Statistics
| Branch: | Revision:

root / hw / etraxfs_dma.c @ c701b35b

History | View | Annotate | Download (21 kB)

1
/*
2
 * QEMU ETRAX DMA Controller.
3
 *
4
 * Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB.
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include <stdio.h>
25
#include <sys/time.h>
26
#include "hw.h"
27

    
28
#include "etraxfs_dma.h"
29

    
30
#define D(x)
31

    
32
#define RW_DATA           0x0
33
#define RW_SAVED_DATA     0x58
34
#define RW_SAVED_DATA_BUF 0x5c
35
#define RW_GROUP          0x60
36
#define RW_GROUP_DOWN     0x7c
37
#define RW_CMD            0x80
38
#define RW_CFG            0x84
39
#define RW_STAT           0x88
40
#define RW_INTR_MASK      0x8c
41
#define RW_ACK_INTR       0x90
42
#define R_INTR            0x94
43
#define R_MASKED_INTR     0x98
44
#define RW_STREAM_CMD     0x9c
45

    
46
#define DMA_REG_MAX   0x100
47

    
48
/* descriptors */
49

    
50
// ------------------------------------------------------------ dma_descr_group
51
typedef struct dma_descr_group {
52
  struct dma_descr_group       *next;
53
  unsigned                      eol        : 1;
54
  unsigned                      tol        : 1;
55
  unsigned                      bol        : 1;
56
  unsigned                                 : 1;
57
  unsigned                      intr       : 1;
58
  unsigned                                 : 2;
59
  unsigned                      en         : 1;
60
  unsigned                                 : 7;
61
  unsigned                      dis        : 1;
62
  unsigned                      md         : 16;
63
  struct dma_descr_group       *up;
64
  union {
65
    struct dma_descr_context   *context;
66
    struct dma_descr_group     *group;
67
  }                             down;
68
} dma_descr_group;
69

    
70
// ---------------------------------------------------------- dma_descr_context
71
typedef struct dma_descr_context {
72
  struct dma_descr_context     *next;
73
  unsigned                      eol        : 1;
74
  unsigned                                 : 3;
75
  unsigned                      intr       : 1;
76
  unsigned                                 : 1;
77
  unsigned                      store_mode : 1;
78
  unsigned                      en         : 1;
79
  unsigned                                 : 7;
80
  unsigned                      dis        : 1;
81
  unsigned                      md0        : 16;
82
  unsigned                      md1;
83
  unsigned                      md2;
84
  unsigned                      md3;
85
  unsigned                      md4;
86
  struct dma_descr_data        *saved_data;
87
  char                         *saved_data_buf;
88
} dma_descr_context;
89

    
90
// ------------------------------------------------------------- dma_descr_data
91
typedef struct dma_descr_data {
92
  struct dma_descr_data        *next;
93
  char                         *buf;
94
  unsigned                      eol        : 1;
95
  unsigned                                 : 2;
96
  unsigned                      out_eop    : 1;
97
  unsigned                      intr       : 1;
98
  unsigned                      wait       : 1;
99
  unsigned                                 : 2;
100
  unsigned                                 : 3;
101
  unsigned                      in_eop     : 1;
102
  unsigned                                 : 4;
103
  unsigned                      md         : 16;
104
  char                         *after;
105
} dma_descr_data;
106

