Statistics
| Branch: | Revision:

root / tests / rtc-test.c @ c4d9d196

History | View | Annotate | Download (15.7 kB)

1
/*
2
 * QTest testcase for the MC146818 real-time clock
3
 *
4
 * Copyright IBM, Corp. 2012
5
 *
6
 * Authors:
7
 *  Anthony Liguori   <aliguori@us.ibm.com>
8
 *
9
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10
 * See the COPYING file in the top-level directory.
11
 *
12
 */
13
#include "libqtest.h"
14
#include "hw/mc146818rtc_regs.h"
15

    
16
#include <glib.h>
17
#include <stdio.h>
18
#include <string.h>
19
#include <stdlib.h>
20
#include <unistd.h>
21

    
22
static uint8_t base = 0x70;
23

    
24
static int bcd2dec(int value)
25
{
26
    return (((value >> 4) & 0x0F) * 10) + (value & 0x0F);
27
}
28

    
29
static uint8_t cmos_read(uint8_t reg)
30
{
31
    outb(base + 0, reg);
32
    return inb(base + 1);
33
}
34

    
35
static void cmos_write(uint8_t reg, uint8_t val)
36
{
37
    outb(base + 0, reg);
38
    outb(base + 1, val);
39
}
40

    
41
static int tm_cmp(struct tm *lhs, struct tm *rhs)
42
{
43
    time_t a, b;
44
    struct tm d1, d2;
45

    
46
    memcpy(&d1, lhs, sizeof(d1));
47
    memcpy(&d2, rhs, sizeof(d2));
48

    
49
    a = mktime(&d1);
50
    b = mktime(&d2);
51

    
52
    if (a < b) {
53
        return -1;
54
    } else if (a > b) {
55
        return 1;
56
    }
57

    
58
    return 0;
59
}
60

    
61
#if 0
62
static void print_tm(struct tm *tm)
63
{
64
    printf("%04d-%02d-%02d %02d:%02d:%02d\n",
65
           tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
66
           tm->tm_hour, tm->tm_min, tm->tm_sec, tm->tm_gmtoff);
67
}
68
#endif
69

    
70
static void cmos_get_date_time(struct tm *date)
71
{
72
    int base_year = 2000, hour_offset;
73
    int sec, min, hour, mday, mon, year;
74
    time_t ts;
75
    struct tm dummy;
76

    
77
    sec = cmos_read(RTC_SECONDS);
78
    min = cmos_read(RTC_MINUTES);
79
    hour = cmos_read(RTC_HOURS);
80
    mday = cmos_read(RTC_DAY_OF_MONTH);
81
    mon = cmos_read(RTC_MONTH);
82
    year = cmos_read(RTC_YEAR);
83

    
84
    if ((cmos_read(RTC_REG_B) & REG_B_DM) == 0) {
85
        sec = bcd2dec(sec);
86
        min = bcd2dec(min);
87
        hour = bcd2dec(hour);
88
        mday = bcd2dec(mday);
89
        mon = bcd2dec(mon);
90
        year = bcd2dec(year);
91
        hour_offset = 80;
92
    } else {
93
        hour_offset = 0x80;
94
    }
95

    
96
    if ((cmos_read(0x0B) & REG_B_24H) == 0) {
97
        if (hour >= hour_offset) {
98
            hour -= hour_offset;
99
            hour += 12;
100
        }
101
    }
102

    
103
    ts = time(NULL);
104
    localtime_r(&ts, &dummy);
105

    
106
    date->tm_isdst = dummy.tm_isdst;
107
    date->tm_sec = sec;
108
    date->tm_min = min;
109
    date->tm_hour = hour;
110
    date->tm_mday = mday;
111
    date->tm_mon = mon - 1;
112
    date->tm_year = base_year + year - 1900;
113
#ifndef __sun__
114
    date->tm_gmtoff = 0;
115
#endif
116

    
117
    ts = mktime(date);
118
}
119

    
120
static void check_time(int wiggle)
121
{
122
    struct tm start, date[4], end;
123
    struct tm *datep;
124
    time_t ts;
125

    
126
    /*
127
     * This check assumes a few things.  First, we cannot guarantee that we get
128
     * a consistent reading from the wall clock because we may hit an edge of
129
     * the clock while reading.  To work around this, we read four clock readings
130
     * such that at least two of them should match.  We need to assume that one
131
     * reading is corrupt so we need four readings to ensure that we have at
132
     * least two consecutive identical readings
133
     *
134
     * It's also possible that we'll cross an edge reading the host clock so
135
     * simply check to make sure that the clock reading is within the period of
136
     * when we expect it to be.
137
     */
138

