switch (pfl->wcycle) {
271
    case 0:
272
        /* Set the device in I/O access mode if required */
273
        if (pfl->rom_mode)
274
            pflash_register_memory(pfl, 0);
275
        pfl->read_counter = 0;
276
        /* We're in read mode */
277
    check_unlock0:
278
        if (boff == 0x55 && cmd == 0x98) {
279
        enter_CFI_mode:
280
            /* Enter CFI query mode */
281
            pfl->wcycle = 7;
282
            pfl->cmd = 0x98;
283
            return;
284
        }
285
        if (boff != pfl->unlock_addr[0] || cmd != 0xAA) {
286
            DPRINTF("%s: unlock0 failed " TARGET_FMT_plx " %02x %04x\n",
287
                    __func__, boff, cmd, pfl->unlock_addr[0]);
288
            goto reset_flash;
289
        }
290
        DPRINTF("%s: unlock sequence started\n", __func__);
291
        break;
292
    case 1:
293
        /* We started an unlock sequence */
294
    check_unlock1:
295
        if (boff != pfl->unlock_addr[1] || cmd != 0x55) {
296
            DPRINTF("%s: unlock1 failed " TARGET_FMT_plx " %02x\n", __func__,
297
                    boff, cmd);
298
            goto reset_flash;
299
        }
300
        DPRINTF("%s: unlock sequence done\n", __func__);
301
        break;
302
    case 2:
303
        /* We finished an unlock sequence */
304
        if (!pfl->bypass && boff != pfl->unlock_addr[0]) {
305
            DPRINTF("%s: command failed " TARGET_FMT_plx " %02x\n", __func__,
306
                    boff, cmd);
307
            goto reset_flash;
308
        }
309
        switch (cmd) {
310
        case 0x20:
311
            pfl->bypass = 1;
312
            goto do_bypass;
313
        case 0x80:
314
        case 0x90:
315
        case 0xA0:
316
            pfl->cmd = cmd;
317
            DPRINTF("%s: starting command %02x\n", __func__, cmd);
318
            break;
319
        default:
320
            DPRINTF("%s: unknown command %02x\n", __func__, cmd);
321
            goto reset_flash;
322
        }
323
        break;
324
    case 3:
325
        switch (pfl->cmd) {
326
        case 0x80:
327
            /* We need another unlock sequence */
328
            goto check_unlock0;
329
        case 0xA0:
330
            DPRINTF("%s: write data offset " TARGET_FMT_plx " %08x %d\n",
331
                    __func__, offset, value, width);
332
            p = pfl->storage;
333
            switch (width) {
334
            case 1:
335
                p[offset] &= value;
336
                pflash_update(pfl, offset, 1);
337
                break;
338
            case 2:
339
                if (be) {
340
                    p[offset] &= value >> 8;
341
                    p[offset + 1] &= value;
342
                } else {
343
                    p[offset] &= value;
344
                    p[offset + 1] &= value >> 8;
345
                }
346
                pflash_update(pfl, offset, 2);
347
                break;
348
            case 4:
349
                if (be) {
350
                    p[offset] &= value >> 24;
351
                    p[offset + 1] &= value >> 16;
352
                    p[offset + 2] &= value >> 8;
353
                    p[offset + 3] &= value;
354
                } else {
355
                    p[offset] &= value;
356
                    p[offset + 1] &= value >> 8;
357
                    p[offset + 2] &= value >> 16;
358
                    p[offset + 3] &= value >> 24;
359
                }
360
                pflash_update(pfl, offset, 4);
361
                break;
362
            }
363
            pfl->status = 0x00 | ~(value & 0x80);
364
            /* Let's pretend write is immediate */
365
            if (pfl->bypass)
366
                goto do_bypass;
367
            goto reset_flash;
368
        case 0x90:
369
            if (pfl->bypass && cmd == 0x00) {
370
                /* Unlock bypass reset */
371
                goto reset_flash;
372
            }
373
            /* We can enter CFI query mode from autoselect mode */
374
            if (boff == 0x55 && cmd == 0x98)
375
                goto enter_CFI_mode;
376
            /* No break here */
377
        default:
378
            DPRINTF("%s: invalid write for command %02x\n",
379
                    __func__, pfl->cmd);
380
            goto reset_flash;
381
        }
382
    case 4:
383
        switch (pfl->cmd) {
384
        case 0xA0:
385
            /* Ignore writes while flash data write is occurring */
386
            /* As we suppose write is immediate, this should never happen */
387
            return;
388
        case 0x80:
389
            goto check_unlock1;
390
        default:
391
            /* Should never happen */
392
            DPRINTF("%s: invalid command state %02x (wc 4)\n",
393
                    __func__, pfl->cmd);
394
            goto reset_flash;
395
        }
396
        break;
397
    case 5:
398
        switch (cmd) {
399
        case 0x10:
400
            if (boff != pfl->unlock_addr[0]) {
401
                DPRINTF("%s: chip erase: invalid address " TARGET_FMT_plx "\n",
402
                        __func__, offset);
403
                goto reset_flash;
404
            }
405
            /* Chip erase */
406
            DPRINTF("%s: start chip erase\n", __func__);
407
            memset(pfl->storage, 0xFF, pfl->chip_len);
408
            pfl->status = 0x00;
409
            pflash_update(pfl, 0, pfl->chip_len);
410
            /* Let's wait 5 seconds before chip erase is done */
411
            qemu_mod_timer(pfl->timer,
412
                           qemu_get_clock_ns(vm_clock) + (get_ticks_per_sec() * 5));
413
            break;
414
        case 0x30:
415
            /* Sector erase */
416
            p = pfl->storage;
417
            offset &= ~(pfl->sector_len - 1);
418
            DPRINTF("%s: start sector erase at " TARGET_FMT_plx "\n", __func__,
419
                    offset);
420
            memset(p + offset, 0xFF, pfl->sector_len);
421
            pflash_update(pfl, offset, pfl->sector_len);
422
            pfl->status = 0x00;
423
            /* Let's wait 1/2 second before sector erase is done */
424
            qemu_mod_timer(pfl->timer,
425
                           qemu_get_clock_ns(vm_clock) + (get_ticks_per_sec() / 2));
426
            break;
427
        default:
428
            DPRINTF("%s: invalid command %02x (wc 5)\n", __func__, cmd);
429
            goto reset_flash;
430
        }
431
        pfl->cmd = cmd;
432
        break;
433
    case 6:
434
        switch (pfl->cmd) {
435
        case 0x10:
436
            /* Ignore writes during chip erase */
437
            return;
438
        case 0x30:
439
            /* Ignore writes during sector erase */
440
            return;
441
        default:
442
            /* Should never happen */
443
            DPRINTF("%s: invalid command state %02x (wc 6)\n",
444
                    __func__, pfl->cmd);
445
            goto reset_flash;
446
        }
447
        break;
448
    case 7: /* Special value for CFI queries */
449
        DPRINTF("%s: invalid write in CFI query mode\n", __func__);
450
        goto reset_flash;
451
    default:
452
        /* Should never happen */
453
        DPRINTF("%s: invalid write state (wc 7)\n",  __func__);
454
        goto reset_flash;
455
    }
456
    pfl->wcycle++;
457