    
107
/* Constants */
108
enum {
109
  regk_dma_ack_pkt                         = 0x00000100,
110
  regk_dma_anytime                         = 0x00000001,
111
  regk_dma_array                           = 0x00000008,
112
  regk_dma_burst                           = 0x00000020,
113
  regk_dma_client                          = 0x00000002,
114
  regk_dma_copy_next                       = 0x00000010,
115
  regk_dma_copy_up                         = 0x00000020,
116
  regk_dma_data_at_eol                     = 0x00000001,
117
  regk_dma_dis_c                           = 0x00000010,
118
  regk_dma_dis_g                           = 0x00000020,
119
  regk_dma_idle                            = 0x00000001,
120
  regk_dma_intern                          = 0x00000004,
121
  regk_dma_load_c                          = 0x00000200,
122
  regk_dma_load_c_n                        = 0x00000280,
123
  regk_dma_load_c_next                     = 0x00000240,
124
  regk_dma_load_d                          = 0x00000140,
125
  regk_dma_load_g                          = 0x00000300,
126
  regk_dma_load_g_down                     = 0x000003c0,
127
  regk_dma_load_g_next                     = 0x00000340,
128
  regk_dma_load_g_up                       = 0x00000380,
129
  regk_dma_next_en                         = 0x00000010,
130
  regk_dma_next_pkt                        = 0x00000010,
131
  regk_dma_no                              = 0x00000000,
132
  regk_dma_only_at_wait                    = 0x00000000,
133
  regk_dma_restore                         = 0x00000020,
134
  regk_dma_rst                             = 0x00000001,
135
  regk_dma_running                         = 0x00000004,
136
  regk_dma_rw_cfg_default                  = 0x00000000,
137
  regk_dma_rw_cmd_default                  = 0x00000000,
138
  regk_dma_rw_intr_mask_default            = 0x00000000,
139
  regk_dma_rw_stat_default                 = 0x00000101,
140
  regk_dma_rw_stream_cmd_default           = 0x00000000,
141
  regk_dma_save_down                       = 0x00000020,
142
  regk_dma_save_up                         = 0x00000020,
143
  regk_dma_set_reg                         = 0x00000050,
144
  regk_dma_set_w_size1                     = 0x00000190,
145
  regk_dma_set_w_size2                     = 0x000001a0,
146
  regk_dma_set_w_size4                     = 0x000001c0,
147
  regk_dma_stopped                         = 0x00000002,
148
  regk_dma_store_c                         = 0x00000002,
149
  regk_dma_store_descr                     = 0x00000000,
150
  regk_dma_store_g                         = 0x00000004,
151
  regk_dma_store_md                        = 0x00000001,
152
  regk_dma_sw                              = 0x00000008,
153
  regk_dma_update_down                     = 0x00000020,
154
  regk_dma_yes                             = 0x00000001
155
};
156

    
157
enum dma_ch_state
158
{
159
        RST = 0,
160
        STOPPED = 2,
161
        RUNNING = 4
162
};
163

    
164
struct fs_dma_channel
165
{
166
        int regmap;
167
        qemu_irq *irq;
168
        struct etraxfs_dma_client *client;
169

    
170

    
171
        /* Internal status.  */
172
        int stream_cmd_src;
173
        enum dma_ch_state state;
174

    
175
        unsigned int input : 1;
176
        unsigned int eol : 1;
177

    
178
        struct dma_descr_group current_g;
179
        struct dma_descr_context current_c;
180
        struct dma_descr_data current_d;
181

    
182
        /* Controll registers.  */
183
        uint32_t regs[DMA_REG_MAX];
184
};
185

    
186
struct fs_dma_ctrl
187
{
188
        CPUState *env;
189
        target_phys_addr_t base;
190

    
191
        int nr_channels;
192
        struct fs_dma_channel *channels;
193
};
194

    
195
static inline uint32_t channel_reg(struct fs_dma_ctrl *ctrl, int c, int reg)
196
{
197
        return ctrl->channels[c].regs[reg];
198
}
199

    
200
static inline int channel_stopped(struct fs_dma_ctrl *ctrl, int c)
201
{
202
        return channel_reg(ctrl, c, RW_CFG) & 2;
203
}
204

    
205
static inline int channel_en(struct fs_dma_ctrl *ctrl, int c)
206
{
207
        return (channel_reg(ctrl, c, RW_CFG) & 1)
208
                && ctrl->channels[c].client;
209
}
210

    
211
static inline int fs_channel(target_phys_addr_t base, target_phys_addr_t addr)
212
{
213
        /* Every channel has a 0x2000 ctrl register map.  */
214
        return (addr - base) >> 13;
215
}
216

    
217
#ifdef USE_THIS_DEAD_CODE
218
static void channel_load_g(struct fs_dma_ctrl *ctrl, int c)
219
{
220
        target_phys_addr_t addr = channel_reg(ctrl, c, RW_GROUP);
221

