Statistics
| Branch: | Revision:

root / hw / musicpal.c @ bf5b7423

History | View | Annotate | Download (39.6 kB)

1
/*
2
 * Marvell MV88W8618 / Freecom MusicPal emulation.
3
 *
4
 * Copyright (c) 2008 Jan Kiszka
5
 *
6
 * This code is licenced under the GNU GPL v2.
7
 */
8

    
9
#include "hw.h"
10
#include "arm-misc.h"
11
#include "devices.h"
12
#include "net.h"
13
#include "sysemu.h"
14
#include "boards.h"
15
#include "pc.h"
16
#include "qemu-timer.h"
17
#include "block.h"
18
#include "flash.h"
19
#include "console.h"
20
#include "audio/audio.h"
21
#include "i2c.h"
22

    
23
#define MP_ETH_BASE             0x80008000
24
#define MP_ETH_SIZE             0x00001000
25

    
26
#define MP_UART1_BASE           0x8000C840
27
#define MP_UART2_BASE           0x8000C940
28

    
29
#define MP_FLASHCFG_BASE        0x90006000
30
#define MP_FLASHCFG_SIZE        0x00001000
31

    
32
#define MP_AUDIO_BASE           0x90007000
33
#define MP_AUDIO_SIZE           0x00001000
34

    
35
#define MP_PIC_BASE             0x90008000
36
#define MP_PIC_SIZE             0x00001000
37

    
38
#define MP_PIT_BASE             0x90009000
39
#define MP_PIT_SIZE             0x00001000
40

    
41
#define MP_LCD_BASE             0x9000c000
42
#define MP_LCD_SIZE             0x00001000
43

    
44
#define MP_SRAM_BASE            0xC0000000
45
#define MP_SRAM_SIZE            0x00020000
46

    
47
#define MP_RAM_DEFAULT_SIZE     32*1024*1024
48
#define MP_FLASH_SIZE_MAX       32*1024*1024
49

    
50
#define MP_TIMER1_IRQ           4
51
/* ... */
52
#define MP_TIMER4_IRQ           7
53
#define MP_EHCI_IRQ             8
54
#define MP_ETH_IRQ              9
55
#define MP_UART1_IRQ            11
56
#define MP_UART2_IRQ            11
57
#define MP_GPIO_IRQ             12
58
#define MP_RTC_IRQ              28
59
#define MP_AUDIO_IRQ            30
60

    
61
static uint32_t gpio_in_state = 0xffffffff;
62
static uint32_t gpio_out_state;
63
static ram_addr_t sram_off;
64

    
65
/* Address conversion helpers */
66
static void *target2host_addr(uint32_t addr)
67
{
68
    if (addr < MP_SRAM_BASE) {
69
        if (addr >= MP_RAM_DEFAULT_SIZE)
70
            return NULL;
71
        return (void *)(phys_ram_base + addr);
72
    } else {
73
        if (addr >= MP_SRAM_BASE + MP_SRAM_SIZE)
74
            return NULL;
75
        return (void *)(phys_ram_base + sram_off + addr - MP_SRAM_BASE);
76
    }
77
}
78

    
79
static uint32_t host2target_addr(void *addr)
80
{
81
    if (addr < ((void *)phys_ram_base) + sram_off)
82
        return (unsigned long)addr - (unsigned long)phys_ram_base;
83
    else
84
        return (unsigned long)addr - (unsigned long)phys_ram_base -
85
            sram_off + MP_SRAM_BASE;
86
}
87

    
88

    
89
typedef enum i2c_state {
90
    STOPPED = 0,
91
    INITIALIZING,
92
    SENDING_BIT7,
93
    SENDING_BIT6,
94
    SENDING_BIT5,
95
    SENDING_BIT4,
96
    SENDING_BIT3,
97
    SENDING_BIT2,
98
    SENDING_BIT1,
99
    SENDING_BIT0,
100
    WAITING_FOR_ACK,
101
    RECEIVING_BIT7,
102
    RECEIVING_BIT6,
103
    RECEIVING_BIT5,
104
    RECEIVING_BIT4,
105
    RECEIVING_BIT3,
106
    RECEIVING_BIT2,
107
    RECEIVING_BIT1,
108
    RECEIVING_BIT0,
109
    SENDING_ACK
110
} i2c_state;
111

    
112
typedef struct i2c_interface {
113
    i2c_bus *bus;
114
    i2c_state state;
115
    int last_data;
116
    int last_clock;
117
    uint8_t buffer;
118
    int current_addr;
119
} i2c_interface;
120

    
121
static void i2c_enter_stop(i2c_interface *i2c)
122
{
123
    if (i2c->current_addr >= 0)
124
        i2c_end_transfer(i2c->bus);
125
    i2c->current_addr = -1;
126
    i2c->state = STOPPED;
127
}
128

    
129
static void i2c_state_update(i2c_interface *i2c, int data, int clock)
130
{
131
    if (!i2c)
132
        return;
133

    
134
    switch (i2c->state) {
135
    case STOPPED:
136
        if (data == 0 && i2c->last_data == 1 && clock == 1)
137
            i2c->state = INITIALIZING;
138
        break;
139

    
140
    case INITIALIZING:
141
        if (clock == 0 && i2c->last_clock == 1 && data == 0)
142
            i2c->state = SENDING_BIT7;
143
        else
144
            i2c_enter_stop(i2c);
145
        break;
146

    
147
    case SENDING_BIT7 ... SENDING_BIT0:
148
        if (clock == 0 && i2c->last_clock == 1) {
149
            i2c->buffer = (i2c->buffer << 1) | data;
150
            i2c->state++; /* will end up in WAITING_FOR_ACK */
151
        } else if (data == 1 && i2c->last_data == 0 && clock == 1)
152
            i2c_enter_stop(i2c);
153
        break;
154

    
155
    case WAITING_FOR_ACK:
156
        if (clock == 0 && i2c->last_clock == 1) {
157
            if (i2c->current_addr < 0) {
158
                i2c->current_addr = i2c->buffer;
159
                i2c_start_transfer(i2c->bus, i2c->current_addr & 0xfe,
160
                                   i2c->buffer & 1);
161
            } else
162
                i2c_send(i2c->bus, i2c->buffer);
163
            if (i2c->current_addr & 1) {
164
                i2c->state = RECEIVING_BIT7;
165
                i2c->buffer = i2c_recv(i2c->bus);
166
            } else
167
                i2c->state = SENDING_BIT7;
168
        } else if (data == 1 && i2c->last_data == 0 && clock == 1)
169
            i2c_enter_stop(i2c);
170
        break;
171

    
172
    case RECEIVING_BIT7 ... RECEIVING_BIT0:
173
        if (clock == 0 && i2c->last_clock == 1) {
174
            i2c->state++; /* will end up in SENDING_ACK */
175
            i2c->buffer <<= 1;
176
        } else if (data == 1 && i2c->last_data == 0 && clock == 1)
177
            i2c_enter_stop(i2c);
178
        break;
179

    
180
    case SENDING_ACK:
181
        if (clock == 0 && i2c->last_clock == 1) {
182
            i2c->state = RECEIVING_BIT7;
183
            if (data == 0)
184
                i2c->buffer = i2c_recv(i2c->bus);
185
            else
186
                i2c_nack(i2c->bus);
187
        } else if (data == 1 && i2c->last_data == 0 && clock == 1)
188
            i2c_enter_stop(i2c);
189
        break;
190
    }
191

    
192
    i2c->last_data = data;
193
    i2c->last_clock = clock;
194
}
195

    
196
static int i2c_get_data(i2c_interface *i2c)
197
{
198
    if (!i2c)
199
        return 0;
200

