Statistics
| Branch: | Revision:

root / cutils.c @ c08ba66f

History | View | Annotate | Download (10 kB)

1
/*
2
 * Simple C functions to supplement the C library
3
 *
4
 * Copyright (c) 2006 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "qemu-common.h"
25
#include "host-utils.h"
26
#include <math.h>
27

    
28
#include "qemu_socket.h"
29
#include "iov.h"
30

    
31
void strpadcpy(char *buf, int buf_size, const char *str, char pad)
32
{
33
    int len = qemu_strnlen(str, buf_size);
34
    memcpy(buf, str, len);
35
    memset(buf + len, pad, buf_size - len);
36
}
37

    
38
void pstrcpy(char *buf, int buf_size, const char *str)
39
{
40
    int c;
41
    char *q = buf;
42

    
43
    if (buf_size <= 0)
44
        return;
45

    
46
    for(;;) {
47
        c = *str++;
48
        if (c == 0 || q >= buf + buf_size - 1)
49
            break;
50
        *q++ = c;
51
    }
52
    *q = '\0';
53
}
54

    
55
/* strcat and truncate. */
56
char *pstrcat(char *buf, int buf_size, const char *s)
57
{
58
    int len;
59
    len = strlen(buf);
60
    if (len < buf_size)
61
        pstrcpy(buf + len, buf_size - len, s);
62
    return buf;
63
}
64

    
65
int strstart(const char *str, const char *val, const char **ptr)
66
{
67
    const char *p, *q;
68
    p = str;
69
    q = val;
70
    while (*q != '\0') {
71
        if (*p != *q)
72
            return 0;
73
        p++;
74
        q++;
75
    }
76
    if (ptr)
77
        *ptr = p;
78
    return 1;
79
}
80

    
81
int stristart(const char *str, const char *val, const char **ptr)
82
{
83
    const char *p, *q;
84
    p = str;
85
    q = val;
86
    while (*q != '\0') {
87
        if (qemu_toupper(*p) != qemu_toupper(*q))
88
            return 0;
89
        p++;
90
        q++;
91
    }
92
    if (ptr)
93
        *ptr = p;
94
    return 1;
95
}
96

    
97
/* XXX: use host strnlen if available ? */
98
int qemu_strnlen(const char *s, int max_len)
99
{
100
    int i;
101

    
102
    for(i = 0; i < max_len; i++) {
103
        if (s[i] == '\0') {
104
            break;
105
        }
106
    }
107
    return i;
108
}
109

    
110
time_t mktimegm(struct tm *tm)
111
{
112
    time_t t;
113
    int y = tm->tm_year + 1900, m = tm->tm_mon + 1, d = tm->tm_mday;
114
    if (m < 3) {
115
        m += 12;
116
        y--;
117
    }
118
    t = 86400 * (d + (153 * m - 457) / 5 + 365 * y + y / 4 - y / 100 + 
119
                 y / 400 - 719469);
120
    t += 3600 * tm->tm_hour + 60 * tm->tm_min + tm->tm_sec;
121
    return t;
122
}
123

    
124
int qemu_fls(int i)
125
{
126
    return 32 - clz32(i);
127
}
128

    
129
/*
130
 * Make sure data goes on disk, but if possible do not bother to
131
 * write out the inode just for timestamp updates.
132
 *
133
 * Unfortunately even in 2009 many operating systems do not support
134
 * fdatasync and have to fall back to fsync.
135
 */
136
int qemu_fdatasync(int fd)
137
{
138
#ifdef CONFIG_FDATASYNC
139
    return fdatasync(fd);
140
#else
141
    return fsync(fd);
142
#endif
143
}
144

    
145
/* io vectors */
146

    
147
void qemu_iovec_init(QEMUIOVector *qiov, int alloc_hint)
148
{
149
    qiov->iov = g_malloc(alloc_hint * sizeof(struct iovec));
150
    qiov->niov = 0;
151
    qiov->nalloc = alloc_hint;
152
    qiov->size = 0;
153
}
154

    
155
void qemu_iovec_init_external(QEMUIOVector *qiov, struct iovec *iov, int niov)
156
{
157
    int i;
158

    
159
    qiov->iov = iov;
160
    qiov->niov = niov;
161
    qiov->nalloc = -1;
162
    qiov->size = 0;
163
    for (i = 0; i < niov; i++)
164
        qiov->size += iov[i].iov_len;
165
}
166

