Statistics
| Branch: | Revision:

root / hw / kvmvapic.c @ c3203fa5

History | View | Annotate | Download (22.9 kB)

1
/*
2
 * TPR optimization for 32-bit Windows guests (XP and Server 2003)
3
 *
4
 * Copyright (C) 2007-2008 Qumranet Technologies
5
 * Copyright (C) 2012      Jan Kiszka, Siemens AG
6
 *
7
 * This work is licensed under the terms of the GNU GPL version 2, or
8
 * (at your option) any later version. See the COPYING file in the
9
 * top-level directory.
10
 */
11
#include "sysemu/sysemu.h"
12
#include "sysemu/cpus.h"
13
#include "sysemu/kvm.h"
14
#include "apic_internal.h"
15

    
16
#define APIC_DEFAULT_ADDRESS    0xfee00000
17

    
18
#define VAPIC_IO_PORT           0x7e
19

    
20
#define VAPIC_CPU_SHIFT         7
21

    
22
#define ROM_BLOCK_SIZE          512
23
#define ROM_BLOCK_MASK          (~(ROM_BLOCK_SIZE - 1))
24

    
25
typedef enum VAPICMode {
26
    VAPIC_INACTIVE = 0,
27
    VAPIC_ACTIVE   = 1,
28
    VAPIC_STANDBY  = 2,
29
} VAPICMode;
30

    
31
typedef struct VAPICHandlers {
32
    uint32_t set_tpr;
33
    uint32_t set_tpr_eax;
34
    uint32_t get_tpr[8];
35
    uint32_t get_tpr_stack;
36
} QEMU_PACKED VAPICHandlers;
37

    
38
typedef struct GuestROMState {
39
    char signature[8];
40
    uint32_t vaddr;
41
    uint32_t fixup_start;
42
    uint32_t fixup_end;
43
    uint32_t vapic_vaddr;
44
    uint32_t vapic_size;
45
    uint32_t vcpu_shift;
46
    uint32_t real_tpr_addr;
47
    VAPICHandlers up;
48
    VAPICHandlers mp;
49
} QEMU_PACKED GuestROMState;
50

    
51
typedef struct VAPICROMState {
52
    SysBusDevice busdev;
53
    MemoryRegion io;
54
    MemoryRegion rom;
55
    uint32_t state;
56
    uint32_t rom_state_paddr;
57
    uint32_t rom_state_vaddr;
58
    uint32_t vapic_paddr;
59
    uint32_t real_tpr_addr;
60
    GuestROMState rom_state;
61
    size_t rom_size;
62
    bool rom_mapped_writable;
63
} VAPICROMState;
64

    
65
#define TPR_INSTR_ABS_MODRM             0x1
66
#define TPR_INSTR_MATCH_MODRM_REG       0x2
67

    
68
typedef struct TPRInstruction {
69
    uint8_t opcode;
70
    uint8_t modrm_reg;
71
    unsigned int flags;
72
    TPRAccess access;
73
    size_t length;
74
    off_t addr_offset;
75
} TPRInstruction;
76

    
77
/* must be sorted by length, shortest first */
78
static const TPRInstruction tpr_instr[] = {
79
    { /* mov abs to eax */
80
        .opcode = 0xa1,
81
        .access = TPR_ACCESS_READ,
82
        .length = 5,
83
        .addr_offset = 1,
84
    },
85
    { /* mov eax to abs */
86
        .opcode = 0xa3,
87
        .access = TPR_ACCESS_WRITE,
88
        .length = 5,
89
        .addr_offset = 1,
90
    },
91
    { /* mov r32 to r/m32 */
92
        .opcode = 0x89,
93
        .flags = TPR_INSTR_ABS_MODRM,
94
        .access = TPR_ACCESS_WRITE,
95
        .length = 6,
96
        .addr_offset = 2,
97
    },
98
    { /* mov r/m32 to r32 */
99
        .opcode = 0x8b,
100
        .flags = TPR_INSTR_ABS_MODRM,
101
        .access = TPR_ACCESS_READ,
102
        .length = 6,
103
        .addr_offset = 2,
104
    },
105
    { /* push r/m32 */
106
        .opcode = 0xff,
107
        .modrm_reg = 6,
108
        .flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG,
109
        .access = TPR_ACCESS_READ,
110
        .length = 6,
111
        .addr_offset = 2,
112
    },
113
    { /* mov imm32, r/m32 (c7/0) */
114
        .opcode = 0xc7,
115
        .modrm_reg = 0,
116
        .flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG,
117
        .access = TPR_ACCESS_WRITE,
118
        .length = 10,
119
        .addr_offset = 2,
120
    },
121
};
122