    
201
    switch (i2c->state) {
202
    case RECEIVING_BIT7 ... RECEIVING_BIT0:
203
        return (i2c->buffer >> 7);
204

    
205
    case WAITING_FOR_ACK:
206
    default:
207
        return 0;
208
    }
209
}
210

    
211
static i2c_interface *mixer_i2c;
212

    
213
#ifdef HAS_AUDIO
214

    
215
/* Audio register offsets */
216
#define MP_AUDIO_PLAYBACK_MODE  0x00
217
#define MP_AUDIO_CLOCK_DIV      0x18
218
#define MP_AUDIO_IRQ_STATUS     0x20
219
#define MP_AUDIO_IRQ_ENABLE     0x24
220
#define MP_AUDIO_TX_START_LO    0x28
221
#define MP_AUDIO_TX_THRESHOLD   0x2C
222
#define MP_AUDIO_TX_STATUS      0x38
223
#define MP_AUDIO_TX_START_HI    0x40
224

    
225
/* Status register and IRQ enable bits */
226
#define MP_AUDIO_TX_HALF        (1 << 6)
227
#define MP_AUDIO_TX_FULL        (1 << 7)
228

    
229
/* Playback mode bits */
230
#define MP_AUDIO_16BIT_SAMPLE   (1 << 0)
231
#define MP_AUDIO_PLAYBACK_EN    (1 << 7)
232
#define MP_AUDIO_CLOCK_24MHZ    (1 << 9)
233
#define MP_AUDIO_MONO           (1 << 14)
234

    
235
/* Wolfson 8750 I2C address */
236
#define MP_WM_ADDR              0x34
237

    
238
const char audio_name[] = "mv88w8618";
239

    
240
typedef struct musicpal_audio_state {
241
    uint32_t base;
242
    qemu_irq irq;
243
    uint32_t playback_mode;
244
    uint32_t status;
245
    uint32_t irq_enable;
246
    unsigned long phys_buf;
247
    int8_t *target_buffer;
248
    unsigned int threshold;
249
    unsigned int play_pos;
250
    unsigned int last_free;
251
    uint32_t clock_div;
252
    i2c_slave *wm;
253
} musicpal_audio_state;
254

    
255
static void audio_callback(void *opaque, int free_out, int free_in)
256
{
257
    musicpal_audio_state *s = opaque;
258
    int16_t *codec_buffer;
259
    int8_t *mem_buffer;
260
    int pos, block_size;
261

    
262
    if (!(s->playback_mode & MP_AUDIO_PLAYBACK_EN))
263
        return;
264

    
265
    if (s->playback_mode & MP_AUDIO_16BIT_SAMPLE)
266
        free_out <<= 1;
267

    
268
    if (!(s->playback_mode & MP_AUDIO_MONO))
269
        free_out <<= 1;
270

    
271
    block_size = s->threshold/2;
272
    if (free_out - s->last_free < block_size)
273
        return;
274

    
275
    mem_buffer = s->target_buffer + s->play_pos;
276
    if (s->playback_mode & MP_AUDIO_16BIT_SAMPLE) {
277
        if (s->playback_mode & MP_AUDIO_MONO) {
278
            codec_buffer = wm8750_dac_buffer(s->wm, block_size >> 1);
279
            for (pos = 0; pos < block_size; pos += 2) {
280
                *codec_buffer++ = *(int16_t *)mem_buffer;
281
                *codec_buffer++ = *(int16_t *)mem_buffer;
282
                mem_buffer += 2;
283
            }
284
        } else
285
            memcpy(wm8750_dac_buffer(s->wm, block_size >> 2),
286
                   (uint32_t *)mem_buffer, block_size);
287
    } else {
288
        if (s->playback_mode & MP_AUDIO_MONO) {
289
            codec_buffer = wm8750_dac_buffer(s->wm, block_size);
290
            for (pos = 0; pos < block_size; pos++) {
291
                *codec_buffer++ = cpu_to_le16(256 * *mem_buffer);
292
                *codec_buffer++ = cpu_to_le16(256 * *mem_buffer++);
293
            }
294
        } else {
295
            codec_buffer = wm8750_dac_buffer(s->wm, block_size >> 1);
296
            for (pos = 0; pos < block_size; pos += 2) {
297
                *codec_buffer++ = cpu_to_le16(256 * *mem_buffer++);
298
                *codec_buffer++ = cpu_to_le16(256 * *mem_buffer++);
299
            }
300
        }
301
    }
302
    wm8750_dac_commit(s->wm);
303

    
304
    s->last_free = free_out - block_size;
305

    
306
    if (s->play_pos == 0) {
307
        s->status |= MP_AUDIO_TX_HALF;
308
        s->play_pos = block_size;
309
    } else {
310
        s->status |= MP_AUDIO_TX_FULL;
311
        s->play_pos = 0;
312
    }
313

    
314
    if (s->status & s->irq_enable)
315
        qemu_irq_raise(s->irq);
316
}
317

    
318
static void musicpal_audio_clock_update(musicpal_audio_state *s)
319
{
320
    int rate;
321

    
322
    if (s->playback_mode & MP_AUDIO_CLOCK_24MHZ)
323
        rate = 24576000 / 64; /* 24.576MHz */
324
    else
325
        rate = 11289600 / 64; /* 11.2896MHz */
326

    
327
    rate /= ((s->clock_div >> 8) & 0xff) + 1;
328

    
329
    wm8750_set_bclk_in(s->wm, rate);
330
}
331

    
332
static uint32_t musicpal_audio_read(void *opaque, target_phys_addr_t offset)
333
{
334
    musicpal_audio_state *s = opaque;
335

    
336
    offset -= s->base;
337
    switch (offset) {
338
    case MP_AUDIO_PLAYBACK_MODE:
339
        return s->playback_mode;
340

    
341
    case MP_AUDIO_CLOCK_DIV:
342
        return s->clock_div;
343

    
344
    case MP_AUDIO_IRQ_STATUS:
345
        return s->status;
346

    
347
    case MP_AUDIO_IRQ_ENABLE:
348
        return s->irq_enable;
349

    
350
    case MP_AUDIO_TX_STATUS:
351
        return s->play_pos >> 2;
352

    
353
    default:
354
        return 0;
355
    }
356
}
357

    
358
static void musicpal_audio_write(void *opaque, target_phys_addr_t offset,
359
                                 uint32_t value)
360
{
361
    musicpal_audio_state *s = opaque;
362

    
363
    offset -= s->base;
364
    switch (offset) {
365
    case MP_AUDIO_PLAYBACK_MODE:
366
        if (value & MP_AUDIO_PLAYBACK_EN &&
367
            !(s->playback_mode & MP_AUDIO_PLAYBACK_EN)) {
368
            s->status = 0;
369
            s->last_free = 0;
370
            s->play_pos = 0;
371
        }
372
        s->playback_mode = value;
373
        musicpal_audio_clock_update(s);
374
        break;
375

    
376
    case MP_AUDIO_CLOCK_DIV:
377
        s->clock_div = value;
378
        s->last_free = 0;
379
        s->play_pos = 0;
380
        musicpal_audio_clock_update(s);
381
        break;
382

    
383
    case MP_AUDIO_IRQ_STATUS:
384
        s->status &= ~value;
385
        break;
386

    
387
    case MP_AUDIO_IRQ_ENABLE:
388
        s->irq_enable = value;
389
        if (s->status & s->irq_enable)
390
            qemu_irq_raise(s->irq);
391
        break;
392

    
393
    case MP_AUDIO_TX_START_LO:
394
        s->phys_buf = (s->phys_buf & 0xFFFF0000) | (value & 0xFFFF);
395
        s->target_buffer = target2host_addr(s->phys_buf);
396
        s->play_pos = 0;
397
        s->last_free = 0;
398
        break;
399

