Statistics
| Branch: | Revision:

root / hw / pxa2xx.c @ c701b35b

History | View | Annotate | Download (65 kB)

1
/*
2
 * Intel XScale PXA255/270 processor support.
3
 *
4
 * Copyright (c) 2006 Openedhand Ltd.
5
 * Written by Andrzej Zaborowski <balrog@zabor.org>
6
 *
7
 * This code is licenced under the GPL.
8
 */
9

    
10
#include "hw.h"
11
#include "pxa.h"
12
#include "sysemu.h"
13
#include "pc.h"
14
#include "i2c.h"
15
#include "qemu-timer.h"
16
#include "qemu-char.h"
17

    
18
static struct {
19
    target_phys_addr_t io_base;
20
    int irqn;
21
} pxa255_serial[] = {
22
    { 0x40100000, PXA2XX_PIC_FFUART },
23
    { 0x40200000, PXA2XX_PIC_BTUART },
24
    { 0x40700000, PXA2XX_PIC_STUART },
25
    { 0x41600000, PXA25X_PIC_HWUART },
26
    { 0, 0 }
27
}, pxa270_serial[] = {
28
    { 0x40100000, PXA2XX_PIC_FFUART },
29
    { 0x40200000, PXA2XX_PIC_BTUART },
30
    { 0x40700000, PXA2XX_PIC_STUART },
31
    { 0, 0 }
32
};
33

    
34
typedef struct PXASSPDef {
35
    target_phys_addr_t io_base;
36
    int irqn;
37
} PXASSPDef;
38

    
39
#if 0
40
static PXASSPDef pxa250_ssp[] = {
41
    { 0x41000000, PXA2XX_PIC_SSP },
42
    { 0, 0 }
43
};
44
#endif
45

    
46
static PXASSPDef pxa255_ssp[] = {
47
    { 0x41000000, PXA2XX_PIC_SSP },
48
    { 0x41400000, PXA25X_PIC_NSSP },
49
    { 0, 0 }
50
};
51

    
52
#if 0
53
static PXASSPDef pxa26x_ssp[] = {
54
    { 0x41000000, PXA2XX_PIC_SSP },
55
    { 0x41400000, PXA25X_PIC_NSSP },
56
    { 0x41500000, PXA26X_PIC_ASSP },
57
    { 0, 0 }
58
};
59
#endif
60

    
61
static PXASSPDef pxa27x_ssp[] = {
62
    { 0x41000000, PXA2XX_PIC_SSP },
63
    { 0x41700000, PXA27X_PIC_SSP2 },
64
    { 0x41900000, PXA2XX_PIC_SSP3 },
65
    { 0, 0 }
66
};
67

    
68
#define PMCR        0x00        /* Power Manager Control register */
69
#define PSSR        0x04        /* Power Manager Sleep Status register */
70
#define PSPR        0x08        /* Power Manager Scratch-Pad register */
71
#define PWER        0x0c        /* Power Manager Wake-Up Enable register */
72
#define PRER        0x10        /* Power Manager Rising-Edge Detect Enable register */
73
#define PFER        0x14        /* Power Manager Falling-Edge Detect Enable register */
74
#define PEDR        0x18        /* Power Manager Edge-Detect Status register */
75
#define PCFR        0x1c        /* Power Manager General Configuration register */
76
#define PGSR0        0x20        /* Power Manager GPIO Sleep-State register 0 */
77
#define PGSR1        0x24        /* Power Manager GPIO Sleep-State register 1 */
78
#define PGSR2        0x28        /* Power Manager GPIO Sleep-State register 2 */
79
#define PGSR3        0x2c        /* Power Manager GPIO Sleep-State register 3 */
80
#define RCSR        0x30        /* Reset Controller Status register */
81
#define PSLR        0x34        /* Power Manager Sleep Configuration register */
82
#define PTSR        0x38        /* Power Manager Standby Configuration register */
83
#define PVCR        0x40        /* Power Manager Voltage Change Control register */
84
#define PUCR        0x4c        /* Power Manager USIM Card Control/Status register */
85
#define PKWR        0x50        /* Power Manager Keyboard Wake-Up Enable register */
86
#define PKSR        0x54        /* Power Manager Keyboard Level-Detect Status */
87
#define PCMD0        0x80        /* Power Manager I2C Command register File 0 */
88
#define PCMD31        0xfc        /* Power Manager I2C Command register File 31 */
89

    
90
static uint32_t pxa2xx_pm_read(void *opaque, target_phys_addr_t addr)
91
{
92
    struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
93
    addr -= s->pm_base;
94

    
95
    switch (addr) {
96
    case PMCR ... PCMD31:
97
        if (addr & 3)
98
            goto fail;
99

    
100
        return s->pm_regs[addr >> 2];
101
    default:
102
    fail:
103
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
104
        break;
105
    }
106
    return 0;
107
}
108

    
109
static void pxa2xx_pm_write(void *opaque, target_phys_addr_t addr,
110
                uint32_t value)
111
{
112
    struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
113
    addr -= s->pm_base;
114

    
115
    switch (addr) {
116
    case PMCR:
117
        s->pm_regs[addr >> 2] &= 0x15 & ~(value & 0x2a);
118
        s->pm_regs[addr >> 2] |= value & 0x15;
119
        break;
120

    
121
    case PSSR:        /* Read-clean registers */
122
    case RCSR:
123
    case PKSR:
124
        s->pm_regs[addr >> 2] &= ~value;
125
        break;
126

    
127
    default:        /* Read-write registers */
128
        if (addr >= PMCR && addr <= PCMD31 && !(addr & 3)) {
129
            s->pm_regs[addr >> 2] = value;
130
            break;
131
        }
132

