Statistics
| Branch: | Revision:

root / hw / spapr_pci.c @ c06aaf01

History | View | Annotate | Download (16 kB)

1
/*
2
 * QEMU sPAPR PCI host originated from Uninorth PCI host
3
 *
4
 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
5
 * Copyright (C) 2011 David Gibson, IBM Corporation.
6
 *
7
 * Permission is hereby granted, free of charge, to any person obtaining a copy
8
 * of this software and associated documentation files (the "Software"), to deal
9
 * in the Software without restriction, including without limitation the rights
10
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11
 * copies of the Software, and to permit persons to whom the Software is
12
 * furnished to do so, subject to the following conditions:
13
 *
14
 * The above copyright notice and this permission notice shall be included in
15
 * all copies or substantial portions of the Software.
16
 *
17
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23
 * THE SOFTWARE.
24
 */
25
#include "hw.h"
26
#include "pci.h"
27
#include "pci_host.h"
28
#include "hw/spapr.h"
29
#include "hw/spapr_pci.h"
30
#include "exec-memory.h"
31
#include <libfdt.h>
32

    
33
#include "hw/pci_internals.h"
34

    
35
static PCIDevice *find_dev(sPAPREnvironment *spapr,
36
                           uint64_t buid, uint32_t config_addr)
37
{
38
    int devfn = (config_addr >> 8) & 0xFF;
39
    sPAPRPHBState *phb;
40

    
41
    QLIST_FOREACH(phb, &spapr->phbs, list) {
42
        BusChild *kid;
43

    
44
        if (phb->buid != buid) {
45
            continue;
46
        }
47

    
48
        QTAILQ_FOREACH(kid, &phb->host_state.bus->qbus.children, sibling) {
49
            PCIDevice *dev = (PCIDevice *)kid->child;
50
            if (dev->devfn == devfn) {
51
                return dev;
52
            }
53
        }
54
    }
55

    
56
    return NULL;
57
}
58

    
59
static uint32_t rtas_pci_cfgaddr(uint32_t arg)
60
{
61
    /* This handles the encoding of extended config space addresses */
62
    return ((arg >> 20) & 0xf00) | (arg & 0xff);
63
}
64

    
65
static void finish_read_pci_config(sPAPREnvironment *spapr, uint64_t buid,
66
                                   uint32_t addr, uint32_t size,
67
                                   target_ulong rets)
68
{
69
    PCIDevice *pci_dev;
70
    uint32_t val;
71

    
72
    if ((size != 1) && (size != 2) && (size != 4)) {
73
        /* access must be 1, 2 or 4 bytes */
74
        rtas_st(rets, 0, -1);
75
        return;
76
    }
77

    
78
    pci_dev = find_dev(spapr, buid, addr);
79
    addr = rtas_pci_cfgaddr(addr);
80

    
81
    if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
82
        /* Access must be to a valid device, within bounds and
83
         * naturally aligned */
84
        rtas_st(rets, 0, -1);
85
        return;
86
    }
87

    
88
    val = pci_host_config_read_common(pci_dev, addr,
89
                                      pci_config_size(pci_dev), size);
90

    
91
    rtas_st(rets, 0, 0);
92
    rtas_st(rets, 1, val);
93
}
94

    
95
static void rtas_ibm_read_pci_config(sPAPREnvironment *spapr,
96
                                     uint32_t token, uint32_t nargs,
97
                                     target_ulong args,
98
                                     uint32_t nret, target_ulong rets)
99
{
100
    uint64_t buid;
101
    uint32_t size, addr;
102

    
103
    if ((nargs != 4) || (nret != 2)) {
104
        rtas_st(rets, 0, -1);
105
        return;
106
    }
107

    
108
    buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
109
    size = rtas_ld(args, 3);
110
    addr = rtas_ld(args, 0);
111

    
112
    finish_read_pci_config(spapr, buid, addr, size, rets);
113
}
114

    
115
static void rtas_read_pci_config(sPAPREnvironment *spapr,
116
                                 uint32_t token, uint32_t nargs,
117
                                 target_ulong args,
118
                                 uint32_t nret, target_ulong rets)
119
{
120
    uint32_t size, addr;
121

    
122
    if ((nargs != 2) || (nret != 2)) {
123
        rtas_st(rets, 0, -1);
124
        return;
125
    }
126

    
127
    size = rtas_ld(args, 1);
128
    addr = rtas_ld(args, 0);
129

    
130
    finish_read_pci_config(spapr, 0, addr, size, rets);
131
}
132

    
133
static void finish_write_pci_config(sPAPREnvironment *spapr, uint64_t buid,
134
                                    uint32_t addr, uint32_t size,
135
                                    uint32_t val, target_ulong rets)
136
{
137
    PCIDevice *pci_dev;
138