    
400
    case MP_AUDIO_TX_THRESHOLD:
401
        s->threshold = (value + 1) * 4;
402
        break;
403

    
404
    case MP_AUDIO_TX_START_HI:
405
        s->phys_buf = (s->phys_buf & 0xFFFF) | (value << 16);
406
        s->target_buffer = target2host_addr(s->phys_buf);
407
        s->play_pos = 0;
408
        s->last_free = 0;
409
        break;
410
    }
411
}
412

    
413
static void musicpal_audio_reset(void *opaque)
414
{
415
    musicpal_audio_state *s = opaque;
416

    
417
    s->playback_mode = 0;
418
    s->status = 0;
419
    s->irq_enable = 0;
420
}
421

    
422
static CPUReadMemoryFunc *musicpal_audio_readfn[] = {
423
    musicpal_audio_read,
424
    musicpal_audio_read,
425
    musicpal_audio_read
426
};
427

    
428
static CPUWriteMemoryFunc *musicpal_audio_writefn[] = {
429
    musicpal_audio_write,
430
    musicpal_audio_write,
431
    musicpal_audio_write
432
};
433

    
434
static i2c_interface *musicpal_audio_init(uint32_t base, qemu_irq irq)
435
{
436
    AudioState *audio;
437
    musicpal_audio_state *s;
438
    i2c_interface *i2c;
439
    int iomemtype;
440

    
441
    audio = AUD_init();
442
    if (!audio) {
443
        AUD_log(audio_name, "No audio state\n");
444
        return NULL;
445
    }
446

    
447
    s = qemu_mallocz(sizeof(musicpal_audio_state));
448
    if (!s)
449
        return NULL;
450
    s->base = base;
451
    s->irq = irq;
452

    
453
    i2c = qemu_mallocz(sizeof(i2c_interface));
454
    if (!i2c)
455
        return NULL;
456
    i2c->bus = i2c_init_bus();
457
    i2c->current_addr = -1;
458

    
459
    s->wm = wm8750_init(i2c->bus, audio);
460
    if (!s->wm)
461
        return NULL;
462
    i2c_set_slave_address(s->wm, MP_WM_ADDR);
463
    wm8750_data_req_set(s->wm, audio_callback, s);
464

    
465
    iomemtype = cpu_register_io_memory(0, musicpal_audio_readfn,
466
                       musicpal_audio_writefn, s);
467
    cpu_register_physical_memory(base, MP_AUDIO_SIZE, iomemtype);
468

    
469
    qemu_register_reset(musicpal_audio_reset, s);
470

    
471
    return i2c;
472
}
473
#else  /* !HAS_AUDIO */
474
static i2c_interface *musicpal_audio_init(uint32_t base, qemu_irq irq)
475
{
476
    return NULL;
477
}
478
#endif /* !HAS_AUDIO */
479

    
480
/* Ethernet register offsets */
481
#define MP_ETH_SMIR             0x010
482
#define MP_ETH_PCXR             0x408
483
#define MP_ETH_SDCMR            0x448
484
#define MP_ETH_ICR              0x450
485
#define MP_ETH_IMR              0x458
486
#define MP_ETH_FRDP0            0x480
487
#define MP_ETH_FRDP1            0x484
488
#define MP_ETH_FRDP2            0x488
489
#define MP_ETH_FRDP3            0x48C
490
#define MP_ETH_CRDP0            0x4A0
491
#define MP_ETH_CRDP1            0x4A4
492
#define MP_ETH_CRDP2            0x4A8
493
#define MP_ETH_CRDP3            0x4AC
494
#define MP_ETH_CTDP0            0x4E0
495
#define MP_ETH_CTDP1            0x4E4
496
#define MP_ETH_CTDP2            0x4E8
497
#define MP_ETH_CTDP3            0x4EC
498

    
499
/* MII PHY access */
500
#define MP_ETH_SMIR_DATA        0x0000FFFF
501
#define MP_ETH_SMIR_ADDR        0x03FF0000
502
#define MP_ETH_SMIR_OPCODE      (1 << 26) /* Read value */
503
#define MP_ETH_SMIR_RDVALID     (1 << 27)
504

    
505
/* PHY registers */
506
#define MP_ETH_PHY1_BMSR        0x00210000
507
#define MP_ETH_PHY1_PHYSID1     0x00410000
508
#define MP_ETH_PHY1_PHYSID2     0x00610000
509

    
510
#define MP_PHY_BMSR_LINK        0x0004
511
#define MP_PHY_BMSR_AUTONEG     0x0008
512

    
513
#define MP_PHY_88E3015          0x01410E20
514

    
515
/* TX descriptor status */
516
#define MP_ETH_TX_OWN           (1 << 31)
517

    
518
/* RX descriptor status */
519
#define MP_ETH_RX_OWN           (1 << 31)
520

    
521
/* Interrupt cause/mask bits */
522
#define MP_ETH_IRQ_RX_BIT       0
523
#define MP_ETH_IRQ_RX           (1 << MP_ETH_IRQ_RX_BIT)
524
#define MP_ETH_IRQ_TXHI_BIT     2
525
#define MP_ETH_IRQ_TXLO_BIT     3
526

    
527
/* Port config bits */
528
#define MP_ETH_PCXR_2BSM_BIT    28 /* 2-byte incoming suffix */
529

    
530
/* SDMA command bits */
531
#define MP_ETH_CMD_TXHI         (1 << 23)
532
#define MP_ETH_CMD_TXLO         (1 << 22)
533

    
534
typedef struct mv88w8618_tx_desc {
535
    uint32_t cmdstat;
536
    uint16_t res;
537
    uint16_t bytes;
538
    uint32_t buffer;
539
    uint32_t next;
540
} mv88w8618_tx_desc;
541

    
542
typedef struct mv88w8618_rx_desc {
543
    uint32_t cmdstat;
544
    uint16_t bytes;
545
    uint16_t buffer_size;
546
    uint32_t buffer;
547
    uint32_t next;
548
} mv88w8618_rx_desc;
549

    
550
typedef struct mv88w8618_eth_state {
551
    uint32_t base;
552
    qemu_irq irq;
553
    uint32_t smir;
554
    uint32_t icr;
555
    uint32_t imr;
556
    int vlan_header;
557
    mv88w8618_tx_desc *tx_queue[2];
558
    mv88w8618_rx_desc *rx_queue[4];
559
    mv88w8618_rx_desc *frx_queue[4];
560
    mv88w8618_rx_desc *cur_rx[4];
561
    VLANClientState *vc;
562
} mv88w8618_eth_state;
563

    
564
static int eth_can_receive(void *opaque)
565
{
566
    return 1;
567
}
568

    
569
static void eth_receive(void *opaque, const uint8_t *buf, int size)
570
{
571
    mv88w8618_eth_state *s = opaque;
572
    mv88w8618_rx_desc *desc;
573
    int i;
574

    
575
    for (i = 0; i < 4; i++) {
576
        desc = s->cur_rx[i];
577
        if (!desc)
578
            continue;
579
        do {
580
            if (le32_to_cpu(desc->cmdstat) & MP_ETH_RX_OWN &&
581
                le16_to_cpu(desc->buffer_size) >= size) {
582
                memcpy(target2host_addr(le32_to_cpu(desc->buffer) +
583
                                        s->vlan_header),
584
                       buf, size);
585
                desc->bytes = cpu_to_le16(size + s->vlan_header);
586
                desc->cmdstat &= cpu_to_le32(~MP_ETH_RX_OWN);
587
                s->cur_rx[i] = target2host_addr(le32_to_cpu(desc->next));
588