    
123
static void read_guest_rom_state(VAPICROMState *s)
124
{
125
    cpu_physical_memory_rw(s->rom_state_paddr, (void *)&s->rom_state,
126
                           sizeof(GuestROMState), 0);
127
}
128

    
129
static void write_guest_rom_state(VAPICROMState *s)
130
{
131
    cpu_physical_memory_rw(s->rom_state_paddr, (void *)&s->rom_state,
132
                           sizeof(GuestROMState), 1);
133
}
134

    
135
static void update_guest_rom_state(VAPICROMState *s)
136
{
137
    read_guest_rom_state(s);
138

    
139
    s->rom_state.real_tpr_addr = cpu_to_le32(s->real_tpr_addr);
140
    s->rom_state.vcpu_shift = cpu_to_le32(VAPIC_CPU_SHIFT);
141

    
142
    write_guest_rom_state(s);
143
}
144

    
145
static int find_real_tpr_addr(VAPICROMState *s, CPUX86State *env)
146
{
147
    hwaddr paddr;
148
    target_ulong addr;
149

    
150
    if (s->state == VAPIC_ACTIVE) {
151
        return 0;
152
    }
153
    /*
154
     * If there is no prior TPR access instruction we could analyze (which is
155
     * the case after resume from hibernation), we need to scan the possible
156
     * virtual address space for the APIC mapping.
157
     */
158
    for (addr = 0xfffff000; addr >= 0x80000000; addr -= TARGET_PAGE_SIZE) {
159
        paddr = cpu_get_phys_page_debug(env, addr);
160
        if (paddr != APIC_DEFAULT_ADDRESS) {
161
            continue;
162
        }
163
        s->real_tpr_addr = addr + 0x80;
164
        update_guest_rom_state(s);
165
        return 0;
166
    }
167
    return -1;
168
}
169

    
170
static uint8_t modrm_reg(uint8_t modrm)
171
{
172
    return (modrm >> 3) & 7;
173
}
174

    
175
static bool is_abs_modrm(uint8_t modrm)
176
{
177
    return (modrm & 0xc7) == 0x05;
178
}
179

    
180
static bool opcode_matches(uint8_t *opcode, const TPRInstruction *instr)
181
{
182
    return opcode[0] == instr->opcode &&
183
        (!(instr->flags & TPR_INSTR_ABS_MODRM) || is_abs_modrm(opcode[1])) &&
184
        (!(instr->flags & TPR_INSTR_MATCH_MODRM_REG) ||
185
         modrm_reg(opcode[1]) == instr->modrm_reg);
186
}
187

    
188
static int evaluate_tpr_instruction(VAPICROMState *s, CPUX86State *env,
189
                                    target_ulong *pip, TPRAccess access)
190
{
191
    const TPRInstruction *instr;
192
    target_ulong ip = *pip;
193
    uint8_t opcode[2];
194
    uint32_t real_tpr_addr;
195
    int i;
196

    
197
    if ((ip & 0xf0000000ULL) != 0x80000000ULL &&
198
        (ip & 0xf0000000ULL) != 0xe0000000ULL) {
199
        return -1;
200
    }
201

    
202
    /*
203
     * Early Windows 2003 SMP initialization contains a
204
     *
205
     *   mov imm32, r/m32
206
     *
207
     * instruction that is patched by TPR optimization. The problem is that
208
     * RSP, used by the patched instruction, is zero, so the guest gets a
209
     * double fault and dies.
210
     */
211
    if (env->regs[R_ESP] == 0) {
212
        return -1;
213
    }
214

