Statistics
| Branch: | Revision:

root / fpu / softfloat-native.c @ c5d6edc3

History | View | Annotate | Download (7.8 kB)

1
/* Native implementation of soft float functions. Only a single status
2
   context is supported */
3
#include "softfloat.h"
4
#include <math.h>
5

    
6
void set_float_rounding_mode(int val STATUS_PARAM)
7
{
8
    STATUS(float_rounding_mode) = val;
9
#if defined(_BSD) && !defined(__APPLE__)
10
    fpsetround(val);
11
#elif defined(__arm__)
12
    /* nothing to do */
13
#else
14
    fesetround(val);
15
#endif
16
}
17

    
18
#ifdef FLOATX80
19
void set_floatx80_rounding_precision(int val STATUS_PARAM)
20
{
21
    STATUS(floatx80_rounding_precision) = val;
22
}
23
#endif
24

    
25
#if defined(_BSD)
26
#define lrint(d)                ((long)rint(d))
27
#define llrint(d)                ((long long)rint(d))
28
#endif
29

    
30
#if defined(__powerpc__)
31

    
32
/* correct (but slow) PowerPC rint() (glibc version is incorrect) */
33
double qemu_rint(double x)
34
{
35
    double y = 4503599627370496.0;
36
    if (fabs(x) >= y)
37
        return x;
38
    if (x < 0) 
39
        y = -y;
40
    y = (x + y) - y;
41
    if (y == 0.0)
42
        y = copysign(y, x);
43
    return y;
44
}
45

    
46
#define rint qemu_rint
47
#endif
48

    
49
/*----------------------------------------------------------------------------
50
| Software IEC/IEEE integer-to-floating-point conversion routines.
51
*----------------------------------------------------------------------------*/
52
float32 int32_to_float32(int v STATUS_PARAM)
53
{
54
    return (float32)v;
55
}
56

    
57
float64 int32_to_float64(int v STATUS_PARAM)
58
{
59
    return (float64)v;
60
}
61

    
62
#ifdef FLOATX80
63
floatx80 int32_to_floatx80(int v STATUS_PARAM)
64
{
65
    return (floatx80)v;
66
}
67
#endif
68
float32 int64_to_float32( int64_t v STATUS_PARAM)
69
{
70
    return (float32)v;
71
}
72
float64 int64_to_float64( int64_t v STATUS_PARAM)
73
{
74
    return (float64)v;
75
}
76
#ifdef FLOATX80
77
floatx80 int64_to_floatx80( int64_t v STATUS_PARAM)
78
{
79
    return (floatx80)v;
80
}
81
#endif
82

    
83
/* XXX: this code implements the x86 behaviour, not the IEEE one.  */
84
#if HOST_LONG_BITS == 32
85
static inline int long_to_int32(long a)
86
{
87
    return a;
88
}
89
#else
90
static inline int long_to_int32(long a)
91
{
92
    if (a != (int32_t)a) 
93
        a = 0x80000000;
94
    return a;
95
}
96
#endif
97

    
98
/*----------------------------------------------------------------------------
99
| Software IEC/IEEE single-precision conversion routines.
100
*----------------------------------------------------------------------------*/
101
int float32_to_int32( float32 a STATUS_PARAM)
102
{
103
    return long_to_int32(lrintf(a));
104
}
105
int float32_to_int32_round_to_zero( float32 a STATUS_PARAM)
106
{
107
    return (int)a;
108
}
109
int64_t float32_to_int64( float32 a STATUS_PARAM)
110
{
111
    return llrintf(a);
112
}
113

    
114
int64_t float32_to_int64_round_to_zero( float32 a STATUS_PARAM)
115
{
116
    return (int64_t)a;
117
}
118

    
119
float64 float32_to_float64( float32 a STATUS_PARAM)
120
{
121
    return a;
122
}
123
#ifdef FLOATX80
124
floatx80 float32_to_floatx80( float32 a STATUS_PARAM)
125
{
126
    return a;
127
}
128
#endif
129

    
130
/*----------------------------------------------------------------------------
131
| Software IEC/IEEE single-precision operations.
132
*----------------------------------------------------------------------------*/
133
float32 float32_round_to_int( float32 a STATUS_PARAM)
134
{
135
    return rintf(a);
136
}
137

    
138
float32 float32_rem( float32 a, float32 b STATUS_PARAM)
139
{
140
    return remainderf(a, b);
141
}
142

    
143
float32 float32_sqrt( float32 a STATUS_PARAM)
144
{
145
    return sqrtf(a);
146
}
147
char float32_compare( float32 a, float32 b STATUS_PARAM )
148
{
149
    if (a < b) {
150
        return -1;
151
    } else if (a == b) {
152
        return 0;
153
    } else if (a > b) {
154
        return 1;
155
    } else {
156
        return 2;
157
    }
158
}
159
char float32_compare_quiet( float32 a, float32 b STATUS_PARAM )
160
{
161
    if (isless(a, b)) {
162
        return -1;
163
    } else if (a == b) {
164
        return 0;
165
    } else if (isgreater(a, b)) {
166
        return 1;
167
    } else {
168
        return 2;
169
    }
170
}
171
char float32_is_signaling_nan( float32 a1)
172
{
173
    float32u u;
174
    uint32_t a;
175
    u.f = a1;
176
    a = u.i;
177
    return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
178
}
179