    
139
    ts = time(NULL);
140
    gmtime_r(&ts, &start);
141

    
142
    cmos_get_date_time(&date[0]);
143
    cmos_get_date_time(&date[1]);
144
    cmos_get_date_time(&date[2]);
145
    cmos_get_date_time(&date[3]);
146

    
147
    ts = time(NULL);
148
    gmtime_r(&ts, &end);
149

    
150
    if (tm_cmp(&date[0], &date[1]) == 0) {
151
        datep = &date[0];
152
    } else if (tm_cmp(&date[1], &date[2]) == 0) {
153
        datep = &date[1];
154
    } else if (tm_cmp(&date[2], &date[3]) == 0) {
155
        datep = &date[2];
156
    } else {
157
        g_assert_not_reached();
158
    }
159

    
160
    if (!(tm_cmp(&start, datep) <= 0 && tm_cmp(datep, &end) <= 0)) {
161
        long t, s;
162

    
163
        start.tm_isdst = datep->tm_isdst;
164

    
165
        t = (long)mktime(datep);
166
        s = (long)mktime(&start);
167
        if (t < s) {
168
            g_test_message("RTC is %ld second(s) behind wall-clock\n", (s - t));
169
        } else {
170
            g_test_message("RTC is %ld second(s) ahead of wall-clock\n", (t - s));
171
        }
172

    
173
        g_assert_cmpint(ABS(t - s), <=, wiggle);
174
    }
175
}
176

    
177
static int wiggle = 2;
178

    
179
static void set_year_20xx(void)
180
{
181
    /* Set BCD mode */
182
    cmos_write(RTC_REG_B, REG_B_24H);
183
    cmos_write(RTC_REG_A, 0x76);
184
    cmos_write(RTC_YEAR, 0x11);
185
    cmos_write(RTC_CENTURY, 0x20);
186
    cmos_write(RTC_MONTH, 0x02);
187
    cmos_write(RTC_DAY_OF_MONTH, 0x02);
188
    cmos_write(RTC_HOURS, 0x02);
189
    cmos_write(RTC_MINUTES, 0x04);
190
    cmos_write(RTC_SECONDS, 0x58);
191
    cmos_write(RTC_REG_A, 0x26);
192

    
193
    g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
194
    g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
195
    g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
196
    g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
197
    g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
198
    g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11);
199
    g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
200

    
201
    if (sizeof(time_t) == 4) {
202
        return;
203
    }
204

    
205
    /* Set a date in 2080 to ensure there is no year-2038 overflow.  */
206
    cmos_write(RTC_REG_A, 0x76);
207
    cmos_write(RTC_YEAR, 0x80);
208
    cmos_write(RTC_REG_A, 0x26);
209

    
210
    g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
211
    g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
212
    g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
213
    g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
214
    g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
215
    g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x80);
216
    g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
217

    
218
    cmos_write(RTC_REG_A, 0x76);
219
    cmos_write(RTC_YEAR, 0x11);
220
    cmos_write(RTC_REG_A, 0x26);
221

    
222
    g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
223
    g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
224
    g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
225
    g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
226
    g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
227
    g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11);
228
    g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
229
}
230

    
231
static void set_year_1980(void)
232
{
233
    /* Set BCD mode */
234
    cmos_write(RTC_REG_B, REG_B_24H);
235
    cmos_write(RTC_REG_A, 0x76);
236
    cmos_write(RTC_YEAR, 0x80);
237
    cmos_write(RTC_CENTURY, 0x19);
238
    cmos_write(RTC_MONTH, 0x02);
239
    cmos_write(RTC_DAY_OF_MONTH, 0x02);
240
    cmos_write(RTC_HOURS, 0x02);
241
    cmos_write(RTC_MINUTES, 0x04);
242
    cmos_write(RTC_SECONDS, 0x58);
243
    cmos_write(RTC_REG_A, 0x26);
244

    
245
    g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
246
    g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
247
    g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
248
    g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
249
    g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
250
    g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x80);
251
    g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x19);
252
}
253

    
254
static void bcd_check_time(void)
255
{
256
    /* Set BCD mode */
257
    cmos_write(RTC_REG_B, REG_B_24H);
258
    check_time(wiggle);
259
}
260