    
222
        /* Load and decode. FIXME: handle endianness.  */
223
        cpu_physical_memory_read (addr, 
224
                                  (void *) &ctrl->channels[c].current_g, 
225
                                  sizeof ctrl->channels[c].current_g);
226
}
227

    
228
static void dump_c(int ch, struct dma_descr_context *c)
229
{
230
        printf("%s ch=%d\n", __func__, ch);
231
        printf("next=%p\n", c->next);
232
        printf("saved_data=%p\n", c->saved_data);
233
        printf("saved_data_buf=%p\n", c->saved_data_buf);
234
        printf("eol=%x\n", (uint32_t) c->eol);
235
}
236

    
237
static void dump_d(int ch, struct dma_descr_data *d)
238
{
239
        printf("%s ch=%d\n", __func__, ch);
240
        printf("next=%p\n", d->next);
241
        printf("buf=%p\n", d->buf);
242
        printf("after=%p\n", d->after);
243
        printf("intr=%x\n", (uint32_t) d->intr);
244
        printf("out_eop=%x\n", (uint32_t) d->out_eop);
245
        printf("in_eop=%x\n", (uint32_t) d->in_eop);
246
        printf("eol=%x\n", (uint32_t) d->eol);
247
}
248
#endif
249

    
250
static void channel_load_c(struct fs_dma_ctrl *ctrl, int c)
251
{
252
        target_phys_addr_t addr = channel_reg(ctrl, c, RW_GROUP_DOWN);
253

    
254
        /* Load and decode. FIXME: handle endianness.  */
255
        cpu_physical_memory_read (addr, 
256
                                  (void *) &ctrl->channels[c].current_c, 
257
                                  sizeof ctrl->channels[c].current_c);
258

    
259
        D(dump_c(c, &ctrl->channels[c].current_c));
260
        /* I guess this should update the current pos.  */
261
        ctrl->channels[c].regs[RW_SAVED_DATA] =
262
                (uint32_t)(unsigned long)ctrl->channels[c].current_c.saved_data;
263
        ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
264
                (uint32_t)(unsigned long)ctrl->channels[c].current_c.saved_data_buf;
265
}
266

    
267
static void channel_load_d(struct fs_dma_ctrl *ctrl, int c)
268
{
269
        target_phys_addr_t addr = channel_reg(ctrl, c, RW_SAVED_DATA);
270

    
271
        /* Load and decode. FIXME: handle endianness.  */
272
        D(printf("%s ch=%d addr=%x\n", __func__, c, addr));
273
        cpu_physical_memory_read (addr,
274
                                  (void *) &ctrl->channels[c].current_d, 
275
                                  sizeof ctrl->channels[c].current_d);
276

    
277
        D(dump_d(c, &ctrl->channels[c].current_d));
278
        ctrl->channels[c].regs[RW_DATA] = addr;
279
}
280

    
281
static void channel_store_c(struct fs_dma_ctrl *ctrl, int c)
282
{
283
        target_phys_addr_t addr = channel_reg(ctrl, c, RW_GROUP_DOWN);
284

    
285
        /* Encode and store. FIXME: handle endianness.  */
286
        D(printf("%s ch=%d addr=%x\n", __func__, c, addr));
287
        D(dump_d(c, &ctrl->channels[c].current_d));
288
        cpu_physical_memory_write (addr,
289
                                  (void *) &ctrl->channels[c].current_c,
290
                                  sizeof ctrl->channels[c].current_c);
291
}
292

    
293
static void channel_store_d(struct fs_dma_ctrl *ctrl, int c)
294
{
295
        target_phys_addr_t addr = channel_reg(ctrl, c, RW_SAVED_DATA);
296

    
297
        /* Encode and store. FIXME: handle endianness.  */
298
        D(printf("%s ch=%d addr=%x\n", __func__, c, addr));
299
        cpu_physical_memory_write (addr,
300
                                  (void *) &ctrl->channels[c].current_d, 
301
                                  sizeof ctrl->channels[c].current_d);
302
}
303

    
304
static inline void channel_stop(struct fs_dma_ctrl *ctrl, int c)
305
{
306
        /* FIXME:  */
307
}
308