    
139
    if ((size != 1) && (size != 2) && (size != 4)) {
140
        /* access must be 1, 2 or 4 bytes */
141
        rtas_st(rets, 0, -1);
142
        return;
143
    }
144

    
145
    pci_dev = find_dev(spapr, buid, addr);
146
    addr = rtas_pci_cfgaddr(addr);
147

    
148
    if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
149
        /* Access must be to a valid device, within bounds and
150
         * naturally aligned */
151
        rtas_st(rets, 0, -1);
152
        return;
153
    }
154

    
155
    pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev),
156
                                 val, size);
157

    
158
    rtas_st(rets, 0, 0);
159
}
160

    
161
static void rtas_ibm_write_pci_config(sPAPREnvironment *spapr,
162
                                      uint32_t token, uint32_t nargs,
163
                                      target_ulong args,
164
                                      uint32_t nret, target_ulong rets)
165
{
166
    uint64_t buid;
167
    uint32_t val, size, addr;
168

    
169
    if ((nargs != 5) || (nret != 1)) {
170
        rtas_st(rets, 0, -1);
171
        return;
172
    }
173

    
174
    buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
175
    val = rtas_ld(args, 4);
176
    size = rtas_ld(args, 3);
177
    addr = rtas_ld(args, 0);
178

    
179
    finish_write_pci_config(spapr, buid, addr, size, val, rets);
180
}
181

    
182
static void rtas_write_pci_config(sPAPREnvironment *spapr,
183
                                  uint32_t token, uint32_t nargs,
184
                                  target_ulong args,
185
                                  uint32_t nret, target_ulong rets)
186
{
187
    uint32_t val, size, addr;
188

    
189
    if ((nargs != 3) || (nret != 1)) {
190
        rtas_st(rets, 0, -1);
191
        return;
192
    }
193

    
194

    
195
    val = rtas_ld(args, 2);
196
    size = rtas_ld(args, 1);
197
    addr = rtas_ld(args, 0);
198

    
199
    finish_write_pci_config(spapr, 0, addr, size, val, rets);
200
}
201

    
202
static int pci_spapr_swizzle(int slot, int pin)
203
{
204
    return (slot + pin) % PCI_NUM_PINS;
205
}
206

    
207
static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num)
208
{
209
    /*
210
     * Here we need to convert pci_dev + irq_num to some unique value
211
     * which is less than number of IRQs on the specific bus (4).  We
212
     * use standard PCI swizzling, that is (slot number + pin number)
213
     * % 4.
214
     */
215
    return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num);
216
}
217

    
218
static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
219
{
220
    /*
221
     * Here we use the number returned by pci_spapr_map_irq to find a
222
     * corresponding qemu_irq.
223
     */
224
    sPAPRPHBState *phb = opaque;
225

    
226
    qemu_set_irq(phb->lsi_table[irq_num].qirq, level);
227
}
228

    
229
static uint64_t spapr_io_read(void *opaque, target_phys_addr_t addr,
230
                              unsigned size)
231
{
232
    switch (size) {
233
    case 1:
234
        return cpu_inb(addr);
235
    case 2:
236
        return cpu_inw(addr);
237
    case 4:
238
        return cpu_inl(addr);
239
    }
240
    assert(0);
241
}
242

    
243
static void spapr_io_write(void *opaque, target_phys_addr_t addr,
244
                           uint64_t data, unsigned size)
245
{
246
    switch (size) {
247
    case 1:
248
        cpu_outb(addr, data);
249
        return;
250
    case 2:
251
        cpu_outw(addr, data);
252
        return;
253
    case 4:
254
        cpu_outl(addr, data);
255
        return;
256
    }
257
    assert(0);
258
}
259

    
260
static const MemoryRegionOps spapr_io_ops = {
261
    .endianness = DEVICE_LITTLE_ENDIAN,
262
    .read = spapr_io_read,
263
    .write = spapr_io_write
264
};
265

    
266
/*
267
 * PHB PCI device
268
 */
269
static DMAContext *spapr_pci_dma_context_fn(PCIBus *bus, void *opaque,
270
                                            int devfn)
271
{
272
    sPAPRPHBState *phb = opaque;
273

    
274
    return phb->dma;
275
}
276

    
277
static int spapr_phb_init(SysBusDevice *s)
278
{
279
    sPAPRPHBState *phb = FROM_SYSBUS(sPAPRPHBState, s);
280
    char *namebuf;
281
    int i;
282
    PCIBus *bus;
283
    uint32_t liobn;
284

    
285
    phb->dtbusname = g_strdup_printf("pci@%" PRIx64, phb->buid);
286
    namebuf = alloca(strlen(phb->dtbusname) + 32);
287