    
261
static void dec_check_time(void)
262
{
263
    /* Set DEC mode */
264
    cmos_write(RTC_REG_B, REG_B_24H | REG_B_DM);
265
    check_time(wiggle);
266
}
267

    
268
static void alarm_time(void)
269
{
270
    struct tm now;
271
    time_t ts;
272
    int i;
273

    
274
    ts = time(NULL);
275
    gmtime_r(&ts, &now);
276

    
277
    /* set DEC mode */
278
    cmos_write(RTC_REG_B, REG_B_24H | REG_B_DM);
279

    
280
    g_assert(!get_irq(RTC_ISA_IRQ));
281
    cmos_read(RTC_REG_C);
282

    
283
    now.tm_sec = (now.tm_sec + 2) % 60;
284
    cmos_write(RTC_SECONDS_ALARM, now.tm_sec);
285
    cmos_write(RTC_MINUTES_ALARM, RTC_ALARM_DONT_CARE);
286
    cmos_write(RTC_HOURS_ALARM, RTC_ALARM_DONT_CARE);
287
    cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) | REG_B_AIE);
288

    
289
    for (i = 0; i < 2 + wiggle; i++) {
290
        if (get_irq(RTC_ISA_IRQ)) {
291
            break;
292
        }
293

    
294
        clock_step(1000000000);
295
    }
296

    
297
    g_assert(get_irq(RTC_ISA_IRQ));
298
    g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0);
299
    g_assert(cmos_read(RTC_REG_C) == 0);
300
}
301

    
302
static void set_time(int mode, int h, int m, int s)
303
{
304
    /* set BCD 12 hour mode */
305
    cmos_write(RTC_REG_B, mode);
306

    
307
    cmos_write(RTC_REG_A, 0x76);
308
    cmos_write(RTC_HOURS, h);
309
    cmos_write(RTC_MINUTES, m);
310
    cmos_write(RTC_SECONDS, s);
311
    cmos_write(RTC_REG_A, 0x26);
312
}
313

    
314
#define assert_time(h, m, s) \
315
    do { \
316
        g_assert_cmpint(cmos_read(RTC_HOURS), ==, h); \
317
        g_assert_cmpint(cmos_read(RTC_MINUTES), ==, m); \
318
        g_assert_cmpint(cmos_read(RTC_SECONDS), ==, s); \
319
    } while(0)
320

    
321
static void basic_12h_bcd(void)
322
{
323
    /* set BCD 12 hour mode */
324
    set_time(0, 0x81, 0x59, 0x00);
325
    clock_step(1000000000LL);
326
    assert_time(0x81, 0x59, 0x01);
327
    clock_step(59000000000LL);
328
    assert_time(0x82, 0x00, 0x00);
329

    
330
    /* test BCD wraparound */
331
    set_time(0, 0x09, 0x59, 0x59);
332
    clock_step(60000000000LL);
333
    assert_time(0x10, 0x00, 0x59);
334

    
335
    /* 12 AM -> 1 AM */
336
    set_time(0, 0x12, 0x59, 0x59);
337
    clock_step(1000000000LL);
338
    assert_time(0x01, 0x00, 0x00);
339

    
340
    /* 12 PM -> 1 PM */
341
    set_time(0, 0x92, 0x59, 0x59);
342
    clock_step(1000000000LL);
343
    assert_time(0x81, 0x00, 0x00);
344

    
345
    /* 11 AM -> 12 PM */
346
    set_time(0, 0x11, 0x59, 0x59);
347
    clock_step(1000000000LL);
348
    assert_time(0x92, 0x00, 0x00);
349
    /* TODO: test day wraparound */
350

    
351
    /* 11 PM -> 12 AM */
352
    set_time(0, 0x91, 0x59, 0x59);
353
    clock_step(1000000000LL);
354
    assert_time(0x12, 0x00, 0x00);
355
    /* TODO: test day wraparound */
356
}
357

    
358
static void basic_12h_dec(void)
359
{
360
    /* set decimal 12 hour mode */
361
    set_time(REG_B_DM, 0x81, 59, 0);
362
    clock_step(1000000000LL);
363
    assert_time(0x81, 59, 1);
364
    clock_step(59000000000LL);
365
    assert_time(0x82, 0, 0);
366

    
367
    /* 12 PM -> 1 PM */
368
    set_time(REG_B_DM, 0x8c, 59, 59);
369
    clock_step(1000000000LL);
370
    assert_time(0x81, 0, 0);
371