    
309
static inline void channel_start(struct fs_dma_ctrl *ctrl, int c)
310
{
311
        if (ctrl->channels[c].client)
312
        {
313
                ctrl->channels[c].eol = 0;
314
                ctrl->channels[c].state = RUNNING;
315
        } else
316
                printf("WARNING: starting DMA ch %d with no client\n", c);
317
}
318

    
319
static void channel_continue(struct fs_dma_ctrl *ctrl, int c)
320
{
321
        if (!channel_en(ctrl, c) 
322
            || channel_stopped(ctrl, c)
323
            || ctrl->channels[c].state != RUNNING
324
            /* Only reload the current data descriptor if it has eol set.  */
325
            || !ctrl->channels[c].current_d.eol) {
326
                D(printf("continue failed ch=%d state=%d stopped=%d en=%d eol=%d\n", 
327
                         c, ctrl->channels[c].state,
328
                         channel_stopped(ctrl, c),
329
                         channel_en(ctrl,c),
330
                         ctrl->channels[c].eol));
331
                D(dump_d(c, &ctrl->channels[c].current_d));
332
                return;
333
        }
334

    
335
        /* Reload the current descriptor.  */
336
        channel_load_d(ctrl, c);
337

    
338
        /* If the current descriptor cleared the eol flag and we had already
339
           reached eol state, do the continue.  */
340
        if (!ctrl->channels[c].current_d.eol && ctrl->channels[c].eol) {
341
                D(printf("continue %d ok %p\n", c,
342
                         ctrl->channels[c].current_d.next));
343
                ctrl->channels[c].regs[RW_SAVED_DATA] =
344
                        (uint32_t)(unsigned long)ctrl->channels[c].current_d.next;
345
                channel_load_d(ctrl, c);
346
                channel_start(ctrl, c);
347
        }
348
        ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
349
                (uint32_t)(unsigned long)ctrl->channels[c].current_d.buf;
350
}
351

    
352
static void channel_stream_cmd(struct fs_dma_ctrl *ctrl, int c, uint32_t v)
353
{
354
        unsigned int cmd = v & ((1 << 10) - 1);
355

    
356
        D(printf("%s ch=%d cmd=%x\n",
357
                 __func__, c, cmd));
358
        if (cmd & regk_dma_load_d) {
359
                channel_load_d(ctrl, c);
360
                if (cmd & regk_dma_burst)
361
                        channel_start(ctrl, c);
362
        }
363

    
364
        if (cmd & regk_dma_load_c) {
365
                channel_load_c(ctrl, c);
366
                channel_start(ctrl, c);
367
        }
368
}
369

    
370
static void channel_update_irq(struct fs_dma_ctrl *ctrl, int c)
371
{
372
        D(printf("%s %d\n", __func__, c));
373
        ctrl->channels[c].regs[R_INTR] &=
374
                ~(ctrl->channels[c].regs[RW_ACK_INTR]);
375

    
376
        ctrl->channels[c].regs[R_MASKED_INTR] =
377
                ctrl->channels[c].regs[R_INTR]
378
                & ctrl->channels[c].regs[RW_INTR_MASK];
379

    
380
        D(printf("%s: chan=%d masked_intr=%x\n", __func__, 
381
                 c,
382
                 ctrl->channels[c].regs[R_MASKED_INTR]));
383

    
384
        if (ctrl->channels[c].regs[R_MASKED_INTR])
385
                qemu_irq_raise(ctrl->channels[c].irq[0]);
386
        else
387
                qemu_irq_lower(ctrl->channels[c].irq[0]);
388
}
389

    
390
static void channel_out_run(struct fs_dma_ctrl *ctrl, int c)
391
{
392
        uint32_t len;
393
        uint32_t saved_data_buf;
394
        unsigned char buf[2 * 1024];
395

    
396
        if (ctrl->channels[c].eol == 1)
397
                return;
398

    
399
        saved_data_buf = channel_reg(ctrl, c, RW_SAVED_DATA_BUF);
400

    
401
        D(fprintf(logfile, "ch=%d buf=%x after=%x saved_data_buf=%x\n",
402
                 c,
403
                 (uint32_t)ctrl->channels[c].current_d.buf,
404
                 (uint32_t)ctrl->channels[c].current_d.after,
405
                 saved_data_buf));
406