    
458
    return;
459

    
460
    /* Reset flash */
461
 reset_flash:
462
    pfl->bypass = 0;
463
    pfl->wcycle = 0;
464
    pfl->cmd = 0;
465
    return;
466

    
467
 do_bypass:
468
    pfl->wcycle = 2;
469
    pfl->cmd = 0;
470
    return;
471
}
472

    
473

    
474
static uint32_t pflash_readb_be(void *opaque, target_phys_addr_t addr)
475
{
476
    return pflash_read(opaque, addr, 1, 1);
477
}
478

    
479
static uint32_t pflash_readb_le(void *opaque, target_phys_addr_t addr)
480
{
481
    return pflash_read(opaque, addr, 1, 0);
482
}
483

    
484
static uint32_t pflash_readw_be(void *opaque, target_phys_addr_t addr)
485
{
486
    pflash_t *pfl = opaque;
487

    
488
    return pflash_read(pfl, addr, 2, 1);
489
}
490

    
491
static uint32_t pflash_readw_le(void *opaque, target_phys_addr_t addr)
492
{
493
    pflash_t *pfl = opaque;
494

    
495
    return pflash_read(pfl, addr, 2, 0);
496
}
497

    
498
static uint32_t pflash_readl_be(void *opaque, target_phys_addr_t addr)
499
{
500
    pflash_t *pfl = opaque;
501

    
502
    return pflash_read(pfl, addr, 4, 1);
503
}
504

    
505
static uint32_t pflash_readl_le(void *opaque, target_phys_addr_t addr)
506
{
507
    pflash_t *pfl = opaque;
508

    
509
    return pflash_read(pfl, addr, 4, 0);
510
}
511

    
512
static void pflash_writeb_be(void *opaque, target_phys_addr_t addr,
513
                             uint32_t value)
514
{
515
    pflash_write(opaque, addr, value, 1, 1);
516
}
517

    
518
static void pflash_writeb_le(void *opaque, target_phys_addr_t addr,
519
                             uint32_t value)
520
{
521
    pflash_write(opaque, addr, value, 1, 0);
522
}
523

    
524
static void pflash_writew_be(void *opaque, target_phys_addr_t addr,
525
                             uint32_t value)
526
{
527
    pflash_t *pfl = opaque;
528