    
372
    /* 12 AM -> 1 AM */
373
    set_time(REG_B_DM, 0x0c, 59, 59);
374
    clock_step(1000000000LL);
375
    assert_time(0x01, 0, 0);
376

    
377
    /* 11 AM -> 12 PM */
378
    set_time(REG_B_DM, 0x0b, 59, 59);
379
    clock_step(1000000000LL);
380
    assert_time(0x8c, 0, 0);
381

    
382
    /* 11 PM -> 12 AM */
383
    set_time(REG_B_DM, 0x8b, 59, 59);
384
    clock_step(1000000000LL);
385
    assert_time(0x0c, 0, 0);
386
    /* TODO: test day wraparound */
387
}
388

    
389
static void basic_24h_bcd(void)
390
{
391
    /* set BCD 24 hour mode */
392
    set_time(REG_B_24H, 0x09, 0x59, 0x00);
393
    clock_step(1000000000LL);
394
    assert_time(0x09, 0x59, 0x01);
395
    clock_step(59000000000LL);
396
    assert_time(0x10, 0x00, 0x00);
397

    
398
    /* test BCD wraparound */
399
    set_time(REG_B_24H, 0x09, 0x59, 0x00);
400
    clock_step(60000000000LL);
401
    assert_time(0x10, 0x00, 0x00);
402

    
403
    /* TODO: test day wraparound */
404
    set_time(REG_B_24H, 0x23, 0x59, 0x00);
405
    clock_step(60000000000LL);
406
    assert_time(0x00, 0x00, 0x00);
407
}
408

    
409
static void basic_24h_dec(void)
410
{
411
    /* set decimal 24 hour mode */
412
    set_time(REG_B_24H | REG_B_DM, 9, 59, 0);
413
    clock_step(1000000000LL);
414
    assert_time(9, 59, 1);
415
    clock_step(59000000000LL);
416
    assert_time(10, 0, 0);
417

    
418
    /* test BCD wraparound */
419
    set_time(REG_B_24H | REG_B_DM, 9, 59, 0);
420
    clock_step(60000000000LL);
421
    assert_time(10, 0, 0);
422

    
423
    /* TODO: test day wraparound */
424
    set_time(REG_B_24H | REG_B_DM, 23, 59, 0);
425
    clock_step(60000000000LL);
426
    assert_time(0, 0, 0);
427
}
428

    
429
static void am_pm_alarm(void)
430
{
431
    cmos_write(RTC_MINUTES_ALARM, 0xC0);
432
    cmos_write(RTC_SECONDS_ALARM, 0xC0);
433

    
434
    /* set BCD 12 hour mode */
435
    cmos_write(RTC_REG_B, 0);
436

    
437
    /* Set time and alarm hour.  */
438
    cmos_write(RTC_REG_A, 0x76);
439
    cmos_write(RTC_HOURS_ALARM, 0x82);
440
    cmos_write(RTC_HOURS, 0x81);
441
    cmos_write(RTC_MINUTES, 0x59);
442
    cmos_write(RTC_SECONDS, 0x00);
443
    cmos_read(RTC_REG_C);
444
    cmos_write(RTC_REG_A, 0x26);
445

    
446
    /* Check that alarm triggers when AM/PM is set.  */
447
    clock_step(60000000000LL);
448
    g_assert(cmos_read(RTC_HOURS) == 0x82);
449
    g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0);
450

    
451
    /*
452
     * Each of the following two tests takes over 60 seconds due to the time
453
     * needed to report the PIT interrupts.  Unfortunately, our PIT device
454
     * model keeps counting even when GATE=0, so we cannot simply disable
455
     * it in main().
456
     */
457
    if (g_test_quick()) {
458
        return;
459
    }
460

    
461
    /* set DEC 12 hour mode */
462
    cmos_write(RTC_REG_B, REG_B_DM);
463

    
464
    /* Set time and alarm hour.  */
465
    cmos_write(RTC_REG_A, 0x76);
466
    cmos_write(RTC_HOURS_ALARM, 0x82);
467
    cmos_write(RTC_HOURS, 3);
468
    cmos_write(RTC_MINUTES, 0);
469
    cmos_write(RTC_SECONDS, 0);
470
    cmos_read(RTC_REG_C);
471
    cmos_write(RTC_REG_A, 0x26);
472