    
215
    if (kvm_enabled() && !kvm_irqchip_in_kernel()) {
216
        /*
217
         * KVM without kernel-based TPR access reporting will pass an IP that
218
         * points after the accessing instruction. So we need to look backward
219
         * to find the reason.
220
         */
221
        for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) {
222
            instr = &tpr_instr[i];
223
            if (instr->access != access) {
224
                continue;
225
            }
226
            if (cpu_memory_rw_debug(env, ip - instr->length, opcode,
227
                                    sizeof(opcode), 0) < 0) {
228
                return -1;
229
            }
230
            if (opcode_matches(opcode, instr)) {
231
                ip -= instr->length;
232
                goto instruction_ok;
233
            }
234
        }
235
        return -1;
236
    } else {
237
        if (cpu_memory_rw_debug(env, ip, opcode, sizeof(opcode), 0) < 0) {
238
            return -1;
239
        }
240
        for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) {
241
            instr = &tpr_instr[i];
242
            if (opcode_matches(opcode, instr)) {
243
                goto instruction_ok;
244
            }
245
        }
246
        return -1;
247
    }
248

    
249
instruction_ok:
250
    /*
251
     * Grab the virtual TPR address from the instruction
252
     * and update the cached values.
253
     */
254
    if (cpu_memory_rw_debug(env, ip + instr->addr_offset,
255
                            (void *)&real_tpr_addr,
256
                            sizeof(real_tpr_addr), 0) < 0) {
257
        return -1;
258
    }
259
    real_tpr_addr = le32_to_cpu(real_tpr_addr);
260
    if ((real_tpr_addr & 0xfff) != 0x80) {
261
        return -1;
262
    }
263
    s->real_tpr_addr = real_tpr_addr;
264
    update_guest_rom_state(s);
265

    
266
    *pip = ip;
267
    return 0;
268
}
269

    
270
static int update_rom_mapping(VAPICROMState *s, CPUX86State *env, target_ulong ip)
271
{
272
    hwaddr paddr;
273
    uint32_t rom_state_vaddr;
274
    uint32_t pos, patch, offset;
275

    
276
    /* nothing to do if already activated */
277
    if (s->state == VAPIC_ACTIVE) {
278
        return 0;
279
    }
280

    
281
    /* bail out if ROM init code was not executed (missing ROM?) */
282
    if (s->state == VAPIC_INACTIVE) {
283
        return -1;
284
    }
285

    
286
    /* find out virtual address of the ROM */
287
    rom_state_vaddr = s->rom_state_paddr + (ip & 0xf0000000);
288
    paddr = cpu_get_phys_page_debug(env, rom_state_vaddr);
289
    if (paddr == -1) {
290
        return -1;
291
    }
292
    paddr += rom_state_vaddr & ~TARGET_PAGE_MASK;
293
    if (paddr != s->rom_state_paddr) {
294
        return -1;
295
    }
296
    read_guest_rom_state(s);
297
    if (memcmp(s->rom_state.signature, "kvm aPiC", 8) != 0) {
298
        return -1;
299
    }
300
    s->rom_state_vaddr = rom_state_vaddr;
301

    
302
    /* fixup addresses in ROM if needed */
303
    if (rom_state_vaddr == le32_to_cpu(s->rom_state.vaddr)) {
304
        return 0;
305
    }
306
    for (pos = le32_to_cpu(s->rom_state.fixup_start);
307
         pos < le32_to_cpu(s->rom_state.fixup_end);
308
         pos += 4) {
309
        cpu_physical_memory_rw(paddr + pos - s->rom_state.vaddr,
310
                               (void *)&offset, sizeof(offset), 0);
311
        offset = le32_to_cpu(offset);
312
        cpu_physical_memory_rw(paddr + offset, (void *)&patch,
313
                               sizeof(patch), 0);
314
        patch = le32_to_cpu(patch);
315
        patch += rom_state_vaddr - le32_to_cpu(s->rom_state.vaddr);
316
        patch = cpu_to_le32(patch);
317
        cpu_physical_memory_rw(paddr + offset, (void *)&patch,
318
                               sizeof(patch), 1);
319
    }
320
    read_guest_rom_state(s);
321
    s->vapic_paddr = paddr + le32_to_cpu(s->rom_state.vapic_vaddr) -
322
        le32_to_cpu(s->rom_state.vaddr);
323