    
407
        len = (uint32_t)(unsigned long) ctrl->channels[c].current_d.after;
408
        len -= saved_data_buf;
409

    
410
        if (len > sizeof buf)
411
                len = sizeof buf;
412
        cpu_physical_memory_read (saved_data_buf, buf, len);
413

    
414
        D(printf("channel %d pushes %x %u bytes\n", c, 
415
                 saved_data_buf, len));
416

    
417
        if (ctrl->channels[c].client->client.push)
418
                ctrl->channels[c].client->client.push(
419
                        ctrl->channels[c].client->client.opaque, buf, len);
420
        else
421
                printf("WARNING: DMA ch%d dataloss, no attached client.\n", c);
422

    
423
        saved_data_buf += len;
424

    
425
        if (saved_data_buf ==
426
            (uint32_t)(unsigned long)ctrl->channels[c].current_d.after) {
427
                /* Done. Step to next.  */
428
                if (ctrl->channels[c].current_d.out_eop) {
429
                        /* TODO: signal eop to the client.  */
430
                        D(printf("signal eop\n"));
431
                }
432
                if (ctrl->channels[c].current_d.intr) {
433
                        /* TODO: signal eop to the client.  */
434
                        /* data intr.  */
435
                        D(printf("signal intr\n"));
436
                        ctrl->channels[c].regs[R_INTR] |= (1 << 2);
437
                        channel_update_irq(ctrl, c);
438
                }
439
                if (ctrl->channels[c].current_d.eol) {
440
                        D(printf("channel %d EOL\n", c));
441
                        ctrl->channels[c].eol = 1;
442

    
443
                        /* Mark the context as disabled.  */
444
                        ctrl->channels[c].current_c.dis = 1;
445
                        channel_store_c(ctrl, c);
446

    
447
                        channel_stop(ctrl, c);
448
                } else {
449
                        ctrl->channels[c].regs[RW_SAVED_DATA] =
450
                                (uint32_t)(unsigned long) ctrl->channels[c].current_d.next;
451
                        /* Load new descriptor.  */
452
                        channel_load_d(ctrl, c);
453
                        saved_data_buf = (uint32_t)(unsigned long)
454
                                ctrl->channels[c].current_d.buf;
455
                }
456

    
457
                channel_store_d(ctrl, c);
458
                ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = saved_data_buf;
459
                D(dump_d(c, &ctrl->channels[c].current_d));
460
        }
461
        ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = saved_data_buf;
462
}
463

    
464
static int channel_in_process(struct fs_dma_ctrl *ctrl, int c, 
465
                              unsigned char *buf, int buflen, int eop)
466
{
467
        uint32_t len;
468
        uint32_t saved_data_buf;
469

    
470
        if (ctrl->channels[c].eol == 1)
471
                return 0;
472

    
473
        saved_data_buf = channel_reg(ctrl, c, RW_SAVED_DATA_BUF);
474
        len = (uint32_t)(unsigned long) ctrl->channels[c].current_d.after;
475
        len -= saved_data_buf;
476
        
477
        if (len > buflen)
478
                len = buflen;
479

    
480
        cpu_physical_memory_write (saved_data_buf, buf, len);
481
        saved_data_buf += len;
482

    
483
        if (saved_data_buf ==
484
            (uint32_t)(unsigned long)ctrl->channels[c].current_d.after
485
            || eop) {
486
                uint32_t r_intr = ctrl->channels[c].regs[R_INTR];
487

    
488
                D(printf("in dscr end len=%d\n", 
489
                         ctrl->channels[c].current_d.after
490
                         - ctrl->channels[c].current_d.buf));
491
                ctrl->channels[c].current_d.after = 
492
                        (void *)(unsigned long) saved_data_buf;
493

    
494
                /* Done. Step to next.  */
495
                if (ctrl->channels[c].current_d.intr) {
496
                        /* TODO: signal eop to the client.  */
497
                        /* data intr.  */
498
                        ctrl->channels[c].regs[R_INTR] |= 3;
499
                }
500
                if (eop) {
501
                        ctrl->channels[c].current_d.in_eop = 1;
502
                        ctrl->channels[c].regs[R_INTR] |= 8;
503
                }
504
                if (r_intr != ctrl->channels[c].regs[R_INTR])
505
                        channel_update_irq(ctrl, c);
506