    
167
void qemu_iovec_add(QEMUIOVector *qiov, void *base, size_t len)
168
{
169
    assert(qiov->nalloc != -1);
170

    
171
    if (qiov->niov == qiov->nalloc) {
172
        qiov->nalloc = 2 * qiov->nalloc + 1;
173
        qiov->iov = g_realloc(qiov->iov, qiov->nalloc * sizeof(struct iovec));
174
    }
175
    qiov->iov[qiov->niov].iov_base = base;
176
    qiov->iov[qiov->niov].iov_len = len;
177
    qiov->size += len;
178
    ++qiov->niov;
179
}
180

    
181
/*
182
 * Concatenates (partial) iovecs from src to the end of dst.
183
 * It starts copying after skipping `soffset' bytes at the
184
 * beginning of src and adds individual vectors from src to
185
 * dst copies up to `sbytes' bytes total, or up to the end
186
 * of src if it comes first.  This way, it is okay to specify
187
 * very large value for `sbytes' to indicate "up to the end
188
 * of src".
189
 * Only vector pointers are processed, not the actual data buffers.
190
 */
191
void qemu_iovec_concat(QEMUIOVector *dst,
192
                       QEMUIOVector *src, size_t soffset, size_t sbytes)
193
{
194
    int i;
195
    size_t done;
196
    struct iovec *siov = src->iov;
197
    assert(dst->nalloc != -1);
198
    assert(src->size >= soffset);
199
    for (i = 0, done = 0; done < sbytes && i < src->niov; i++) {
200
        if (soffset < siov[i].iov_len) {
201
            size_t len = MIN(siov[i].iov_len - soffset, sbytes - done);
202
            qemu_iovec_add(dst, siov[i].iov_base + soffset, len);
203
            done += len;
204
            soffset = 0;
205
        } else {
206
            soffset -= siov[i].iov_len;
207
        }
208
    }
209
    /* return done; */
210
}
211

    
212
void qemu_iovec_destroy(QEMUIOVector *qiov)
213
{
214
    assert(qiov->nalloc != -1);
215

    
216
    qemu_iovec_reset(qiov);
217
    g_free(qiov->iov);
218
    qiov->nalloc = 0;
219
    qiov->iov = NULL;
220
}
221

    
222
void qemu_iovec_reset(QEMUIOVector *qiov)
223
{
224
    assert(qiov->nalloc != -1);
225

    
226
    qiov->niov = 0;
227
    qiov->size = 0;
228
}
229

    
230
size_t qemu_iovec_to_buf(QEMUIOVector *qiov, size_t offset,
231
                         void *buf, size_t bytes)
232
{
233
    return iov_to_buf(qiov->iov, qiov->niov, offset, buf, bytes);
234
}
235

    
236
size_t qemu_iovec_from_buf(QEMUIOVector *qiov, size_t offset,
237
                           const void *buf, size_t bytes)
238
{
239
    return iov_from_buf(qiov->iov, qiov->niov, offset, buf, bytes);
240
}
241

    
242
size_t qemu_iovec_memset(QEMUIOVector *qiov, size_t offset,
243
                         int fillc, size_t bytes)
244
{
245
    return iov_memset(qiov->iov, qiov->niov, offset, fillc, bytes);
246
}
247

    
248
/*
249
 * Checks if a buffer is all zeroes
250
 *
251
 * Attention! The len must be a multiple of 4 * sizeof(long) due to
252
 * restriction of optimizations in this function.
253
 */
254
bool buffer_is_zero(const void *buf, size_t len)
255
{
256
    /*
257
     * Use long as the biggest available internal data type that fits into the
258
     * CPU register and unroll the loop to smooth out the effect of memory
259
     * latency.
260
     */
261

    
262
    size_t i;
263
    long d0, d1, d2, d3;
264
    const long * const data = buf;
265

    
266
    assert(len % (4 * sizeof(long)) == 0);
267
    len /= sizeof(long);
268

    
269
    for (i = 0; i < len; i += 4) {
270
        d0 = data[i + 0];
271
        d1 = data[i + 1];
272
        d2 = data[i + 2];
273
        d3 = data[i + 3];
274

    
275
        if (d0 || d1 || d2 || d3) {
276
            return false;
277
        }
278
    }
279

    
280
    return true;
281
}
282

    
283
#ifndef _WIN32
284
/* Sets a specific flag */
285
int fcntl_setfl(int fd, int flag)
286
{
287
    int flags;
288