    
324
    return 0;
325
}
326

    
327
/*
328
 * Tries to read the unique processor number from the Kernel Processor Control
329
 * Region (KPCR) of 32-bit Windows XP and Server 2003. Returns -1 if the KPCR
330
 * cannot be accessed or is considered invalid. This also ensures that we are
331
 * not patching the wrong guest.
332
 */
333
static int get_kpcr_number(CPUX86State *env)
334
{
335
    struct kpcr {
336
        uint8_t  fill1[0x1c];
337
        uint32_t self;
338
        uint8_t  fill2[0x31];
339
        uint8_t  number;
340
    } QEMU_PACKED kpcr;
341

    
342
    if (cpu_memory_rw_debug(env, env->segs[R_FS].base,
343
                            (void *)&kpcr, sizeof(kpcr), 0) < 0 ||
344
        kpcr.self != env->segs[R_FS].base) {
345
        return -1;
346
    }
347
    return kpcr.number;
348
}
349

    
350
static int vapic_enable(VAPICROMState *s, CPUX86State *env)
351
{
352
    int cpu_number = get_kpcr_number(env);
353
    hwaddr vapic_paddr;
354
    static const uint8_t enabled = 1;
355

    
356
    if (cpu_number < 0) {
357
        return -1;
358
    }
359
    vapic_paddr = s->vapic_paddr +
360
        (((hwaddr)cpu_number) << VAPIC_CPU_SHIFT);
361
    cpu_physical_memory_rw(vapic_paddr + offsetof(VAPICState, enabled),
362
                           (void *)&enabled, sizeof(enabled), 1);
363
    apic_enable_vapic(env->apic_state, vapic_paddr);
364

    
365
    s->state = VAPIC_ACTIVE;
366

    
367
    return 0;
368
}
369

    
370
static void patch_byte(CPUX86State *env, target_ulong addr, uint8_t byte)
371
{
372
    cpu_memory_rw_debug(env, addr, &byte, 1, 1);
373
}
374

    
375
static void patch_call(VAPICROMState *s, CPUX86State *env, target_ulong ip,
376
                       uint32_t target)
377
{
378
    uint32_t offset;
379

    
380
    offset = cpu_to_le32(target - ip - 5);
381
    patch_byte(env, ip, 0xe8); /* call near */
382
    cpu_memory_rw_debug(env, ip + 1, (void *)&offset, sizeof(offset), 1);
383
}
384

    
385
static void patch_instruction(VAPICROMState *s, CPUX86State *env, target_ulong ip)
386
{
387
    VAPICHandlers *handlers;
388
    uint8_t opcode[2];
389
    uint32_t imm32;
390
    target_ulong current_pc = 0;
391
    target_ulong current_cs_base = 0;
392
    int current_flags = 0;
393

    
394
    if (smp_cpus == 1) {
395
        handlers = &s->rom_state.up;
396
    } else {
397
        handlers = &s->rom_state.mp;
398
    }
399

    
400
    if (!kvm_enabled()) {
401
        cpu_restore_state(env, env->mem_io_pc);
402
        cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
403
                             &current_flags);
404
    }
405