    
288
    /* Initialize memory regions */
289
    sprintf(namebuf, "%s.mmio", phb->dtbusname);
290
    memory_region_init(&phb->memspace, namebuf, INT64_MAX);
291

    
292
    sprintf(namebuf, "%s.mmio-alias", phb->dtbusname);
293
    memory_region_init_alias(&phb->memwindow, namebuf, &phb->memspace,
294
                             SPAPR_PCI_MEM_WIN_BUS_OFFSET, phb->mem_win_size);
295
    memory_region_add_subregion(get_system_memory(), phb->mem_win_addr,
296
                                &phb->memwindow);
297

    
298
    /* On ppc, we only have MMIO no specific IO space from the CPU
299
     * perspective.  In theory we ought to be able to embed the PCI IO
300
     * memory region direction in the system memory space.  However,
301
     * if any of the IO BAR subregions use the old_portio mechanism,
302
     * that won't be processed properly unless accessed from the
303
     * system io address space.  This hack to bounce things via
304
     * system_io works around the problem until all the users of
305
     * old_portion are updated */
306
    sprintf(namebuf, "%s.io", phb->dtbusname);
307
    memory_region_init(&phb->iospace, namebuf, SPAPR_PCI_IO_WIN_SIZE);
308
    /* FIXME: fix to support multiple PHBs */
309
    memory_region_add_subregion(get_system_io(), 0, &phb->iospace);
310

    
311
    sprintf(namebuf, "%s.io-alias", phb->dtbusname);
312
    memory_region_init_io(&phb->iowindow, &spapr_io_ops, phb,
313
                          namebuf, SPAPR_PCI_IO_WIN_SIZE);
314
    memory_region_add_subregion(get_system_memory(), phb->io_win_addr,
315
                                &phb->iowindow);
316

    
317
    bus = pci_register_bus(&phb->busdev.qdev,
318
                           phb->busname ? phb->busname : phb->dtbusname,
319
                           pci_spapr_set_irq, pci_spapr_map_irq, phb,
320
                           &phb->memspace, &phb->iospace,
321
                           PCI_DEVFN(0, 0), PCI_NUM_PINS);
322
    phb->host_state.bus = bus;
323

    
324
    liobn = SPAPR_PCI_BASE_LIOBN | (pci_find_domain(bus) << 16);
325
    phb->dma = spapr_tce_new_dma_context(liobn, 0x40000000);
326
    pci_setup_iommu(bus, spapr_pci_dma_context_fn, phb);
327

    
328
    QLIST_INSERT_HEAD(&spapr->phbs, phb, list);
329

    
330
    /* Initialize the LSI table */
331
    for (i = 0; i < PCI_NUM_PINS; i++) {
332
        qemu_irq qirq;
333
        uint32_t num;
334

    
335
        qirq = spapr_allocate_lsi(0, &num);
336
        if (!qirq) {
337
            return -1;
338
        }
339

    
340
        phb->lsi_table[i].dt_irq = num;
341
        phb->lsi_table[i].qirq = qirq;
342
    }
343

    
344
    return 0;
345
}
346

    
347
static Property spapr_phb_properties[] = {
348
    DEFINE_PROP_HEX64("buid", sPAPRPHBState, buid, 0),
349
    DEFINE_PROP_STRING("busname", sPAPRPHBState, busname),
350
    DEFINE_PROP_HEX64("mem_win_addr", sPAPRPHBState, mem_win_addr, 0),
351
    DEFINE_PROP_HEX64("mem_win_size", sPAPRPHBState, mem_win_size, 0x20000000),
352
    DEFINE_PROP_HEX64("io_win_addr", sPAPRPHBState, io_win_addr, 0),
353
    DEFINE_PROP_HEX64("io_win_size", sPAPRPHBState, io_win_size, 0x10000),
354
    DEFINE_PROP_END_OF_LIST(),
355
};
356

    
357
static void spapr_phb_class_init(ObjectClass *klass, void *data)
358
{
359
    SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
360
    DeviceClass *dc = DEVICE_CLASS(klass);
361

    
362
    sdc->init = spapr_phb_init;
363
    dc->props = spapr_phb_properties;
364

    
365
    spapr_rtas_register("read-pci-config", rtas_read_pci_config);
366
    spapr_rtas_register("write-pci-config", rtas_write_pci_config);
367
    spapr_rtas_register("ibm,read-pci-config", rtas_ibm_read_pci_config);
368
    spapr_rtas_register("ibm,write-pci-config", rtas_ibm_write_pci_config);
369
}
370

    
371
static TypeInfo spapr_phb_info = {
372
    .name          = "spapr-pci-host-bridge",
373
    .parent        = TYPE_SYS_BUS_DEVICE,
374
    .instance_size = sizeof(sPAPRPHBState),
375
    .class_init    = spapr_phb_class_init,
376
};
377