    
473
    /* Check that alarm triggers.  */
474
    clock_step(3600 * 11 * 1000000000LL);
475
    g_assert(cmos_read(RTC_HOURS) == 0x82);
476
    g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0);
477

    
478
    /* Same as above, with inverted HOURS and HOURS_ALARM.  */
479
    cmos_write(RTC_REG_A, 0x76);
480
    cmos_write(RTC_HOURS_ALARM, 2);
481
    cmos_write(RTC_HOURS, 3);
482
    cmos_write(RTC_MINUTES, 0);
483
    cmos_write(RTC_SECONDS, 0);
484
    cmos_read(RTC_REG_C);
485
    cmos_write(RTC_REG_A, 0x26);
486

    
487
    /* Check that alarm does not trigger if hours differ only by AM/PM.  */
488
    clock_step(3600 * 11 * 1000000000LL);
489
    g_assert(cmos_read(RTC_HOURS) == 0x82);
490
    g_assert((cmos_read(RTC_REG_C) & REG_C_AF) == 0);
491
}
492

    
493
/* success if no crash or abort */
494
static void fuzz_registers(void)
495
{
496
    unsigned int i;
497

    
498
    for (i = 0; i < 1000; i++) {
499
        uint8_t reg, val;
500

    
501
        reg = (uint8_t)g_test_rand_int_range(0, 16);
502
        val = (uint8_t)g_test_rand_int_range(0, 256);
503

    
504
        cmos_write(reg, val);
505
        cmos_read(reg);
506
    }
507
}
508

    
509
static void register_b_set_flag(void)
510
{
511
    /* Enable binary-coded decimal (BCD) mode and SET flag in Register B*/
512
    cmos_write(RTC_REG_B, REG_B_24H | REG_B_SET);
513

    
514
    cmos_write(RTC_REG_A, 0x76);
515
    cmos_write(RTC_YEAR, 0x11);
516
    cmos_write(RTC_CENTURY, 0x20);
517
    cmos_write(RTC_MONTH, 0x02);
518
    cmos_write(RTC_DAY_OF_MONTH, 0x02);
519
    cmos_write(RTC_HOURS, 0x02);
520
    cmos_write(RTC_MINUTES, 0x04);
521
    cmos_write(RTC_SECONDS, 0x58);
522
    cmos_write(RTC_REG_A, 0x26);
523

    
524
    /* Since SET flag is still enabled, these are equality checks. */
525
    g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
526
    g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
527
    g_assert_cmpint(cmos_read(RTC_SECONDS), ==, 0x58);
528
    g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
529
    g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
530
    g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11);
531
    g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
532

    
533
    /* Disable SET flag in Register B */
534
    cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) & ~REG_B_SET);
535

    
536
    g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
537
    g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
538

    
539
    /* Since SET flag is disabled, this is an inequality check.
540
     * We (reasonably) assume that no (sexagesimal) overflow occurs. */
541
    g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
542
    g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
543
    g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
544
    g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11);
545
    g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
546
}
547

    
548
int main(int argc, char **argv)
549
{
550
    QTestState *s = NULL;
551
    int ret;
552

    
553
    g_test_init(&argc, &argv, NULL);
554

    
555
    s = qtest_start("-display none -rtc clock=vm");
556
    qtest_irq_intercept_in(s, "ioapic");
557

    
558
    qtest_add_func("/rtc/check-time/bcd", bcd_check_time);
559
    qtest_add_func("/rtc/check-time/dec", dec_check_time);
560
    qtest_add_func("/rtc/alarm/interrupt", alarm_time);
561
    qtest_add_func("/rtc/alarm/am-pm", am_pm_alarm);
562
    qtest_add_func("/rtc/basic/dec-24h", basic_24h_dec);
563
    qtest_add_func("/rtc/basic/bcd-24h", basic_24h_bcd);
564
    qtest_add_func("/rtc/basic/dec-12h", basic_12h_dec);
565
    qtest_add_func("/rtc/basic/bcd-12h", basic_12h_bcd);
566
    qtest_add_func("/rtc/set-year/20xx", set_year_20xx);
567
    qtest_add_func("/rtc/set-year/1980", set_year_1980);
568
    qtest_add_func("/rtc/misc/register_b_set_flag", register_b_set_flag);
569
    qtest_add_func("/rtc/misc/fuzz-registers", fuzz_registers);
570
    ret = g_test_run();
571

    
572
    if (s) {
573
        qtest_quit(s);
574
    }
575

    
576
    return ret;
577
}