    
406
    pause_all_vcpus();
407

    
408
    cpu_memory_rw_debug(env, ip, opcode, sizeof(opcode), 0);
409

    
410
    switch (opcode[0]) {
411
    case 0x89: /* mov r32 to r/m32 */
412
        patch_byte(env, ip, 0x50 + modrm_reg(opcode[1]));  /* push reg */
413
        patch_call(s, env, ip + 1, handlers->set_tpr);
414
        break;
415
    case 0x8b: /* mov r/m32 to r32 */
416
        patch_byte(env, ip, 0x90);
417
        patch_call(s, env, ip + 1, handlers->get_tpr[modrm_reg(opcode[1])]);
418
        break;
419
    case 0xa1: /* mov abs to eax */
420
        patch_call(s, env, ip, handlers->get_tpr[0]);
421
        break;
422
    case 0xa3: /* mov eax to abs */
423
        patch_call(s, env, ip, handlers->set_tpr_eax);
424
        break;
425
    case 0xc7: /* mov imm32, r/m32 (c7/0) */
426
        patch_byte(env, ip, 0x68);  /* push imm32 */
427
        cpu_memory_rw_debug(env, ip + 6, (void *)&imm32, sizeof(imm32), 0);
428
        cpu_memory_rw_debug(env, ip + 1, (void *)&imm32, sizeof(imm32), 1);
429
        patch_call(s, env, ip + 5, handlers->set_tpr);
430
        break;
431
    case 0xff: /* push r/m32 */
432
        patch_byte(env, ip, 0x50); /* push eax */
433
        patch_call(s, env, ip + 1, handlers->get_tpr_stack);
434
        break;
435
    default:
436
        abort();
437
    }
438

    
439
    resume_all_vcpus();
440

    
441
    if (!kvm_enabled()) {
442
        env->current_tb = NULL;
443
        tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
444
        cpu_resume_from_signal(env, NULL);
445
    }
446
}
447

    
448
void vapic_report_tpr_access(DeviceState *dev, void *cpu, target_ulong ip,
449
                             TPRAccess access)
450
{
451
    VAPICROMState *s = DO_UPCAST(VAPICROMState, busdev.qdev, dev);
452
    CPUX86State *env = cpu;
453

    
454
    cpu_synchronize_state(env);
455

    
456
    if (evaluate_tpr_instruction(s, env, &ip, access) < 0) {
457
        if (s->state == VAPIC_ACTIVE) {
458
            vapic_enable(s, env);
459
        }
460
        return;
461
    }
462
    if (update_rom_mapping(s, env, ip) < 0) {
463
        return;
464
    }
465
    if (vapic_enable(s, env) < 0) {
466
        return;
467
    }
468
    patch_instruction(s, env, ip);
469
}
470

    
471
typedef struct VAPICEnableTPRReporting {
472
    DeviceState *apic;
473
    bool enable;
474
} VAPICEnableTPRReporting;
475

    
476
static void vapic_do_enable_tpr_reporting(void *data)
477
{
478
    VAPICEnableTPRReporting *info = data;
479

    
480
    apic_enable_tpr_access_reporting(info->apic, info->enable);
481
}
482

    
483
static void vapic_enable_tpr_reporting(bool enable)
484
{
485
    VAPICEnableTPRReporting info = {
486
        .enable = enable,
487
    };
488
    X86CPU *cpu;
489
    CPUX86State *env;
490

    
491
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
492
        cpu = x86_env_get_cpu(env);
493
        info.apic = env->apic_state;
494
        run_on_cpu(CPU(cpu), vapic_do_enable_tpr_reporting, &info);
495
    }
496
}
497

    
498
static void vapic_reset(DeviceState *dev)
499
{
500
    VAPICROMState *s = DO_UPCAST(VAPICROMState, busdev.qdev, dev);
501

    
502
    if (s->state == VAPIC_ACTIVE) {
503
        s->state = VAPIC_STANDBY;
504
    }
505
    vapic_enable_tpr_reporting(false);
506
}
507

    
508
/*
509
 * Set the IRQ polling hypercalls to the supported variant:
510
 *  - vmcall if using KVM in-kernel irqchip
511
 *  - 32-bit VAPIC port write otherwise
512
 */
513
static int patch_hypercalls(VAPICROMState *s)
514
{
515
    hwaddr rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK;
516
    static const uint8_t vmcall_pattern[] = { /* vmcall */
517
        0xb8, 0x1, 0, 0, 0, 0xf, 0x1, 0xc1
518
    };
519
    static const uint8_t outl_pattern[] = { /* nop; outl %eax,0x7e */
520
        0xb8, 0x1, 0, 0, 0, 0x90, 0xe7, 0x7e
521
    };
522
    uint8_t alternates[2];
523
    const uint8_t *pattern;
524
    const uint8_t *patch;
525
    int patches = 0;
526
    off_t pos;
527
    uint8_t *rom;
528