    
507
                channel_store_d(ctrl, c);
508
                D(dump_d(c, &ctrl->channels[c].current_d));
509

    
510
                if (ctrl->channels[c].current_d.eol) {
511
                        D(printf("channel %d EOL\n", c));
512
                        ctrl->channels[c].eol = 1;
513

    
514
                        /* Mark the context as disabled.  */
515
                        ctrl->channels[c].current_c.dis = 1;
516
                        channel_store_c(ctrl, c);
517

    
518
                        channel_stop(ctrl, c);
519
                } else {
520
                        ctrl->channels[c].regs[RW_SAVED_DATA] =
521
                                (uint32_t)(unsigned long) ctrl->channels[c].current_d.next;
522
                        /* Load new descriptor.  */
523
                        channel_load_d(ctrl, c);
524
                        saved_data_buf = (uint32_t)(unsigned long)
525
                                ctrl->channels[c].current_d.buf;
526
                }
527
        }
528

    
529
        ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = saved_data_buf;
530
        return len;
531
}
532

    
533
static inline void channel_in_run(struct fs_dma_ctrl *ctrl, int c)
534
{
535
        if (ctrl->channels[c].client->client.pull)
536
                ctrl->channels[c].client->client.pull(
537
                        ctrl->channels[c].client->client.opaque);
538
}
539

    
540
static uint32_t dma_rinvalid (void *opaque, target_phys_addr_t addr)
541
{
542
        struct fs_dma_ctrl *ctrl = opaque;
543
        CPUState *env = ctrl->env;
544
        cpu_abort(env, "Unsupported short access. reg=" TARGET_FMT_plx "\n",
545
                  addr);
546
        return 0;
547
}
548

    
549
static uint32_t
550
dma_readl (void *opaque, target_phys_addr_t addr)
551
{
552
        struct fs_dma_ctrl *ctrl = opaque;
553
        int c;
554
        uint32_t r = 0;
555

    
556
        /* Make addr relative to this instances base.  */
557
        c = fs_channel(ctrl->base, addr);
558
        addr &= 0x1fff;
559
        switch (addr)
560
        {
561
                case RW_STAT:
562
                        r = ctrl->channels[c].state & 7;
563
                        r |= ctrl->channels[c].eol << 5;
564
                        r |= ctrl->channels[c].stream_cmd_src << 8;
565
                        break;
566

    
567
                default:
568
                        r = ctrl->channels[c].regs[addr];
569
                        D(printf ("%s c=%d addr=%x\n",
570
                                  __func__, c, addr));
571
                        break;
572
        }
573
        return r;
574
}
575

    
576
static void
577
dma_winvalid (void *opaque, target_phys_addr_t addr, uint32_t value)
578
{
579
        struct fs_dma_ctrl *ctrl = opaque;
580
        CPUState *env = ctrl->env;
581
        cpu_abort(env, "Unsupported short access. reg=" TARGET_FMT_plx "\n",
582
                  addr);
583
}
584

    
585
static void
586
dma_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
587
{
588
        struct fs_dma_ctrl *ctrl = opaque;
589
        int c;
590

    
591
        /* Make addr relative to this instances base.  */
592
        c = fs_channel(ctrl->base, addr);
593
        addr &= 0x1fff;
594
        switch (addr)
595
        {
596
                case RW_DATA:
597
                        ctrl->channels[c].regs[addr] = value;
598
                        break;
599

    
600
                case RW_CFG:
601
                        ctrl->channels[c].regs[addr] = value;
602
                        break;
603
                case RW_CMD:
604
                        /* continue.  */
605
                        ctrl->channels[c].regs[addr] = value;
606
                        channel_continue(ctrl, c);
607
                        break;
608

    
609
                case RW_SAVED_DATA:
610
                case RW_SAVED_DATA_BUF:
611
                case RW_GROUP:
612
                case RW_GROUP_DOWN:
613
                        ctrl->channels[c].regs[addr] = value;
614
                        break;
615