    
589
                s->icr |= MP_ETH_IRQ_RX;
590
                if (s->icr & s->imr)
591
                    qemu_irq_raise(s->irq);
592
                return;
593
            }
594
            desc = target2host_addr(le32_to_cpu(desc->next));
595
        } while (desc != s->rx_queue[i]);
596
    }
597
}
598

    
599
static void eth_send(mv88w8618_eth_state *s, int queue_index)
600
{
601
    mv88w8618_tx_desc *desc = s->tx_queue[queue_index];
602

    
603
    do {
604
        if (le32_to_cpu(desc->cmdstat) & MP_ETH_TX_OWN) {
605
            qemu_send_packet(s->vc,
606
                             target2host_addr(le32_to_cpu(desc->buffer)),
607
                             le16_to_cpu(desc->bytes));
608
            desc->cmdstat &= cpu_to_le32(~MP_ETH_TX_OWN);
609
            s->icr |= 1 << (MP_ETH_IRQ_TXLO_BIT - queue_index);
610
        }
611
        desc = target2host_addr(le32_to_cpu(desc->next));
612
    } while (desc != s->tx_queue[queue_index]);
613
}
614

    
615
static uint32_t mv88w8618_eth_read(void *opaque, target_phys_addr_t offset)
616
{
617
    mv88w8618_eth_state *s = opaque;
618

    
619
    offset -= s->base;
620
    switch (offset) {
621
    case MP_ETH_SMIR:
622
        if (s->smir & MP_ETH_SMIR_OPCODE) {
623
            switch (s->smir & MP_ETH_SMIR_ADDR) {
624
            case MP_ETH_PHY1_BMSR:
625
                return MP_PHY_BMSR_LINK | MP_PHY_BMSR_AUTONEG |
626
                       MP_ETH_SMIR_RDVALID;
627
            case MP_ETH_PHY1_PHYSID1:
628
                return (MP_PHY_88E3015 >> 16) | MP_ETH_SMIR_RDVALID;
629
            case MP_ETH_PHY1_PHYSID2:
630
                return (MP_PHY_88E3015 & 0xFFFF) | MP_ETH_SMIR_RDVALID;
631
            default:
632
                return MP_ETH_SMIR_RDVALID;
633
            }
634
        }
635
        return 0;
636

    
637
    case MP_ETH_ICR:
638
        return s->icr;
639

    
640
    case MP_ETH_IMR:
641
        return s->imr;
642

    
643
    case MP_ETH_FRDP0 ... MP_ETH_FRDP3:
644
        return host2target_addr(s->frx_queue[(offset - MP_ETH_FRDP0)/4]);
645

    
646
    case MP_ETH_CRDP0 ... MP_ETH_CRDP3:
647
        return host2target_addr(s->rx_queue[(offset - MP_ETH_CRDP0)/4]);
648

    
649
    case MP_ETH_CTDP0 ... MP_ETH_CTDP3:
650
        return host2target_addr(s->tx_queue[(offset - MP_ETH_CTDP0)/4]);
651

    
652
    default:
653
        return 0;
654
    }
655
}
656

    
657
static void mv88w8618_eth_write(void *opaque, target_phys_addr_t offset,
658
                                uint32_t value)
659
{
660
    mv88w8618_eth_state *s = opaque;
661

    
662
    offset -= s->base;
663
    switch (offset) {
664
    case MP_ETH_SMIR:
665
        s->smir = value;
666
        break;
667

    
668
    case MP_ETH_PCXR:
669
        s->vlan_header = ((value >> MP_ETH_PCXR_2BSM_BIT) & 1) * 2;
670
        break;
671

    
672
    case MP_ETH_SDCMR:
673
        if (value & MP_ETH_CMD_TXHI)
674
            eth_send(s, 1);
675
        if (value & MP_ETH_CMD_TXLO)
676
            eth_send(s, 0);
677
        if (value & (MP_ETH_CMD_TXHI | MP_ETH_CMD_TXLO) && s->icr & s->imr)
678
            qemu_irq_raise(s->irq);
679
        break;
680

    
681
    case MP_ETH_ICR:
682
        s->icr &= value;
683
        break;
684

    
685
    case MP_ETH_IMR:
686
        s->imr = value;
687
        if (s->icr & s->imr)
688
            qemu_irq_raise(s->irq);
689
        break;
690

    
691
    case MP_ETH_FRDP0 ... MP_ETH_FRDP3:
692
        s->frx_queue[(offset - MP_ETH_FRDP0)/4] = target2host_addr(value);
693
        break;
694

    
695
    case MP_ETH_CRDP0 ... MP_ETH_CRDP3:
696
        s->rx_queue[(offset - MP_ETH_CRDP0)/4] =
697
            s->cur_rx[(offset - MP_ETH_CRDP0)/4] = target2host_addr(value);
698
        break;
699

    
700
    case MP_ETH_CTDP0 ... MP_ETH_CTDP3:
701
        s->tx_queue[(offset - MP_ETH_CTDP0)/4] = target2host_addr(value);
702
        break;
703
    }
704
}
705

    
706
static CPUReadMemoryFunc *mv88w8618_eth_readfn[] = {
707
    mv88w8618_eth_read,
708
    mv88w8618_eth_read,
709
    mv88w8618_eth_read
710
};
711

    
712
static CPUWriteMemoryFunc *mv88w8618_eth_writefn[] = {
713
    mv88w8618_eth_write,
714
    mv88w8618_eth_write,
715
    mv88w8618_eth_write
716
};
717

    
718
static void mv88w8618_eth_init(NICInfo *nd, uint32_t base, qemu_irq irq)
719
{
720
    mv88w8618_eth_state *s;
721
    int iomemtype;
722

    
723
    s = qemu_mallocz(sizeof(mv88w8618_eth_state));
724
    if (!s)
725
        return;
726
    s->base = base;
727
    s->irq = irq;
728
    s->vc = qemu_new_vlan_client(nd->vlan, eth_receive, eth_can_receive, s);
729
    iomemtype = cpu_register_io_memory(0, mv88w8618_eth_readfn,
730
                                       mv88w8618_eth_writefn, s);
731
    cpu_register_physical_memory(base, MP_ETH_SIZE, iomemtype);
732
}
733

    
734
/* LCD register offsets */
735
#define MP_LCD_IRQCTRL          0x180
736
#define MP_LCD_IRQSTAT          0x184
737
#define MP_LCD_SPICTRL          0x1ac
738
#define MP_LCD_INST             0x1bc
739
#define MP_LCD_DATA             0x1c0
740

    
741
/* Mode magics */
742
#define MP_LCD_SPI_DATA         0x00100011
743
#define MP_LCD_SPI_CMD          0x00104011
744
#define MP_LCD_SPI_INVALID      0x00000000
745

    
746
/* Commmands */
747
#define MP_LCD_INST_SETPAGE0    0xB0
748
/* ... */
749
#define MP_LCD_INST_SETPAGE7    0xB7
750

    
751
#define MP_LCD_TEXTCOLOR        0xe0e0ff /* RRGGBB */
752

    
753
typedef struct musicpal_lcd_state {
754
    uint32_t base;
755
    uint32_t mode;
756
    uint32_t irqctrl;
757
    int page;
758
    int page_off;
759
    DisplayState *ds;
760
    uint8_t video_ram[128*64/8];
761
} musicpal_lcd_state;
762

    
763
static uint32_t lcd_brightness;
764

    
765
static uint8_t scale_lcd_color(uint8_t col)
766
{
767
    int tmp = col;
768

    
769
    switch (lcd_brightness) {
770
    case 0x00000007: /* 0 */
771
        return 0;
772