    
529
    rom = g_malloc(s->rom_size);
530
    cpu_physical_memory_rw(rom_paddr, rom, s->rom_size, 0);
531

    
532
    for (pos = 0; pos < s->rom_size - sizeof(vmcall_pattern); pos++) {
533
        if (kvm_irqchip_in_kernel()) {
534
            pattern = outl_pattern;
535
            alternates[0] = outl_pattern[7];
536
            alternates[1] = outl_pattern[7];
537
            patch = &vmcall_pattern[5];
538
        } else {
539
            pattern = vmcall_pattern;
540
            alternates[0] = vmcall_pattern[7];
541
            alternates[1] = 0xd9; /* AMD's VMMCALL */
542
            patch = &outl_pattern[5];
543
        }
544
        if (memcmp(rom + pos, pattern, 7) == 0 &&
545
            (rom[pos + 7] == alternates[0] || rom[pos + 7] == alternates[1])) {
546
            cpu_physical_memory_rw(rom_paddr + pos + 5, (uint8_t *)patch,
547
                                   3, 1);
548
            /*
549
             * Don't flush the tb here. Under ordinary conditions, the patched
550
             * calls are miles away from the current IP. Under malicious
551
             * conditions, the guest could trick us to crash.
552
             */
553
        }
554
    }
555

    
556
    g_free(rom);
557

    
558
    if (patches != 0 && patches != 2) {
559
        return -1;
560
    }
561

    
562
    return 0;
563
}
564

    
565
/*
566
 * For TCG mode or the time KVM honors read-only memory regions, we need to
567
 * enable write access to the option ROM so that variables can be updated by
568
 * the guest.
569
 */
570
static void vapic_map_rom_writable(VAPICROMState *s)
571
{
572
    hwaddr rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK;
573
    MemoryRegionSection section;
574
    MemoryRegion *as;
575
    size_t rom_size;
576
    uint8_t *ram;
577

    
578
    as = sysbus_address_space(&s->busdev);
579

    
580
    if (s->rom_mapped_writable) {
581
        memory_region_del_subregion(as, &s->rom);
582
        memory_region_destroy(&s->rom);
583
    }
584

    
585
    /* grab RAM memory region (region @rom_paddr may still be pc.rom) */
586
    section = memory_region_find(as, 0, 1);
587

    
588
    /* read ROM size from RAM region */
589
    ram = memory_region_get_ram_ptr(section.mr);
590
    rom_size = ram[rom_paddr + 2] * ROM_BLOCK_SIZE;
591
    s->rom_size = rom_size;
592

    
593
    /* We need to round to avoid creating subpages
594
     * from which we cannot run code. */
595
    rom_size += rom_paddr & ~TARGET_PAGE_MASK;
596
    rom_paddr &= TARGET_PAGE_MASK;
597
    rom_size = TARGET_PAGE_ALIGN(rom_size);
598

    
599
    memory_region_init_alias(&s->rom, "kvmvapic-rom", section.mr, rom_paddr,
600
                             rom_size);
601
    memory_region_add_subregion_overlap(as, rom_paddr, &s->rom, 1000);
602
    s->rom_mapped_writable = true;
603
}
604

    
605
static int vapic_prepare(VAPICROMState *s)
606
{
607
    vapic_map_rom_writable(s);
608

    
609
    if (patch_hypercalls(s) < 0) {
610
        return -1;
611
    }
612

    
613
    vapic_enable_tpr_reporting(true);
614

    
615
    return 0;
616
}
617

    
618
static void vapic_write(void *opaque, hwaddr addr, uint64_t data,
619
                        unsigned int size)
620
{
621
    CPUX86State *env = cpu_single_env;
622
    hwaddr rom_paddr;
623
    VAPICROMState *s = opaque;
624

