Statistics
| Branch: | Revision:

root / hw / slavio_timer.c @ beb811bd

History | View | Annotate | Download (8.1 kB)

1 e80cfcfc bellard
/*
2 e80cfcfc bellard
 * QEMU Sparc SLAVIO timer controller emulation
3 e80cfcfc bellard
 *
4 66321a11 bellard
 * Copyright (c) 2003-2005 Fabrice Bellard
5 e80cfcfc bellard
 * 
6 e80cfcfc bellard
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 e80cfcfc bellard
 * of this software and associated documentation files (the "Software"), to deal
8 e80cfcfc bellard
 * in the Software without restriction, including without limitation the rights
9 e80cfcfc bellard
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 e80cfcfc bellard
 * copies of the Software, and to permit persons to whom the Software is
11 e80cfcfc bellard
 * furnished to do so, subject to the following conditions:
12 e80cfcfc bellard
 *
13 e80cfcfc bellard
 * The above copyright notice and this permission notice shall be included in
14 e80cfcfc bellard
 * all copies or substantial portions of the Software.
15 e80cfcfc bellard
 *
16 e80cfcfc bellard
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 e80cfcfc bellard
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 e80cfcfc bellard
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 e80cfcfc bellard
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 e80cfcfc bellard
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 e80cfcfc bellard
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 e80cfcfc bellard
 * THE SOFTWARE.
23 e80cfcfc bellard
 */
24 e80cfcfc bellard
#include "vl.h"
25 e80cfcfc bellard
26 e80cfcfc bellard
//#define DEBUG_TIMER
27 e80cfcfc bellard
28 66321a11 bellard
#ifdef DEBUG_TIMER
29 66321a11 bellard
#define DPRINTF(fmt, args...) \
30 66321a11 bellard
do { printf("TIMER: " fmt , ##args); } while (0)
31 52cc07d0 blueswir1
#define pic_set_irq_new(intctl, irq, level)                             \
32 52cc07d0 blueswir1
    do { printf("TIMER: set_irq(%d): %d\n", (irq), (level));            \
33 52cc07d0 blueswir1
        pic_set_irq_new((intctl), (irq),(level));} while (0)
34 66321a11 bellard
#else
35 66321a11 bellard
#define DPRINTF(fmt, args...)
36 66321a11 bellard
#endif
37 66321a11 bellard
38 e80cfcfc bellard
/*
39 e80cfcfc bellard
 * Registers of hardware timer in sun4m.
40 e80cfcfc bellard
 *
41 e80cfcfc bellard
 * This is the timer/counter part of chip STP2001 (Slave I/O), also
42 e80cfcfc bellard
 * produced as NCR89C105. See
43 e80cfcfc bellard
 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
44 e80cfcfc bellard
 * 
45 e80cfcfc bellard
 * The 31-bit counter is incremented every 500ns by bit 9. Bits 8..0
46 e80cfcfc bellard
 * are zero. Bit 31 is 1 when count has been reached.
47 e80cfcfc bellard
 *
48 ba3c64fb bellard
 * Per-CPU timers interrupt local CPU, system timer uses normal
49 ba3c64fb bellard
 * interrupt routing.
50 ba3c64fb bellard
 *
51 e80cfcfc bellard
 */
52 e80cfcfc bellard
53 e80cfcfc bellard
typedef struct SLAVIO_TIMERState {
54 e80cfcfc bellard
    uint32_t limit, count, counthigh;
55 e80cfcfc bellard
    int64_t count_load_time;
56 e80cfcfc bellard
    int64_t expire_time;
57 e80cfcfc bellard
    int64_t stop_time, tick_offset;
58 e80cfcfc bellard
    QEMUTimer *irq_timer;
59 e80cfcfc bellard
    int irq;
60 e80cfcfc bellard
    int reached, stopped;
61 e80cfcfc bellard
    int mode; // 0 = processor, 1 = user, 2 = system
62 ba3c64fb bellard
    unsigned int cpu;
63 52cc07d0 blueswir1
    void *intctl;
64 e80cfcfc bellard
} SLAVIO_TIMERState;
65 e80cfcfc bellard
66 e80cfcfc bellard
#define TIMER_MAXADDR 0x1f
67 e80cfcfc bellard
#define CNT_FREQ 2000000
68 e80cfcfc bellard
69 e80cfcfc bellard
// Update count, set irq, update expire_time
70 e80cfcfc bellard
static void slavio_timer_get_out(SLAVIO_TIMERState *s)
71 e80cfcfc bellard
{
72 e80cfcfc bellard
    int out;
73 e80cfcfc bellard
    int64_t diff, ticks, count;
74 e80cfcfc bellard
    uint32_t limit;
75 e80cfcfc bellard
76 e80cfcfc bellard
    // There are three clock tick units: CPU ticks, register units
77 e80cfcfc bellard
    // (nanoseconds), and counter ticks (500 ns).