    
773
    case 0x00020000: /* 1 */
774
        return (tmp * 1) / 7;
775

    
776
    case 0x00020001: /* 2 */
777
        return (tmp * 2) / 7;
778

    
779
    case 0x00040000: /* 3 */
780
        return (tmp * 3) / 7;
781

    
782
    case 0x00010006: /* 4 */
783
        return (tmp * 4) / 7;
784

    
785
    case 0x00020005: /* 5 */
786
        return (tmp * 5) / 7;
787

    
788
    case 0x00040003: /* 6 */
789
        return (tmp * 6) / 7;
790

    
791
    case 0x00030004: /* 7 */
792
    default:
793
        return col;
794
    }
795
}
796

    
797
#define SET_LCD_PIXEL(depth, type) \
798
static inline void glue(set_lcd_pixel, depth) \
799
        (musicpal_lcd_state *s, int x, int y, type col) \
800
{ \
801
    int dx, dy; \
802
    type *pixel = &((type *) s->ds->data)[(y * 128 * 3 + x) * 3]; \
803
\
804
    for (dy = 0; dy < 3; dy++, pixel += 127 * 3) \
805
        for (dx = 0; dx < 3; dx++, pixel++) \
806
            *pixel = col; \
807
}
808
SET_LCD_PIXEL(8, uint8_t)
809
SET_LCD_PIXEL(16, uint16_t)
810
SET_LCD_PIXEL(32, uint32_t)
811

    
812
#include "pixel_ops.h"
813

    
814
static void lcd_refresh(void *opaque)
815
{
816
    musicpal_lcd_state *s = opaque;
817
    int x, y, col;
818

    
819
    switch (s->ds->depth) {
820
    case 0:
821
        return;
822
#define LCD_REFRESH(depth, func) \
823
    case depth: \
824
        col = func(scale_lcd_color((MP_LCD_TEXTCOLOR >> 16) & 0xff), \
825
                   scale_lcd_color((MP_LCD_TEXTCOLOR >> 8) & 0xff), \
826
                   scale_lcd_color(MP_LCD_TEXTCOLOR & 0xff)); \
827
        for (x = 0; x < 128; x++) \
828
            for (y = 0; y < 64; y++) \
829
                if (s->video_ram[x + (y/8)*128] & (1 << (y % 8))) \
830
                    glue(set_lcd_pixel, depth)(s, x, y, col); \
831
                else \
832
                    glue(set_lcd_pixel, depth)(s, x, y, 0); \
833
        break;
834
    LCD_REFRESH(8, rgb_to_pixel8)
835
    LCD_REFRESH(16, rgb_to_pixel16)
836
    LCD_REFRESH(32, (s->ds->bgr ? rgb_to_pixel32bgr : rgb_to_pixel32))
837
    default:
838
        cpu_abort(cpu_single_env, "unsupported colour depth %i\n",
839
                  s->ds->depth);
840
    }
841

    
842
    dpy_update(s->ds, 0, 0, 128*3, 64*3);
843
}
844

    
845
static uint32_t musicpal_lcd_read(void *opaque, target_phys_addr_t offset)
846
{
847
    musicpal_lcd_state *s = opaque;
848

    
849
    offset -= s->base;
850
    switch (offset) {
851
    case MP_LCD_IRQCTRL:
852
        return s->irqctrl;
853

    
854
    default:
855
        return 0;
856
    }
857
}
858

    
859
static void musicpal_lcd_write(void *opaque, target_phys_addr_t offset,
860
                               uint32_t value)
861
{
862
    musicpal_lcd_state *s = opaque;
863

    
864
    offset -= s->base;
865
    switch (offset) {
866
    case MP_LCD_IRQCTRL:
867
        s->irqctrl = value;
868
        break;
869

    
870
    case MP_LCD_SPICTRL:
871
        if (value == MP_LCD_SPI_DATA || value == MP_LCD_SPI_CMD)
872
            s->mode = value;
873
        else
874
            s->mode = MP_LCD_SPI_INVALID;
875
        break;
876

    
877
    case MP_LCD_INST:
878
        if (value >= MP_LCD_INST_SETPAGE0 && value <= MP_LCD_INST_SETPAGE7) {
879
            s->page = value - MP_LCD_INST_SETPAGE0;
880
            s->page_off = 0;
881
        }
882
        break;
883

    
884
    case MP_LCD_DATA:
885
        if (s->mode == MP_LCD_SPI_CMD) {
886
            if (value >= MP_LCD_INST_SETPAGE0 &&
887
                value <= MP_LCD_INST_SETPAGE7) {
888
                s->page = value - MP_LCD_INST_SETPAGE0;
889
                s->page_off = 0;
890
            }
891
        } else if (s->mode == MP_LCD_SPI_DATA) {
892
            s->video_ram[s->page*128 + s->page_off] = value;
893
            s->page_off = (s->page_off + 1) & 127;
894
        }
895
        break;
896
    }
897
}
898

    
899
static CPUReadMemoryFunc *musicpal_lcd_readfn[] = {
900
    musicpal_lcd_read,
901
    musicpal_lcd_read,
902
    musicpal_lcd_read
903
};
904

    
905
static CPUWriteMemoryFunc *musicpal_lcd_writefn[] = {
906
    musicpal_lcd_write,
907
    musicpal_lcd_write,
908
    musicpal_lcd_write
909
};
910

    
911
static void musicpal_lcd_init(DisplayState *ds, uint32_t base)
912
{
913
    musicpal_lcd_state *s;
914
    int iomemtype;
915

    
916
    s = qemu_mallocz(sizeof(musicpal_lcd_state));
917
    if (!s)
918
        return;
919
    s->base = base;
920
    s->ds = ds;
921
    iomemtype = cpu_register_io_memory(0, musicpal_lcd_readfn,
922
                                       musicpal_lcd_writefn, s);
923
    cpu_register_physical_memory(base, MP_LCD_SIZE, iomemtype);
924

    
925
    graphic_console_init(ds, lcd_refresh, NULL, NULL, NULL, s);
926
    dpy_resize(ds, 128*3, 64*3);
927
}
928

    
929
/* PIC register offsets */
930
#define MP_PIC_STATUS           0x00
931
#define MP_PIC_ENABLE_SET       0x08
932
#define MP_PIC_ENABLE_CLR       0x0C
933

    
934
typedef struct mv88w8618_pic_state
935
{
936
    uint32_t base;
937
    uint32_t level;
938
    uint32_t enabled;
939
    qemu_irq parent_irq;
940
} mv88w8618_pic_state;
941

    
942
static void mv88w8618_pic_update(mv88w8618_pic_state *s)
943
{
944
    qemu_set_irq(s->parent_irq, (s->level & s->enabled));
945
}
946

    
947
static void mv88w8618_pic_set_irq(void *opaque, int irq, int level)
948
{
949
    mv88w8618_pic_state *s = opaque;
950

    
951
    if (level)
952
        s->level |= 1 << irq;
953
    else
954
        s->level &= ~(1 << irq);
955
    mv88w8618_pic_update(s);
956
}
957

    
958
static uint32_t mv88w8618_pic_read(void *opaque, target_phys_addr_t offset)
959
{
960
    mv88w8618_pic_state *s = opaque;
961

    
962
    offset -= s->base;
963
    switch (offset) {
964
    case MP_PIC_STATUS:
965
        return s->level & s->enabled;
966

    
967
    default:
968
        return 0;
969
    }
970
}
971

    
972
static void mv88w8618_pic_write(void *opaque, target_phys_addr_t offset,
973
                                uint32_t value)
974
{
975
    mv88w8618_pic_state *s = opaque;
976