    
180
/*----------------------------------------------------------------------------
181
| Software IEC/IEEE double-precision conversion routines.
182
*----------------------------------------------------------------------------*/
183
int float64_to_int32( float64 a STATUS_PARAM)
184
{
185
    return long_to_int32(lrint(a));
186
}
187
int float64_to_int32_round_to_zero( float64 a STATUS_PARAM)
188
{
189
    return (int)a;
190
}
191
int64_t float64_to_int64( float64 a STATUS_PARAM)
192
{
193
    return llrint(a);
194
}
195
int64_t float64_to_int64_round_to_zero( float64 a STATUS_PARAM)
196
{
197
    return (int64_t)a;
198
}
199
float32 float64_to_float32( float64 a STATUS_PARAM)
200
{
201
    return a;
202
}
203
#ifdef FLOATX80
204
floatx80 float64_to_floatx80( float64 a STATUS_PARAM)
205
{
206
    return a;
207
}
208
#endif
209
#ifdef FLOAT128
210
float128 float64_to_float128( float64 a STATUS_PARAM)
211
{
212
    return a;
213
}
214
#endif
215

    
216
/*----------------------------------------------------------------------------
217
| Software IEC/IEEE double-precision operations.
218
*----------------------------------------------------------------------------*/
219
float64 float64_round_to_int( float64 a STATUS_PARAM )
220
{
221
#if defined(__arm__)
222
    switch(STATUS(float_rounding_mode)) {
223
    default:
224
    case float_round_nearest_even:
225
        asm("rndd %0, %1" : "=f" (a) : "f"(a));
226
        break;
227
    case float_round_down:
228
        asm("rnddm %0, %1" : "=f" (a) : "f"(a));
229
        break;
230
    case float_round_up:
231
        asm("rnddp %0, %1" : "=f" (a) : "f"(a));
232
        break;
233
    case float_round_to_zero:
234
        asm("rnddz %0, %1" : "=f" (a) : "f"(a));
235
        break;
236
    }
237
#else
238
    return rint(a);
239
#endif
240
}
241

    
242
float64 float64_rem( float64 a, float64 b STATUS_PARAM)
243
{
244
    return remainder(a, b);
245
}
246

    
247
float64 float64_sqrt( float64 a STATUS_PARAM)
248
{
249
    return sqrt(a);
250
}
251
char float64_compare( float64 a, float64 b STATUS_PARAM )
252
{
253
    if (a < b) {
254
        return -1;
255
    } else if (a == b) {
256
        return 0;
257
    } else if (a > b) {
258
        return 1;
259
    } else {
260
        return 2;
261
    }
262
}
263
char float64_compare_quiet( float64 a, float64 b STATUS_PARAM )
264
{
265
    if (isless(a, b)) {
266
        return -1;
267
    } else if (a == b) {
268
        return 0;
269
    } else if (isgreater(a, b)) {
270
        return 1;
271
    } else {
272
        return 2;
273
    }
274
}
275
char float64_is_signaling_nan( float64 a1)
276
{
277
    float64u u;
278
    uint64_t a;
279
    u.f = a1;
280
    a = u.i;
281
    return
282
           ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
283
        && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
284

    
285
}
286

    
287
#ifdef FLOATX80
288

    
289
/*----------------------------------------------------------------------------
290
| Software IEC/IEEE extended double-precision conversion routines.
291
*----------------------------------------------------------------------------*/
292
int floatx80_to_int32( floatx80 a STATUS_PARAM)
293
{
294
    return long_to_int32(lrintl(a));
295
}
296
int floatx80_to_int32_round_to_zero( floatx80 a STATUS_PARAM)
297
{
298
    return (int)a;
299
}
300
int64_t floatx80_to_int64( floatx80 a STATUS_PARAM)
301
{
302
    return llrintl(a);
303
}
304
int64_t floatx80_to_int64_round_to_zero( floatx80 a STATUS_PARAM)
305
{
306
    return (int64_t)a;
307
}
308
float32 floatx80_to_float32( floatx80 a STATUS_PARAM)
309
{
310
    return a;
311
}
312
float64 floatx80_to_float64( floatx80 a STATUS_PARAM)
313
{
314
    return a;
315
}
316

    
317
/*----------------------------------------------------------------------------
318
| Software IEC/IEEE extended double-precision operations.
319
*----------------------------------------------------------------------------*/
320
floatx80 floatx80_round_to_int( floatx80 a STATUS_PARAM)
321
{
322
    return rintl(a);
323
}
324
floatx80 floatx80_rem( floatx80 a, floatx80 b STATUS_PARAM)
325
{
326
    return remainderl(a, b);
327
}
328
floatx80 floatx80_sqrt( floatx80 a STATUS_PARAM)
329
{
330
    return sqrtl(a);
331
}
332
char floatx80_compare( floatx80 a, floatx80 b STATUS_PARAM )
333
{
334
    if (a < b) {
335
        return -1;
336
    } else if (a == b) {
337
        return 0;
338
    } else if (a > b) {
339
        return 1;
340
    } else {
341
        return 2;
342
    }
343
}
344
char floatx80_compare_quiet( floatx80 a, floatx80 b STATUS_PARAM )
345
{
346
    if (isless(a, b)) {
347
        return -1;
348
    } else if (a == b) {
349
        return 0;
350
    } else if (isgreater(a, b)) {
351
        return 1;
352
    } else {
353
        return 2;
354
    }
355
}
356
char floatx80_is_signaling_nan( floatx80 a1)
357
{
358
    floatx80u u;
359
    u.f = a1;
360
    return ( ( u.i.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( u.i.low<<1 );
361
}
362

    
363
#endif