78 e80cfcfc bellard
    if (s->mode == 1 && s->stopped)
79 e80cfcfc bellard
        ticks = s->stop_time;
80 e80cfcfc bellard
    else
81 e80cfcfc bellard
        ticks = qemu_get_clock(vm_clock) - s->tick_offset;
82 e80cfcfc bellard
83 ba3c64fb bellard
    out = (ticks > s->expire_time);
84 e80cfcfc bellard
    if (out)
85 e80cfcfc bellard
        s->reached = 0x80000000;
86 e80cfcfc bellard
    if (!s->limit)
87 e80cfcfc bellard
        limit = 0x7fffffff;
88 e80cfcfc bellard
    else
89 e80cfcfc bellard
        limit = s->limit;
90 e80cfcfc bellard
91 e80cfcfc bellard
    // Convert register units to counter ticks
92 e80cfcfc bellard
    limit = limit >> 9;
93 e80cfcfc bellard
94 e80cfcfc bellard
    // Convert cpu ticks to counter ticks
95 e80cfcfc bellard
    diff = muldiv64(ticks - s->count_load_time, CNT_FREQ, ticks_per_sec);
96 e80cfcfc bellard
97 e80cfcfc bellard
    // Calculate what the counter should be, convert to register
98 e80cfcfc bellard
    // units
99 e80cfcfc bellard
    count = diff % limit;
100 e80cfcfc bellard
    s->count = count << 9;
101 e80cfcfc bellard
    s->counthigh = count >> 22;
102 e80cfcfc bellard
103 e80cfcfc bellard
    // Expire time: CPU ticks left to next interrupt
104 e80cfcfc bellard
    // Convert remaining counter ticks to CPU ticks
105 e80cfcfc bellard
    s->expire_time = ticks + muldiv64(limit - count, ticks_per_sec, CNT_FREQ);
106 e80cfcfc bellard
107 26a76461 bellard
    DPRINTF("irq %d limit %d reached %d d %" PRId64 " count %d s->c %x diff %" PRId64 " stopped %d mode %d\n", s->irq, limit, s->reached?1:0, (ticks-s->count_load_time), count, s->count, s->expire_time - ticks, s->stopped, s->mode);
108 66321a11 bellard
109 e80cfcfc bellard
    if (s->mode != 1)
110 52cc07d0 blueswir1
        pic_set_irq_cpu(s->intctl, s->irq, out, s->cpu);
111 e80cfcfc bellard
}
112 e80cfcfc bellard
113 e80cfcfc bellard
// timer callback
114 e80cfcfc bellard
static void slavio_timer_irq(void *opaque)
115 e80cfcfc bellard
{
116 e80cfcfc bellard
    SLAVIO_TIMERState *s = opaque;
117 e80cfcfc bellard
118 e80cfcfc bellard
    if (!s->irq_timer)
119 e80cfcfc bellard
        return;
120 e80cfcfc bellard
    slavio_timer_get_out(s);
121 e80cfcfc bellard
    if (s->mode != 1)
122 e80cfcfc bellard
        qemu_mod_timer(s->irq_timer, s->expire_time);
123 e80cfcfc bellard
}
124 e80cfcfc bellard
125 e80cfcfc bellard
static uint32_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr)
126 e80cfcfc bellard
{
127 e80cfcfc bellard
    SLAVIO_TIMERState *s = opaque;
128 e80cfcfc bellard
    uint32_t saddr;
129 e80cfcfc bellard
130 e80cfcfc bellard
    saddr = (addr & TIMER_MAXADDR) >> 2;
131 e80cfcfc bellard
    switch (saddr) {
132 e80cfcfc bellard
    case 0:
133 e80cfcfc bellard
        // read limit (system counter mode) or read most signifying
134 e80cfcfc bellard
        // part of counter (user mode)
135 e80cfcfc bellard
        if (s->mode != 1) {
136 e80cfcfc bellard
            // clear irq
137 52cc07d0 blueswir1
            pic_set_irq_cpu(s->intctl, s->irq, 0, s->cpu);
138 e80cfcfc bellard
            s->reached = 0;
139 e80cfcfc bellard
            return s->limit;
140 e80cfcfc bellard
        }
141 e80cfcfc bellard
        else {
142 e80cfcfc bellard
            slavio_timer_get_out(s);
143 e80cfcfc bellard
            return s->counthigh & 0x7fffffff;
144 e80cfcfc bellard
        }
145 e80cfcfc bellard
    case 1:
146 e80cfcfc bellard
        // read counter and reached bit (system mode) or read lsbits
147 e80cfcfc bellard