    
977
    offset -= s->base;
978
    switch (offset) {
979
    case MP_PIC_ENABLE_SET:
980
        s->enabled |= value;
981
        break;
982

    
983
    case MP_PIC_ENABLE_CLR:
984
        s->enabled &= ~value;
985
        s->level &= ~value;
986
        break;
987
    }
988
    mv88w8618_pic_update(s);
989
}
990

    
991
static void mv88w8618_pic_reset(void *opaque)
992
{
993
    mv88w8618_pic_state *s = opaque;
994

    
995
    s->level = 0;
996
    s->enabled = 0;
997
}
998

    
999
static CPUReadMemoryFunc *mv88w8618_pic_readfn[] = {
1000
    mv88w8618_pic_read,
1001
    mv88w8618_pic_read,
1002
    mv88w8618_pic_read
1003
};
1004

    
1005
static CPUWriteMemoryFunc *mv88w8618_pic_writefn[] = {
1006
    mv88w8618_pic_write,
1007
    mv88w8618_pic_write,
1008
    mv88w8618_pic_write
1009
};
1010

    
1011
static qemu_irq *mv88w8618_pic_init(uint32_t base, qemu_irq parent_irq)
1012
{
1013
    mv88w8618_pic_state *s;
1014
    int iomemtype;
1015
    qemu_irq *qi;
1016

    
1017
    s = qemu_mallocz(sizeof(mv88w8618_pic_state));
1018
    if (!s)
1019
        return NULL;
1020
    qi = qemu_allocate_irqs(mv88w8618_pic_set_irq, s, 32);
1021
    s->base = base;
1022
    s->parent_irq = parent_irq;
1023
    iomemtype = cpu_register_io_memory(0, mv88w8618_pic_readfn,
1024
                                       mv88w8618_pic_writefn, s);
1025
    cpu_register_physical_memory(base, MP_PIC_SIZE, iomemtype);
1026

    
1027
    qemu_register_reset(mv88w8618_pic_reset, s);
1028

    
1029
    return qi;
1030
}
1031

    
1032
/* PIT register offsets */
1033
#define MP_PIT_TIMER1_LENGTH    0x00
1034
/* ... */
1035
#define MP_PIT_TIMER4_LENGTH    0x0C
1036
#define MP_PIT_CONTROL          0x10
1037
#define MP_PIT_TIMER1_VALUE     0x14
1038
/* ... */
1039
#define MP_PIT_TIMER4_VALUE     0x20
1040
#define MP_BOARD_RESET          0x34
1041

    
1042
/* Magic board reset value (probably some watchdog behind it) */
1043
#define MP_BOARD_RESET_MAGIC    0x10000
1044

    
1045
typedef struct mv88w8618_timer_state {
1046
    ptimer_state *timer;
1047
    uint32_t limit;
1048
    int freq;
1049
    qemu_irq irq;
1050
} mv88w8618_timer_state;
1051

    
1052
typedef struct mv88w8618_pit_state {
1053
    void *timer[4];
1054
    uint32_t control;
1055
    uint32_t base;
1056
} mv88w8618_pit_state;
1057

    
1058
static void mv88w8618_timer_tick(void *opaque)
1059
{
1060
    mv88w8618_timer_state *s = opaque;
1061

    
1062
    qemu_irq_raise(s->irq);
1063
}
1064

    
1065
static void *mv88w8618_timer_init(uint32_t freq, qemu_irq irq)
1066
{
1067
    mv88w8618_timer_state *s;
1068
    QEMUBH *bh;
1069

    
1070
    s = qemu_mallocz(sizeof(mv88w8618_timer_state));
1071
    s->irq = irq;
1072
    s->freq = freq;
1073

    
1074
    bh = qemu_bh_new(mv88w8618_timer_tick, s);
1075
    s->timer = ptimer_init(bh);
1076

    
1077
    return s;
1078
}
1079

    
1080
static uint32_t mv88w8618_pit_read(void *opaque, target_phys_addr_t offset)
1081
{
1082
    mv88w8618_pit_state *s = opaque;
1083
    mv88w8618_timer_state *t;
1084

    
1085
    offset -= s->base;
1086
    switch (offset) {
1087
    case MP_PIT_TIMER1_VALUE ... MP_PIT_TIMER4_VALUE:
1088
        t = s->timer[(offset-MP_PIT_TIMER1_VALUE) >> 2];
1089
        return ptimer_get_count(t->timer);
1090

    
1091
    default:
1092
        return 0;
1093
    }
1094
}
1095

    
1096
static void mv88w8618_pit_write(void *opaque, target_phys_addr_t offset,
1097
                                uint32_t value)
1098
{
1099
    mv88w8618_pit_state *s = opaque;
1100
    mv88w8618_timer_state *t;
1101
    int i;
1102

    
1103
    offset -= s->base;
1104
    switch (offset) {
1105
    case MP_PIT_TIMER1_LENGTH ... MP_PIT_TIMER4_LENGTH:
1106
        t = s->timer[offset >> 2];
1107
        t->limit = value;
1108
        ptimer_set_limit(t->timer, t->limit, 1);
1109
        break;
1110

    
1111
    case MP_PIT_CONTROL:
1112
        for (i = 0; i < 4; i++) {
1113
            if (value & 0xf) {
1114
                t = s->timer[i];
1115
                ptimer_set_limit(t->timer, t->limit, 0);
1116
                ptimer_set_freq(t->timer, t->freq);
1117
                ptimer_run(t->timer, 0);
1118
            }
1119
            value >>= 4;
1120
        }
1121
        break;
1122

    
1123
    case MP_BOARD_RESET:
1124
        if (value == MP_BOARD_RESET_MAGIC)
1125
            qemu_system_reset_request();
1126
        break;
1127
    }
1128
}
1129

    
1130
static CPUReadMemoryFunc *mv88w8618_pit_readfn[] = {
1131
    mv88w8618_pit_read,
1132
    mv88w8618_pit_read,
1133
    mv88w8618_pit_read
1134
};
1135

    
1136
static CPUWriteMemoryFunc *mv88w8618_pit_writefn[] = {
1137
    mv88w8618_pit_write,
1138
    mv88w8618_pit_write,
1139
    mv88w8618_pit_write
1140
};
1141

    
1142
static void mv88w8618_pit_init(uint32_t base, qemu_irq *pic, int irq)
1143
{
1144
    int iomemtype;
1145
    mv88w8618_pit_state *s;
1146

    
1147
    s = qemu_mallocz(sizeof(mv88w8618_pit_state));
1148
    if (!s)
1149
        return;
1150

    
1151
    s->base = base;
1152
    /* Letting them all run at 1 MHz is likely just a pragmatic
1153
     * simplification. */
1154
    s->timer[0] = mv88w8618_timer_init(1000000, pic[irq]);
1155
    s->timer[1] = mv88w8618_timer_init(1000000, pic[irq + 1]);
1156
    s->timer[2] = mv88w8618_timer_init(1000000, pic[irq + 2]);
1157
    s->timer[3] = mv88w8618_timer_init(1000000, pic[irq + 3]);
1158

    
1159
    iomemtype = cpu_register_io_memory(0, mv88w8618_pit_readfn,
1160
                                       mv88w8618_pit_writefn, s);
1161
    cpu_register_physical_memory(base, MP_PIT_SIZE, iomemtype);
1162
}
1163

    
1164
/* Flash config register offsets */
1165
#define MP_FLASHCFG_CFGR0    0x04
1166

    
1167
typedef struct mv88w8618_flashcfg_state {
1168
    uint32_t base;
1169
    uint32_t cfgr0;
1170
} mv88w8618_flashcfg_state;
1171