    
289
    flags = fcntl(fd, F_GETFL);
290
    if (flags == -1)
291
        return -errno;
292

    
293
    if (fcntl(fd, F_SETFL, flags | flag) == -1)
294
        return -errno;
295

    
296
    return 0;
297
}
298
#endif
299

    
300
static int64_t suffix_mul(char suffix, int64_t unit)
301
{
302
    switch (qemu_toupper(suffix)) {
303
    case STRTOSZ_DEFSUFFIX_B:
304
        return 1;
305
    case STRTOSZ_DEFSUFFIX_KB:
306
        return unit;
307
    case STRTOSZ_DEFSUFFIX_MB:
308
        return unit * unit;
309
    case STRTOSZ_DEFSUFFIX_GB:
310
        return unit * unit * unit;
311
    case STRTOSZ_DEFSUFFIX_TB:
312
        return unit * unit * unit * unit;
313
    }
314
    return -1;
315
}
316

    
317
/*
318
 * Convert string to bytes, allowing either B/b for bytes, K/k for KB,
319
 * M/m for MB, G/g for GB or T/t for TB. End pointer will be returned
320
 * in *end, if not NULL. Return -1 on error.
321
 */
322
int64_t strtosz_suffix_unit(const char *nptr, char **end,
323
                            const char default_suffix, int64_t unit)
324
{
325
    int64_t retval = -1;
326
    char *endptr;
327
    unsigned char c;
328
    int mul_required = 0;
329
    double val, mul, integral, fraction;
330

    
331
    errno = 0;
332
    val = strtod(nptr, &endptr);
333
    if (isnan(val) || endptr == nptr || errno != 0) {
334
        goto fail;
335
    }
336
    fraction = modf(val, &integral);
337
    if (fraction != 0) {
338
        mul_required = 1;
339
    }
340
    c = *endptr;
341
    mul = suffix_mul(c, unit);
342
    if (mul >= 0) {
343
        endptr++;
344
    } else {
345
        mul = suffix_mul(default_suffix, unit);
346
        assert(mul >= 0);
347
    }
348
    if (mul == 1 && mul_required) {
349
        goto fail;
350
    }
351
    if ((val * mul >= INT64_MAX) || val < 0) {
352
        goto fail;
353
    }
354
    retval = val * mul;
355

    
356
fail:
357
    if (end) {
358
        *end = endptr;
359
    }
360

    
361
    return retval;
362
}
363

    
364
int64_t strtosz_suffix(const char *nptr, char **end, const char default_suffix)
365
{
366
    return strtosz_suffix_unit(nptr, end, default_suffix, 1024);
367
}
368

    
369
int64_t strtosz(const char *nptr, char **end)
370
{
371
    return strtosz_suffix(nptr, end, STRTOSZ_DEFSUFFIX_MB);
372
}
373

    
374
int qemu_parse_fd(const char *param)
375
{
376
    int fd;
377
    char *endptr = NULL;
378

    
379
    fd = strtol(param, &endptr, 10);
380
    if (*endptr || (fd == 0 && param == endptr)) {
381
        return -1;
382
    }
383
    return fd;
384
}
385

    
386
int qemu_parse_fdset(const char *param)
387
{
388
    return qemu_parse_fd(param);
389
}
390

    
391
/* round down to the nearest power of 2*/
392
int64_t pow2floor(int64_t value)
393
{
394
    if (!is_power_of_2(value)) {
395
        value = 0x8000000000000000ULL >> clz64(value);
396
    }
397
    return value;
398
}
399

    
400
/*
401
 * Implementation of  ULEB128 (http://en.wikipedia.org/wiki/LEB128)
402
 * Input is limited to 14-bit numbers
403
 */
404
int uleb128_encode_small(uint8_t *out, uint32_t n)
405
{
406
    g_assert(n <= 0x3fff);
407
    if (n < 0x80) {
408
        *out++ = n;
409
        return 1;
410
    } else {
411
        *out++ = (n & 0x7f) | 0x80;
412
        *out++ = n >> 7;
413
        return 2;
414
    }
415
}
416

    
417
int uleb128_decode_small(const uint8_t *in, uint32_t *n)
418
{
419
    if (!(*in & 0x80)) {
420
        *n = *in++;
421
        return 1;
422
    } else {
423
        *n = *in++ & 0x7f;
424
        /* we exceed 14 bit number */
425
        if (*in & 0x80) {
426
            return -1;
427
        }
428
        *n |= *in++ << 7;
429
        return 2;
430
    }
431
}