        // of counter (user mode)
148 e80cfcfc bellard
        slavio_timer_get_out(s);
149 e80cfcfc bellard
        if (s->mode != 1)
150 e80cfcfc bellard
            return (s->count & 0x7fffffff) | s->reached;
151 e80cfcfc bellard
        else
152 e80cfcfc bellard
            return s->count;
153 e80cfcfc bellard
    case 3:
154 e80cfcfc bellard
        // read start/stop status
155 e80cfcfc bellard
        return s->stopped;
156 e80cfcfc bellard
    case 4:
157 e80cfcfc bellard
        // read user/system mode
158 e80cfcfc bellard
        return s->mode & 1;
159 e80cfcfc bellard
    default:
160 e80cfcfc bellard
        return 0;
161 e80cfcfc bellard
    }
162 e80cfcfc bellard
}
163 e80cfcfc bellard
164 e80cfcfc bellard
static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
165 e80cfcfc bellard
{
166 e80cfcfc bellard
    SLAVIO_TIMERState *s = opaque;
167 e80cfcfc bellard
    uint32_t saddr;
168 e80cfcfc bellard
169 e80cfcfc bellard
    saddr = (addr & TIMER_MAXADDR) >> 2;
170 e80cfcfc bellard
    switch (saddr) {
171 e80cfcfc bellard
    case 0:
172 e80cfcfc bellard
        // set limit, reset counter
173 e80cfcfc bellard
        s->count_load_time = qemu_get_clock(vm_clock);
174 e80cfcfc bellard
        // fall through
175 e80cfcfc bellard
    case 2:
176 e80cfcfc bellard
        // set limit without resetting counter
177 e80cfcfc bellard
        if (!val)
178 e80cfcfc bellard
            s->limit = 0x7fffffff;
179 e80cfcfc bellard
        else
180 e80cfcfc bellard
            s->limit = val & 0x7fffffff;
181 e80cfcfc bellard
        slavio_timer_irq(s);
182 e80cfcfc bellard
        break;
183 e80cfcfc bellard
    case 3:
184 e80cfcfc bellard
        // start/stop user counter
185 e80cfcfc bellard
        if (s->mode == 1) {
186 e80cfcfc bellard
            if (val & 1) {
187 e80cfcfc bellard
                s->stop_time = qemu_get_clock(vm_clock);
188 e80cfcfc bellard
                s->stopped = 1;
189 e80cfcfc bellard
            }
190 e80cfcfc bellard
            else {
191 e80cfcfc bellard
                if (s->stopped)
192 e80cfcfc bellard
                    s->tick_offset += qemu_get_clock(vm_clock) - s->stop_time;
193 e80cfcfc bellard
                s->stopped = 0;
194 e80cfcfc bellard
            }
195 e80cfcfc bellard
        }
196 e80cfcfc bellard
        break;
197 e80cfcfc bellard
    case 4:
198 e80cfcfc bellard
        // bit 0: user (1) or system (0) counter mode
199 e80cfcfc bellard
        if (s->mode == 0 || s->mode == 1)
200 e80cfcfc bellard
            s->mode = val & 1;
201 e80cfcfc bellard
        break;
202 e80cfcfc bellard
    default:
203 e80cfcfc bellard
        break;
204 e80cfcfc bellard
    }
205 e80cfcfc bellard
}
206 e80cfcfc bellard
207 e80cfcfc bellard
static CPUReadMemoryFunc *slavio_timer_mem_read[3] = {
208 e80cfcfc bellard
    slavio_timer_mem_readl,
209 e80cfcfc bellard
    slavio_timer_mem_readl,
210 e80cfcfc bellard
    slavio_timer_mem_readl,
211 e80cfcfc bellard
};
212 e80cfcfc bellard
213 e80cfcfc bellard
static CPUWriteMemoryFunc *slavio_timer_mem_write[3] = {
214 e80cfcfc bellard
    slavio_timer_mem_writel,
215 e80cfcfc bellard
    slavio_timer_mem_writel,
216 e80cfcfc bellard
    slavio_timer_mem_writel,
217 e80cfcfc bellard
};
218 e80cfcfc bellard
219 e80cfcfc bellard
static void slavio_timer_save(QEMUFile *f, void *opaque)
220 e80cfcfc bellard
{
221 e80cfcfc bellard
    SLAVIO_TIMERState *s = opaque;
222 e80cfcfc bellard
223 e80cfcfc bellard
    qemu_put_be32s(f, &s->limit);
224 e80cfcfc bellard