    
529
    pflash_write(pfl, addr, value, 2, 1);
530
}
531

    
532
static void pflash_writew_le(void *opaque, target_phys_addr_t addr,
533
                             uint32_t value)
534
{
535
    pflash_t *pfl = opaque;
536

    
537
    pflash_write(pfl, addr, value, 2, 0);
538
}
539

    
540
static void pflash_writel_be(void *opaque, target_phys_addr_t addr,
541
                             uint32_t value)
542
{
543
    pflash_t *pfl = opaque;
544

    
545
    pflash_write(pfl, addr, value, 4, 1);
546
}
547

    
548
static void pflash_writel_le(void *opaque, target_phys_addr_t addr,
549
                             uint32_t value)
550
{
551
    pflash_t *pfl = opaque;
552

    
553
    pflash_write(pfl, addr, value, 4, 0);
554
}
555

    
556
static const MemoryRegionOps pflash_cfi02_ops_be = {
557
    .old_mmio = {
558
        .read = { pflash_readb_be, pflash_readw_be, pflash_readl_be, },
559
        .write = { pflash_writeb_be, pflash_writew_be, pflash_writel_be, },
560
    },
561
    .endianness = DEVICE_NATIVE_ENDIAN,
562
};
563

    
564
static const MemoryRegionOps pflash_cfi02_ops_le = {
565
    .old_mmio = {
566
        .read = { pflash_readb_le, pflash_readw_le, pflash_readl_le, },
567
        .write = { pflash_writeb_le, pflash_writew_le, pflash_writel_le, },
568
    },
569
    .endianness = DEVICE_NATIVE_ENDIAN,
570
};
571

    
572
/* Count trailing zeroes of a 32 bits quantity */
573
static int ctz32 (uint32_t n)
574
{
575
    int ret;
576

    
577
    ret = 0;
578
    if (!(n & 0xFFFF)) {
579
        ret += 16;
580
        n = n >> 16;
581
    }
582
    if (!(n & 0xFF)) {
583
        ret += 8;
584
        n = n >> 8;
585
    }
586
    if (!(n & 0xF)) {
587
        ret += 4;
588
        n = n >> 4;
589
    }
590
    if (!(n & 0x3)) {
591
        ret += 2;
592
        n = n >> 2;
593
    }
594
    if (!(n & 0x1)) {
595
        ret++;
596
#if 0 /* This is not necessary as n is never 0 */
597
        n = n >> 1;
598
#endif
599
    }
600
#if 0 /* This is not necessary as n is never 0 */
601
    if (!n)
602
        ret++;
603
#endif
604

    
605
    return ret;
606
}
607

    
608
pflash_t *pflash_cfi02_register(target_phys_addr_t base,
609
                                DeviceState *qdev, const char *name,
610
                                target_phys_addr_t size,
611
                                BlockDriverState *bs, uint32_t sector_len,
612
                                int nb_blocs, int nb_mappings, int width,
613
                                uint16_t id0, uint16_t id1,
614
                                uint16_t id2, uint16_t id3,
615
                                uint16_t unlock_addr0, uint16_t unlock_addr1,
616
                                int be)
617
{
618
    pflash_t *pfl;
619
    int32_t chip_len;
620
    int ret;
621