    
1172
static uint32_t mv88w8618_flashcfg_read(void *opaque,
1173
                                        target_phys_addr_t offset)
1174
{
1175
    mv88w8618_flashcfg_state *s = opaque;
1176

    
1177
    offset -= s->base;
1178
    switch (offset) {
1179
    case MP_FLASHCFG_CFGR0:
1180
        return s->cfgr0;
1181

    
1182
    default:
1183
        return 0;
1184
    }
1185
}
1186

    
1187
static void mv88w8618_flashcfg_write(void *opaque, target_phys_addr_t offset,
1188
                                     uint32_t value)
1189
{
1190
    mv88w8618_flashcfg_state *s = opaque;
1191

    
1192
    offset -= s->base;
1193
    switch (offset) {
1194
    case MP_FLASHCFG_CFGR0:
1195
        s->cfgr0 = value;
1196
        break;
1197
    }
1198
}
1199

    
1200
static CPUReadMemoryFunc *mv88w8618_flashcfg_readfn[] = {
1201
    mv88w8618_flashcfg_read,
1202
    mv88w8618_flashcfg_read,
1203
    mv88w8618_flashcfg_read
1204
};
1205

    
1206
static CPUWriteMemoryFunc *mv88w8618_flashcfg_writefn[] = {
1207
    mv88w8618_flashcfg_write,
1208
    mv88w8618_flashcfg_write,
1209
    mv88w8618_flashcfg_write
1210
};
1211

    
1212
static void mv88w8618_flashcfg_init(uint32_t base)
1213
{
1214
    int iomemtype;
1215
    mv88w8618_flashcfg_state *s;
1216

    
1217
    s = qemu_mallocz(sizeof(mv88w8618_flashcfg_state));
1218
    if (!s)
1219
        return;
1220

    
1221
    s->base = base;
1222
    s->cfgr0 = 0xfffe4285; /* Default as set by U-Boot for 8 MB flash */
1223
    iomemtype = cpu_register_io_memory(0, mv88w8618_flashcfg_readfn,
1224
                       mv88w8618_flashcfg_writefn, s);
1225
    cpu_register_physical_memory(base, MP_FLASHCFG_SIZE, iomemtype);
1226
}
1227

    
1228
/* Various registers in the 0x80000000 domain */
1229
#define MP_BOARD_REVISION       0x2018
1230

    
1231
#define MP_WLAN_MAGIC1          0xc11c
1232
#define MP_WLAN_MAGIC2          0xc124
1233

    
1234
#define MP_GPIO_OE_LO           0xd008
1235
#define MP_GPIO_OUT_LO          0xd00c
1236
#define MP_GPIO_IN_LO           0xd010
1237
#define MP_GPIO_ISR_LO          0xd020
1238
#define MP_GPIO_OE_HI           0xd508
1239
#define MP_GPIO_OUT_HI          0xd50c
1240
#define MP_GPIO_IN_HI           0xd510
1241
#define MP_GPIO_ISR_HI          0xd520
1242

    
1243
/* GPIO bits & masks */
1244
#define MP_GPIO_WHEEL_VOL       (1 << 8)
1245
#define MP_GPIO_WHEEL_VOL_INV   (1 << 9)
1246
#define MP_GPIO_WHEEL_NAV       (1 << 10)
1247
#define MP_GPIO_WHEEL_NAV_INV   (1 << 11)
1248
#define MP_GPIO_LCD_BRIGHTNESS  0x00070000
1249
#define MP_GPIO_BTN_FAVORITS    (1 << 19)
1250
#define MP_GPIO_BTN_MENU        (1 << 20)
1251
#define MP_GPIO_BTN_VOLUME      (1 << 21)
1252
#define MP_GPIO_BTN_NAVIGATION  (1 << 22)
1253
#define MP_GPIO_I2C_DATA_BIT    29
1254
#define MP_GPIO_I2C_DATA        (1 << MP_GPIO_I2C_DATA_BIT)
1255
#define MP_GPIO_I2C_CLOCK_BIT   30
1256

    
1257
/* LCD brightness bits in GPIO_OE_HI */
1258
#define MP_OE_LCD_BRIGHTNESS    0x0007
1259

    
1260
static uint32_t musicpal_read(void *opaque, target_phys_addr_t offset)
1261
{
1262
    offset -= 0x80000000;
1263
    switch (offset) {
1264
    case MP_BOARD_REVISION:
1265
        return 0x0031;
1266

    
1267
    case MP_GPIO_OE_HI: /* used for LCD brightness control */
1268
        return lcd_brightness & MP_OE_LCD_BRIGHTNESS;
1269

    
1270
    case MP_GPIO_OUT_LO:
1271
        return gpio_out_state & 0xFFFF;
1272
    case MP_GPIO_OUT_HI:
1273
        return gpio_out_state >> 16;
1274

    
1275
    case MP_GPIO_IN_LO:
1276
        return gpio_in_state & 0xFFFF;
1277
    case MP_GPIO_IN_HI:
1278
        /* Update received I2C data */
1279
        gpio_in_state = (gpio_in_state & ~MP_GPIO_I2C_DATA) |
1280
                        (i2c_get_data(mixer_i2c) << MP_GPIO_I2C_DATA_BIT);
1281
        return gpio_in_state >> 16;
1282

    
1283
    /* This is a simplification of reality */
1284
    case MP_GPIO_ISR_LO:
1285
        return ~gpio_in_state & 0xFFFF;
1286
    case MP_GPIO_ISR_HI:
1287
        return ~gpio_in_state >> 16;
1288

    
1289
    /* Workaround to allow loading the binary-only wlandrv.ko crap
1290
     * from the original Freecom firmware. */
1291
    case MP_WLAN_MAGIC1:
1292
        return ~3;
1293
    case MP_WLAN_MAGIC2:
1294
        return -1;
1295

    
1296
    default:
1297
        return 0;
1298
    }
1299
}
1300

    
1301
static void musicpal_write(void *opaque, target_phys_addr_t offset,
1302
                           uint32_t value)
1303
{
1304
    offset -= 0x80000000;
1305
    switch (offset) {
1306
    case MP_GPIO_OE_HI: /* used for LCD brightness control */
1307
        lcd_brightness = (lcd_brightness & MP_GPIO_LCD_BRIGHTNESS) |
1308
                         (value & MP_OE_LCD_BRIGHTNESS);
1309
        break;
1310

    
1311
    case MP_GPIO_OUT_LO:
1312
        gpio_out_state = (gpio_out_state & 0xFFFF0000) | (value & 0xFFFF);
1313
        break;
1314
    case MP_GPIO_OUT_HI:
1315
        gpio_out_state = (gpio_out_state & 0xFFFF) | (value << 16);
1316
        lcd_brightness = (lcd_brightness & 0xFFFF) |
1317
                         (gpio_out_state & MP_GPIO_LCD_BRIGHTNESS);
1318
        i2c_state_update(mixer_i2c,
1319
                         (gpio_out_state >> MP_GPIO_I2C_DATA_BIT) & 1,
1320
                         (gpio_out_state >> MP_GPIO_I2C_CLOCK_BIT) & 1);
1321
        break;
1322

    
1323
    }
1324
}
1325

    
1326
/* Keyboard codes & masks */
1327
#define KEY_PRESSED             0x80
1328
#define KEY_CODE                0x7f
1329

    
1330
#define KEYCODE_TAB             0x0f
1331
#define KEYCODE_ENTER           0x1c
1332
#define KEYCODE_F               0x21
1333
#define KEYCODE_M               0x32
1334