    qemu_put_be32s(f, &s->count);
225 e80cfcfc bellard
    qemu_put_be32s(f, &s->counthigh);
226 e80cfcfc bellard
    qemu_put_be64s(f, &s->count_load_time);
227 e80cfcfc bellard
    qemu_put_be64s(f, &s->expire_time);
228 e80cfcfc bellard
    qemu_put_be64s(f, &s->stop_time);
229 e80cfcfc bellard
    qemu_put_be64s(f, &s->tick_offset);
230 e80cfcfc bellard
    qemu_put_be32s(f, &s->irq);
231 e80cfcfc bellard
    qemu_put_be32s(f, &s->reached);
232 e80cfcfc bellard
    qemu_put_be32s(f, &s->stopped);
233 e80cfcfc bellard
    qemu_put_be32s(f, &s->mode);
234 e80cfcfc bellard
}
235 e80cfcfc bellard
236 e80cfcfc bellard
static int slavio_timer_load(QEMUFile *f, void *opaque, int version_id)
237 e80cfcfc bellard
{
238 e80cfcfc bellard
    SLAVIO_TIMERState *s = opaque;
239 e80cfcfc bellard
    
240 e80cfcfc bellard
    if (version_id != 1)
241 e80cfcfc bellard
        return -EINVAL;
242 e80cfcfc bellard
243 e80cfcfc bellard
    qemu_get_be32s(f, &s->limit);
244 e80cfcfc bellard
    qemu_get_be32s(f, &s->count);
245 e80cfcfc bellard
    qemu_get_be32s(f, &s->counthigh);
246 e80cfcfc bellard
    qemu_get_be64s(f, &s->count_load_time);
247 e80cfcfc bellard
    qemu_get_be64s(f, &s->expire_time);
248 e80cfcfc bellard
    qemu_get_be64s(f, &s->stop_time);
249 e80cfcfc bellard
    qemu_get_be64s(f, &s->tick_offset);
250 e80cfcfc bellard
    qemu_get_be32s(f, &s->irq);
251 e80cfcfc bellard
    qemu_get_be32s(f, &s->reached);
252 e80cfcfc bellard
    qemu_get_be32s(f, &s->stopped);
253 e80cfcfc bellard
    qemu_get_be32s(f, &s->mode);
254 e80cfcfc bellard
    return 0;
255 e80cfcfc bellard
}
256 e80cfcfc bellard
257 e80cfcfc bellard
static void slavio_timer_reset(void *opaque)
258 e80cfcfc bellard
{
259 e80cfcfc bellard
    SLAVIO_TIMERState *s = opaque;
260 e80cfcfc bellard
261 e80cfcfc bellard
    s->limit = 0;
262 e80cfcfc bellard
    s->count = 0;
263 e80cfcfc bellard
    s->count_load_time = qemu_get_clock(vm_clock);;
264 e80cfcfc bellard
    s->stop_time = s->count_load_time;
265 e80cfcfc bellard
    s->tick_offset = 0;
266 e80cfcfc bellard
    s->reached = 0;
267 e80cfcfc bellard
    s->mode &= 2;
268 e80cfcfc bellard
    s->stopped = 1;
269 e80cfcfc bellard
    slavio_timer_get_out(s);
270 e80cfcfc bellard
}
271 e80cfcfc bellard
272 52cc07d0 blueswir1
void slavio_timer_init(uint32_t addr, int irq, int mode, unsigned int cpu,
273 52cc07d0 blueswir1
                       void *intctl)
274 e80cfcfc bellard
{
275 e80cfcfc bellard
    int slavio_timer_io_memory;
276 e80cfcfc bellard
    SLAVIO_TIMERState *s;
277 e80cfcfc bellard
278 e80cfcfc bellard
    s = qemu_mallocz(sizeof(SLAVIO_TIMERState));
279 e80cfcfc bellard
    if (!s)
280 e80cfcfc bellard
        return;
281 e80cfcfc bellard
    s->irq = irq;
282 e80cfcfc bellard
    s->mode = mode;
283 ba3c64fb bellard
    s->cpu = cpu;
284 e80cfcfc bellard
    s->irq_timer = qemu_new_timer(vm_clock, slavio_timer_irq, s);
285 52cc07d0 blueswir1
    s->intctl = intctl;
286 e80cfcfc bellard
287 e80cfcfc bellard
    slavio_timer_io_memory = cpu_register_io_memory(0, slavio_timer_mem_read,
288 e80cfcfc bellard
                                                    slavio_timer_mem_write, s);
289 e80cfcfc bellard
    cpu_register_physical_memory(addr, TIMER_MAXADDR, slavio_timer_io_memory);
290 e80cfcfc bellard
    register_savevm("slavio_timer", addr, 1, slavio_timer_save, slavio_timer_load, s);
291 e80cfcfc bellard
    qemu_register_reset(slavio_timer_reset, s);
292 e80cfcfc bellard
    slavio_timer_reset(s);
293 e80cfcfc bellard
}