    
622
    chip_len = sector_len * nb_blocs;
623
    /* XXX: to be fixed */
624
#if 0
625
    if (total_len != (8 * 1024 * 1024) && total_len != (16 * 1024 * 1024) &&
626
        total_len != (32 * 1024 * 1024) && total_len != (64 * 1024 * 1024))
627
        return NULL;
628
#endif
629
    pfl = g_malloc0(sizeof(pflash_t));
630
    memory_region_init_rom_device(
631
        &pfl->orig_mem, be ? &pflash_cfi02_ops_be : &pflash_cfi02_ops_le, pfl,
632
        name, size);
633
    vmstate_register_ram(&pfl->orig_mem, qdev);
634
    pfl->storage = memory_region_get_ram_ptr(&pfl->orig_mem);
635
    pfl->base = base;
636
    pfl->chip_len = chip_len;
637
    pfl->mappings = nb_mappings;
638
    pfl->bs = bs;
639
    if (pfl->bs) {
640
        /* read the initial flash content */
641
        ret = bdrv_read(pfl->bs, 0, pfl->storage, chip_len >> 9);
642
        if (ret < 0) {
643
            g_free(pfl);
644
            return NULL;
645
        }
646
        bdrv_attach_dev_nofail(pfl->bs, pfl);
647
    }
648
    pflash_setup_mappings(pfl);
649
    pfl->rom_mode = 1;
650
    memory_region_add_subregion(get_system_memory(), pfl->base, &pfl->mem);
651
#if 0 /* XXX: there should be a bit to set up read-only,
652
       *      the same way the hardware does (with WP pin).
653
       */
654
    pfl->ro = 1;
655
#else
656
    pfl->ro = 0;
657
#endif
658
    pfl->timer = qemu_new_timer_ns(vm_clock, pflash_timer, pfl);
659
    pfl->sector_len = sector_len;
660
    pfl->width = width;
661
    pfl->wcycle = 0;
662
    pfl->cmd = 0;
663
    pfl->status = 0;
664
    pfl->ident[0] = id0;
665
    pfl->ident[1] = id1;
666
    pfl->ident[2] = id2;
667
    pfl->ident[3] = id3;
668
    pfl->unlock_addr[0] = unlock_addr0;
669
    pfl->unlock_addr[1] = unlock_addr1;
670
    /* Hardcoded CFI table (mostly from SG29 Spansion flash) */
671
    pfl->cfi_len = 0x52;
672
    /* Standard "QRY" string */
673
    pfl->cfi_table[0x10] = 'Q';
674
    pfl->cfi_table[0x11] = 'R';
675
    pfl->cfi_table[0x12] = 'Y';
676
    /* Command set (AMD/Fujitsu) */
677
    pfl->cfi_table[0x13] = 0x02;
678
    pfl->cfi_table[0x14] = 0x00;
679
    /* Primary extended table address */
680
    pfl->cfi_table[0x15] = 0x31;
681
    pfl->cfi_table[0x16] = 0x00;
682
    /* Alternate command set (none) */
683
    pfl->cfi_table[0x17] = 0x00;
684
    pfl->cfi_table[0x18] = 0x00;
685
    /* Alternate extended table (none) */
686
    pfl->cfi_table[0x19] = 0x00;
687
    pfl->cfi_table[0x1A] = 0x00;
688
    /* Vcc min */
689
    pfl->cfi_table[0x1B] = 0x27;
690
    /* Vcc max */
691
    pfl->cfi_table[0x1C] = 0x36;
692
    /* Vpp min (no Vpp pin) */
693
    pfl->cfi_table[0x1D] = 0x00;
694
    /* Vpp max (no Vpp pin) */
695
    pfl->cfi_table[0x1E] = 0x00;
696
    /* Reserved */
697
    pfl->cfi_table[0x1F] = 0x07;
698
    /* Timeout for min size buffer write (NA) */
699
    pfl->cfi_table[0x20] = 0x00;
700
    /* Typical timeout for block erase (512 ms) */
701
    pfl->cfi_table[0x21] = 0x09;
702
    /* Typical timeout for full chip erase (4096 ms) */
703
    pfl->cfi_table[0x22] = 0x0C;
704
    /* Reserved */
705
    pfl->cfi_table[0x23] = 0x01;
706
    /* Max timeout for buffer write (NA) */
707
    pfl->cfi_table[0x24] = 0x00;
708
    /* Max timeout for block erase */
709
    pfl->cfi_table[0x25] = 0x0A;
710
    /* Max timeout for chip erase */
711
    pfl->cfi_table[0x26] = 0x0D;
712
    /* Device size */
713
    pfl->cfi_table[0x27] = ctz32(chip_len);
714
    /* Flash device interface (8 & 16 bits) */
715
    pfl->cfi_table[0x28] = 0x02;
716
    pfl->cfi_table[0x29] = 0x00;
717
    /* Max number of bytes in multi-bytes write */
718
    /* XXX: disable buffered write as it's not supported */
719
    //    pfl->cfi_table[0x2A] = 0x05;
720
    pfl->cfi_table[0x2A] = 0x00;
721
    pfl->cfi_table[0x2B] = 0x00;
722
    /* Number of erase block regions (uniform) */
723
    pfl->cfi_table[0x2C] = 0x01;
724
    /* Erase block region 1 */
725
    pfl->cfi_table[0x2D] = nb_blocs - 1;
726
    pfl->cfi_table[0x2E] = (nb_blocs - 1) >> 8;
727
    pfl->cfi_table[0x2F] = sector_len >> 8;
728
    pfl->cfi_table[0x30] = sector_len >> 16;
729

    
730
    /* Extended */
731
    pfl->cfi_table[0x31] = 'P';
732
    pfl->cfi_table[0x32] = 'R';
733
    pfl->cfi_table[0x33] = 'I';
734

    
735
    pfl->cfi_table[0x34] = '1';
736
    pfl->cfi_table[0x35] = '0';
737

    
738
    pfl->cfi_table[0x36] = 0x00;
739
    pfl->cfi_table[0x37] = 0x00;
740
    pfl->cfi_table[0x38] = 0x00;
741
    pfl->cfi_table[0x39] = 0x00;
742

    
743
    pfl->cfi_table[0x3a] = 0x00;
744

    
745
    pfl->cfi_table[0x3b] = 0x00;
746
    pfl->cfi_table[0x3c] = 0x00;
747

    
748
    return pfl;
749
}