    
1335
#define KEYCODE_EXTENDED        0xe0
1336
#define KEYCODE_UP              0x48
1337
#define KEYCODE_DOWN            0x50
1338
#define KEYCODE_LEFT            0x4b
1339
#define KEYCODE_RIGHT           0x4d
1340

    
1341
static void musicpal_key_event(void *opaque, int keycode)
1342
{
1343
    qemu_irq irq = opaque;
1344
    uint32_t event = 0;
1345
    static int kbd_extended;
1346

    
1347
    if (keycode == KEYCODE_EXTENDED) {
1348
        kbd_extended = 1;
1349
        return;
1350
    }
1351

    
1352
    if (kbd_extended)
1353
        switch (keycode & KEY_CODE) {
1354
        case KEYCODE_UP:
1355
            event = MP_GPIO_WHEEL_NAV | MP_GPIO_WHEEL_NAV_INV;
1356
            break;
1357

    
1358
        case KEYCODE_DOWN:
1359
            event = MP_GPIO_WHEEL_NAV;
1360
            break;
1361

    
1362
        case KEYCODE_LEFT:
1363
            event = MP_GPIO_WHEEL_VOL | MP_GPIO_WHEEL_VOL_INV;
1364
            break;
1365

    
1366
        case KEYCODE_RIGHT:
1367
            event = MP_GPIO_WHEEL_VOL;
1368
            break;
1369
        }
1370
    else
1371
        switch (keycode & KEY_CODE) {
1372
        case KEYCODE_F:
1373
            event = MP_GPIO_BTN_FAVORITS;
1374
            break;
1375

    
1376
        case KEYCODE_TAB:
1377
            event = MP_GPIO_BTN_VOLUME;
1378
            break;
1379

    
1380
        case KEYCODE_ENTER:
1381
            event = MP_GPIO_BTN_NAVIGATION;
1382
            break;
1383

    
1384
        case KEYCODE_M:
1385
            event = MP_GPIO_BTN_MENU;
1386
            break;
1387
        }
1388

    
1389
    if (keycode & KEY_PRESSED)
1390
        gpio_in_state |= event;
1391
    else if (gpio_in_state & event) {
1392
        gpio_in_state &= ~event;
1393
        qemu_irq_raise(irq);
1394
    }
1395

    
1396
    kbd_extended = 0;
1397
}
1398

    
1399
static CPUReadMemoryFunc *musicpal_readfn[] = {
1400
    musicpal_read,
1401
    musicpal_read,
1402
    musicpal_read,
1403
};
1404

    
1405
static CPUWriteMemoryFunc *musicpal_writefn[] = {
1406
    musicpal_write,
1407
    musicpal_write,
1408
    musicpal_write,
1409
};
1410

    
1411
static struct arm_boot_info musicpal_binfo = {
1412
    .loader_start = 0x0,
1413
    .board_id = 0x20e,
1414
};
1415

    
1416
static void musicpal_init(ram_addr_t ram_size, int vga_ram_size,
1417
               const char *boot_device, DisplayState *ds,
1418
               const char *kernel_filename, const char *kernel_cmdline,
1419
               const char *initrd_filename, const char *cpu_model)
1420
{
1421
    CPUState *env;
1422
    qemu_irq *pic;
1423
    int index;
1424
    int iomemtype;
1425
    unsigned long flash_size;
1426

    
1427
    if (!cpu_model)
1428
        cpu_model = "arm926";
1429

    
1430
    env = cpu_init(cpu_model);
1431
    if (!env) {
1432
        fprintf(stderr, "Unable to find CPU definition\n");
1433
        exit(1);
1434
    }
1435
    pic = arm_pic_init_cpu(env);
1436

    
1437
    /* For now we use a fixed - the original - RAM size */
1438
    cpu_register_physical_memory(0, MP_RAM_DEFAULT_SIZE,
1439
                                 qemu_ram_alloc(MP_RAM_DEFAULT_SIZE));
1440

    
1441
    sram_off = qemu_ram_alloc(MP_SRAM_SIZE);
1442
    cpu_register_physical_memory(MP_SRAM_BASE, MP_SRAM_SIZE, sram_off);
1443

    
1444
    /* Catch various stuff not handled by separate subsystems */
1445
    iomemtype = cpu_register_io_memory(0, musicpal_readfn,
1446
                                       musicpal_writefn, env);
1447
    cpu_register_physical_memory(0x80000000, 0x10000, iomemtype);
1448

    
1449
    pic = mv88w8618_pic_init(MP_PIC_BASE, pic[ARM_PIC_CPU_IRQ]);
1450
    mv88w8618_pit_init(MP_PIT_BASE, pic, MP_TIMER1_IRQ);
1451

    
1452
    if (serial_hds[0])
1453
        serial_mm_init(MP_UART1_BASE, 2, pic[MP_UART1_IRQ], 1825000,
1454
                   serial_hds[0], 1);
1455
    if (serial_hds[1])
1456
        serial_mm_init(MP_UART2_BASE, 2, pic[MP_UART2_IRQ], 1825000,
1457
                   serial_hds[1], 1);
1458

    
1459
    /* Register flash */
1460
    index = drive_get_index(IF_PFLASH, 0, 0);
1461
    if (index != -1) {
1462
        flash_size = bdrv_getlength(drives_table[index].bdrv);
1463
        if (flash_size != 8*1024*1024 && flash_size != 16*1024*1024 &&
1464
            flash_size != 32*1024*1024) {
1465
            fprintf(stderr, "Invalid flash image size\n");
1466
            exit(1);
1467
        }
1468

    
1469
        /*
1470
         * The original U-Boot accesses the flash at 0xFE000000 instead of
1471
         * 0xFF800000 (if there is 8 MB flash). So remap flash access if the
1472
         * image is smaller than 32 MB.
1473
         */
1474
        pflash_cfi02_register(0-MP_FLASH_SIZE_MAX, qemu_ram_alloc(flash_size),
1475
                              drives_table[index].bdrv, 0x10000,
1476
                              (flash_size + 0xffff) >> 16,
1477
                              MP_FLASH_SIZE_MAX / flash_size,
1478
                              2, 0x00BF, 0x236D, 0x0000, 0x0000,
1479
                              0x5555, 0x2AAA);
1480
    }
1481
    mv88w8618_flashcfg_init(MP_FLASHCFG_BASE);
1482

    
1483
    musicpal_lcd_init(ds, MP_LCD_BASE);
1484

    
1485
    qemu_add_kbd_event_handler(musicpal_key_event, pic[MP_GPIO_IRQ]);
1486

    
1487
    /*
1488
     * Wait a bit to catch menu button during U-Boot start-up
1489
     * (to trigger emergency update).
1490
     */
1491
    sleep(1);
1492

    
1493
    mv88w8618_eth_init(&nd_table[0], MP_ETH_BASE, pic[MP_ETH_IRQ]);
1494

    
1495
    mixer_i2c = musicpal_audio_init(MP_AUDIO_BASE, pic[MP_AUDIO_IRQ]);
1496

    
1497
    musicpal_binfo.ram_size = MP_RAM_DEFAULT_SIZE;
1498
    musicpal_binfo.kernel_filename = kernel_filename;
1499
    musicpal_binfo.kernel_cmdline = kernel_cmdline;
1500
    musicpal_binfo.initrd_filename = initrd_filename;
1501
    arm_load_kernel(env, &musicpal_binfo);
1502
}
1503

    
1504
QEMUMachine musicpal_machine = {
1505
    "musicpal",
1506
    "Marvell 88w8618 / MusicPal (ARM926EJ-S)",
1507
    musicpal_init,
1508
    MP_RAM_DEFAULT_SIZE + MP_SRAM_SIZE + MP_FLASH_SIZE_MAX + RAMSIZE_FIXED
1509
};