    
625
    cpu_synchronize_state(env);
626

    
627
    /*
628
     * The VAPIC supports two PIO-based hypercalls, both via port 0x7E.
629
     *  o 16-bit write access:
630
     *    Reports the option ROM initialization to the hypervisor. Written
631
     *    value is the offset of the state structure in the ROM.
632
     *  o 8-bit write access:
633
     *    Reactivates the VAPIC after a guest hibernation, i.e. after the
634
     *    option ROM content has been re-initialized by a guest power cycle.
635
     *  o 32-bit write access:
636
     *    Poll for pending IRQs, considering the current VAPIC state.
637
     */
638
    switch (size) {
639
    case 2:
640
        if (s->state == VAPIC_INACTIVE) {
641
            rom_paddr = (env->segs[R_CS].base + env->eip) & ROM_BLOCK_MASK;
642
            s->rom_state_paddr = rom_paddr + data;
643

    
644
            s->state = VAPIC_STANDBY;
645
        }
646
        if (vapic_prepare(s) < 0) {
647
            s->state = VAPIC_INACTIVE;
648
            break;
649
        }
650
        break;
651
    case 1:
652
        if (kvm_enabled()) {
653
            /*
654
             * Disable triggering instruction in ROM by writing a NOP.
655
             *
656
             * We cannot do this in TCG mode as the reported IP is not
657
             * accurate.
658
             */
659
            pause_all_vcpus();
660
            patch_byte(env, env->eip - 2, 0x66);
661
            patch_byte(env, env->eip - 1, 0x90);
662
            resume_all_vcpus();
663
        }
664

    
665
        if (s->state == VAPIC_ACTIVE) {
666
            break;
667
        }
668
        if (update_rom_mapping(s, env, env->eip) < 0) {
669
            break;
670
        }
671
        if (find_real_tpr_addr(s, env) < 0) {
672
            break;
673
        }
674
        vapic_enable(s, env);
675
        break;
676
    default:
677
    case 4:
678
        if (!kvm_irqchip_in_kernel()) {
679
            apic_poll_irq(env->apic_state);
680
        }
681
        break;
682
    }
683
}
684

    
685
static const MemoryRegionOps vapic_ops = {
686
    .write = vapic_write,
687
    .endianness = DEVICE_NATIVE_ENDIAN,
688
};
689

    
690
static int vapic_init(SysBusDevice *dev)
691
{
692
    VAPICROMState *s = FROM_SYSBUS(VAPICROMState, dev);
693

    
694
    memory_region_init_io(&s->io, &vapic_ops, s, "kvmvapic", 2);
695
    sysbus_add_io(dev, VAPIC_IO_PORT, &s->io);
696
    sysbus_init_ioports(dev, VAPIC_IO_PORT, 2);
697

    
698
    option_rom[nb_option_roms].name = "kvmvapic.bin";
699
    option_rom[nb_option_roms].bootindex = -1;
700
    nb_option_roms++;
701

    
702
    return 0;
703
}
704

    
705
static void do_vapic_enable(void *data)
706
{
707
    VAPICROMState *s = data;
708

    
709
    vapic_enable(s, first_cpu);
710
}
711

    
712
static int vapic_post_load(void *opaque, int version_id)
713
{
714
    VAPICROMState *s = opaque;
715
    uint8_t *zero;
716

    
717
    /*
718
     * The old implementation of qemu-kvm did not provide the state
719
     * VAPIC_STANDBY. Reconstruct it.
720
     */
721
    if (s->state == VAPIC_INACTIVE && s->rom_state_paddr != 0) {
722
        s->state = VAPIC_STANDBY;
723
    }
724

    
725
    if (s->state != VAPIC_INACTIVE) {
726
        if (vapic_prepare(s) < 0) {
727
            return -1;
728
        }
729
    }
730
    if (s->state == VAPIC_ACTIVE) {
731
        if (smp_cpus == 1) {
732
            run_on_cpu(ENV_GET_CPU(first_cpu), do_vapic_enable, s);
733
        } else {
734
            zero = g_malloc0(s->rom_state.vapic_size);
735
            cpu_physical_memory_rw(s->vapic_paddr, zero,
736
                                   s->rom_state.vapic_size, 1);
737
            g_free(zero);
738
        }
739
    }
740