    
378
void spapr_create_phb(sPAPREnvironment *spapr,
379
                      const char *busname, uint64_t buid,
380
                      uint64_t mem_win_addr, uint64_t mem_win_size,
381
                      uint64_t io_win_addr)
382
{
383
    DeviceState *dev;
384

    
385
    dev = qdev_create(NULL, spapr_phb_info.name);
386

    
387
    if (busname) {
388
        qdev_prop_set_string(dev, "busname", g_strdup(busname));
389
    }
390
    qdev_prop_set_uint64(dev, "buid", buid);
391
    qdev_prop_set_uint64(dev, "mem_win_addr", mem_win_addr);
392
    qdev_prop_set_uint64(dev, "mem_win_size", mem_win_size);
393
    qdev_prop_set_uint64(dev, "io_win_addr", io_win_addr);
394

    
395
    qdev_init_nofail(dev);
396
}
397

    
398
/* Macros to operate with address in OF binding to PCI */
399
#define b_x(x, p, l)    (((x) & ((1<<(l))-1)) << (p))
400
#define b_n(x)          b_x((x), 31, 1) /* 0 if relocatable */
401
#define b_p(x)          b_x((x), 30, 1) /* 1 if prefetchable */
402
#define b_t(x)          b_x((x), 29, 1) /* 1 if the address is aliased */
403
#define b_ss(x)         b_x((x), 24, 2) /* the space code */
404
#define b_bbbbbbbb(x)   b_x((x), 16, 8) /* bus number */
405
#define b_ddddd(x)      b_x((x), 11, 5) /* device number */
406
#define b_fff(x)        b_x((x), 8, 3)  /* function number */
407
#define b_rrrrrrrr(x)   b_x((x), 0, 8)  /* register number */
408

    
409
int spapr_populate_pci_devices(sPAPRPHBState *phb,
410
                               uint32_t xics_phandle,
411
                               void *fdt)
412
{
413
    int bus_off, i, j;
414
    char nodename[256];
415
    uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
416
    struct {
417
        uint32_t hi;
418
        uint64_t child;
419
        uint64_t parent;
420
        uint64_t size;
421
    } __attribute__((packed)) ranges[] = {
422
        {
423
            cpu_to_be32(b_ss(1)), cpu_to_be64(0),
424
            cpu_to_be64(phb->io_win_addr),
425
            cpu_to_be64(memory_region_size(&phb->iospace)),
426
        },
427
        {
428
            cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
429
            cpu_to_be64(phb->mem_win_addr),
430
            cpu_to_be64(memory_region_size(&phb->memwindow)),
431
        },
432
    };
433
    uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
434
    uint32_t interrupt_map_mask[] = {
435
        cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
436
    uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7];
437

    
438
    /* Start populating the FDT */
439
    sprintf(nodename, "pci@%" PRIx64, phb->buid);
440
    bus_off = fdt_add_subnode(fdt, 0, nodename);
441
    if (bus_off < 0) {
442
        return bus_off;
443
    }
444

    
445
#define _FDT(exp) \
446
    do { \
447
        int ret = (exp);                                           \
448
        if (ret < 0) {                                             \
449
            return ret;                                            \
450
        }                                                          \
451
    } while (0)
452

    
453
    /* Write PHB properties */
454
    _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
455
    _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
456
    _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3));
457
    _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2));
458
    _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
459
    _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
460
    _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
461
    _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof(ranges)));
462
    _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
463
    _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
464

    
465
    /* Build the interrupt-map, this must matches what is done
466
     * in pci_spapr_map_irq
467
     */
468
    _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
469
                     &interrupt_map_mask, sizeof(interrupt_map_mask)));
470
    for (i = 0; i < PCI_SLOT_MAX; i++) {
471
        for (j = 0; j < PCI_NUM_PINS; j++) {
472
            uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j];
473
            int lsi_num = pci_spapr_swizzle(i, j);
474

    
475
            irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
476
            irqmap[1] = 0;
477
            irqmap[2] = 0;
478
            irqmap[3] = cpu_to_be32(j+1);
479
            irqmap[4] = cpu_to_be32(xics_phandle);
480
            irqmap[5] = cpu_to_be32(phb->lsi_table[lsi_num].dt_irq);
481
            irqmap[6] = cpu_to_be32(0x8);
482
        }
483
    }
484
    /* Write interrupt map */
485
    _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
486
                     sizeof(interrupt_map)));
487

    
488
    spapr_dma_dt(fdt, bus_off, "ibm,dma-window", phb->dma);
489

    
490
    return 0;
491
}
492

    
493
static void register_types(void)
494
{
495
    type_register_static(&spapr_phb_info);
496
}
497
type_init(register_types)