    
616
                case RW_ACK_INTR:
617
                case RW_INTR_MASK:
618
                        ctrl->channels[c].regs[addr] = value;
619
                        channel_update_irq(ctrl, c);
620
                        if (addr == RW_ACK_INTR)
621
                                ctrl->channels[c].regs[RW_ACK_INTR] = 0;
622
                        break;
623

    
624
                case RW_STREAM_CMD:
625
                        ctrl->channels[c].regs[addr] = value;
626
                        D(printf("stream_cmd ch=%d\n", c));
627
                        channel_stream_cmd(ctrl, c, value);
628
                        break;
629

    
630
                default:
631
                        D(printf ("%s c=%d %x %x\n", __func__, c, addr));
632
                        break;
633
        }
634
}
635

    
636
static CPUReadMemoryFunc *dma_read[] = {
637
        &dma_rinvalid,
638
        &dma_rinvalid,
639
        &dma_readl,
640
};
641

    
642
static CPUWriteMemoryFunc *dma_write[] = {
643
        &dma_winvalid,
644
        &dma_winvalid,
645
        &dma_writel,
646
};
647

    
648
void etraxfs_dmac_run(void *opaque)
649
{
650
        struct fs_dma_ctrl *ctrl = opaque;
651
        int i;
652
        int p = 0;
653

    
654
        for (i = 0; 
655
             i < ctrl->nr_channels;
656
             i++)
657
        {
658
                if (ctrl->channels[i].state == RUNNING)
659
                {
660
                        p++;
661
                        if (ctrl->channels[i].input)
662
                                channel_in_run(ctrl, i);
663
                        else
664
                                channel_out_run(ctrl, i);
665
                }
666
        }
667
}
668

    
669
int etraxfs_dmac_input(struct etraxfs_dma_client *client, 
670
                       void *buf, int len, int eop)
671
{
672
        return channel_in_process(client->ctrl, client->channel, 
673
                                  buf, len, eop);
674
}
675

    
676
/* Connect an IRQ line with a channel.  */
677
void etraxfs_dmac_connect(void *opaque, int c, qemu_irq *line, int input)
678
{
679
        struct fs_dma_ctrl *ctrl = opaque;
680
        ctrl->channels[c].irq = line;
681
        ctrl->channels[c].input = input;
682
}
683

    
684
void etraxfs_dmac_connect_client(void *opaque, int c, 
685
                                 struct etraxfs_dma_client *cl)
686
{
687
        struct fs_dma_ctrl *ctrl = opaque;
688
        cl->ctrl = ctrl;
689
        cl->channel = c;
690
        ctrl->channels[c].client = cl;
691
}
692

    
693

    
694
static void *etraxfs_dmac;
695
void DMA_run(void)
696
{
697
        if (etraxfs_dmac)
698
                etraxfs_dmac_run(etraxfs_dmac);
699
}
700

    
701
void *etraxfs_dmac_init(CPUState *env, 
702
                        target_phys_addr_t base, int nr_channels)
703
{
704
        struct fs_dma_ctrl *ctrl = NULL;
705
        int i;
706

    
707
        ctrl = qemu_mallocz(sizeof *ctrl);
708
        if (!ctrl)
709
                return NULL;
710

    
711
        ctrl->base = base;
712
        ctrl->env = env;
713
        ctrl->nr_channels = nr_channels;
714
        ctrl->channels = qemu_mallocz(sizeof ctrl->channels[0] * nr_channels);
715
        if (!ctrl->channels)
716
                goto err;
717

    
718
        for (i = 0; i < nr_channels; i++)
719
        {
720
                ctrl->channels[i].regmap = cpu_register_io_memory(0,
721
                                                                  dma_read, 
722
                                                                  dma_write, 
723
                                                                  ctrl);
724
                cpu_register_physical_memory (base + i * 0x2000,
725
                                              sizeof ctrl->channels[i].regs, 
726
                                              ctrl->channels[i].regmap);
727
        }
728

    
729
        /* Hax, we only support one DMA controller at a time.  */
730
        etraxfs_dmac = ctrl;
731
        return ctrl;
732
  err:
733
        qemu_free(ctrl->channels);
734
        qemu_free(ctrl);
735
        return NULL;
736
}