    
741
    return 0;
742
}
743

    
744
static const VMStateDescription vmstate_handlers = {
745
    .name = "kvmvapic-handlers",
746
    .version_id = 1,
747
    .minimum_version_id = 1,
748
    .minimum_version_id_old = 1,
749
    .fields = (VMStateField[]) {
750
        VMSTATE_UINT32(set_tpr, VAPICHandlers),
751
        VMSTATE_UINT32(set_tpr_eax, VAPICHandlers),
752
        VMSTATE_UINT32_ARRAY(get_tpr, VAPICHandlers, 8),
753
        VMSTATE_UINT32(get_tpr_stack, VAPICHandlers),
754
        VMSTATE_END_OF_LIST()
755
    }
756
};
757

    
758
static const VMStateDescription vmstate_guest_rom = {
759
    .name = "kvmvapic-guest-rom",
760
    .version_id = 1,
761
    .minimum_version_id = 1,
762
    .minimum_version_id_old = 1,
763
    .fields = (VMStateField[]) {
764
        VMSTATE_UNUSED(8),     /* signature */
765
        VMSTATE_UINT32(vaddr, GuestROMState),
766
        VMSTATE_UINT32(fixup_start, GuestROMState),
767
        VMSTATE_UINT32(fixup_end, GuestROMState),
768
        VMSTATE_UINT32(vapic_vaddr, GuestROMState),
769
        VMSTATE_UINT32(vapic_size, GuestROMState),
770
        VMSTATE_UINT32(vcpu_shift, GuestROMState),
771
        VMSTATE_UINT32(real_tpr_addr, GuestROMState),
772
        VMSTATE_STRUCT(up, GuestROMState, 0, vmstate_handlers, VAPICHandlers),
773
        VMSTATE_STRUCT(mp, GuestROMState, 0, vmstate_handlers, VAPICHandlers),
774
        VMSTATE_END_OF_LIST()
775
    }
776
};
777

    
778
static const VMStateDescription vmstate_vapic = {
779
    .name = "kvm-tpr-opt",      /* compatible with qemu-kvm VAPIC */
780
    .version_id = 1,
781
    .minimum_version_id = 1,
782
    .minimum_version_id_old = 1,
783
    .post_load = vapic_post_load,
784
    .fields = (VMStateField[]) {
785
        VMSTATE_STRUCT(rom_state, VAPICROMState, 0, vmstate_guest_rom,
786
                       GuestROMState),
787
        VMSTATE_UINT32(state, VAPICROMState),
788
        VMSTATE_UINT32(real_tpr_addr, VAPICROMState),
789
        VMSTATE_UINT32(rom_state_vaddr, VAPICROMState),
790
        VMSTATE_UINT32(vapic_paddr, VAPICROMState),
791
        VMSTATE_UINT32(rom_state_paddr, VAPICROMState),
792
        VMSTATE_END_OF_LIST()
793
    }
794
};
795

    
796
static void vapic_class_init(ObjectClass *klass, void *data)
797
{
798
    SysBusDeviceClass *sc = SYS_BUS_DEVICE_CLASS(klass);
799
    DeviceClass *dc = DEVICE_CLASS(klass);
800

    
801
    dc->no_user = 1;
802
    dc->reset   = vapic_reset;
803
    dc->vmsd    = &vmstate_vapic;
804
    sc->init    = vapic_init;
805
}
806

    
807
static TypeInfo vapic_type = {
808
    .name          = "kvmvapic",
809
    .parent        = TYPE_SYS_BUS_DEVICE,
810
    .instance_size = sizeof(VAPICROMState),
811
    .class_init    = vapic_class_init,
812
};
813

    
814
static void vapic_register(void)
815
{
816
    type_register_static(&vapic_type);
817
}
818

    
819
type_init(vapic_register);