    
133
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
134
        break;
135
    }
136
}
137

    
138
static CPUReadMemoryFunc *pxa2xx_pm_readfn[] = {
139
    pxa2xx_pm_read,
140
    pxa2xx_pm_read,
141
    pxa2xx_pm_read,
142
};
143

    
144
static CPUWriteMemoryFunc *pxa2xx_pm_writefn[] = {
145
    pxa2xx_pm_write,
146
    pxa2xx_pm_write,
147
    pxa2xx_pm_write,
148
};
149

    
150
static void pxa2xx_pm_save(QEMUFile *f, void *opaque)
151
{
152
    struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
153
    int i;
154

    
155
    for (i = 0; i < 0x40; i ++)
156
        qemu_put_be32s(f, &s->pm_regs[i]);
157
}
158

    
159
static int pxa2xx_pm_load(QEMUFile *f, void *opaque, int version_id)
160
{
161
    struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
162
    int i;
163

    
164
    for (i = 0; i < 0x40; i ++)
165
        qemu_get_be32s(f, &s->pm_regs[i]);
166

    
167
    return 0;
168
}
169

    
170
#define CCCR        0x00        /* Core Clock Configuration register */
171
#define CKEN        0x04        /* Clock Enable register */
172
#define OSCC        0x08        /* Oscillator Configuration register */
173
#define CCSR        0x0c        /* Core Clock Status register */
174

    
175
static uint32_t pxa2xx_cm_read(void *opaque, target_phys_addr_t addr)
176
{
177
    struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
178
    addr -= s->cm_base;
179

    
180
    switch (addr) {
181
    case CCCR:
182
    case CKEN:
183
    case OSCC:
184
        return s->cm_regs[addr >> 2];
185

    
186
    case CCSR:
187
        return s->cm_regs[CCCR >> 2] | (3 << 28);
188

    
189
    default:
190
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
191
        break;
192
    }
193
    return 0;
194
}
195

    
196
static void pxa2xx_cm_write(void *opaque, target_phys_addr_t addr,
197
                uint32_t value)
198
{
199
    struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
200
    addr -= s->cm_base;
201

    
202
    switch (addr) {
203
    case CCCR:
204
    case CKEN:
205
        s->cm_regs[addr >> 2] = value;
206
        break;
207

    
208
    case OSCC:
209
        s->cm_regs[addr >> 2] &= ~0x6c;
210
        s->cm_regs[addr >> 2] |= value & 0x6e;
211
        if ((value >> 1) & 1)                        /* OON */
212
            s->cm_regs[addr >> 2] |= 1 << 0;        /* Oscillator is now stable */
213
        break;
214

    
215
    default:
216
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
217
        break;
218
    }
219
}
220

    
221
static CPUReadMemoryFunc *pxa2xx_cm_readfn[] = {
222
    pxa2xx_cm_read,
223
    pxa2xx_cm_read,
224
    pxa2xx_cm_read,
225
};
226

    
227
static CPUWriteMemoryFunc *pxa2xx_cm_writefn[] = {
228
    pxa2xx_cm_write,
229
    pxa2xx_cm_write,
230
    pxa2xx_cm_write,
231
};
232

    
233
static void pxa2xx_cm_save(QEMUFile *f, void *opaque)
234
{
235
    struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
236
    int i;
237

    
238
    for (i = 0; i < 4; i ++)
239
        qemu_put_be32s(f, &s->cm_regs[i]);
240
    qemu_put_be32s(f, &s->clkcfg);
241
    qemu_put_be32s(f, &s->pmnc);
242
}
243

    
244
static int pxa2xx_cm_load(QEMUFile *f, void *opaque, int version_id)
245
{
246
    struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
247
    int i;
248

    
249
    for (i = 0; i < 4; i ++)
250
        qemu_get_be32s(f, &s->cm_regs[i]);
251
    qemu_get_be32s(f, &s->clkcfg);
252
    qemu_get_be32s(f, &s->pmnc);
253

    
254
    return 0;
255
}
256

    
257
static uint32_t pxa2xx_clkpwr_read(void *opaque, int op2, int reg, int crm)
258
{
259
    struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
260

    
261
    switch (reg) {
262
    case 6:        /* Clock Configuration register */
263
        return s->clkcfg;
264

    
265
    case 7:        /* Power Mode register */
266
        return 0;
267

    
268
    default:
269
        printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
270
        break;
271
    }
272
    return 0;
273
}
274

    
275
static void pxa2xx_clkpwr_write(void *opaque, int op2, int reg, int crm,
276
                uint32_t value)
277
{
278
    struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
279
    static const char *pwrmode[8] = {
280
        "Normal", "Idle", "Deep-idle", "Standby",
281
        "Sleep", "reserved (!)", "reserved (!)", "Deep-sleep",
282
    };
283

    
284
    switch (reg) {
285
    case 6:        /* Clock Configuration register */
286
        s->clkcfg = value & 0xf;
287
        if (value & 2)
288
            printf("%s: CPU frequency change attempt\n", __FUNCTION__);
289
        break;
290

    
291
    case 7:        /* Power Mode register */
292
        if (value & 8)
293
            printf("%s: CPU voltage change attempt\n", __FUNCTION__);
294
        switch (value & 7) {
295
        case 0:
296
            /* Do nothing */
297
            break;
298

    
299
        case 1:
300
            /* Idle */
301
            if (!(s->cm_regs[CCCR >> 2] & (1 << 31))) {        /* CPDIS */
302
                cpu_interrupt(s->env, CPU_INTERRUPT_HALT);
303
                break;
304
            }
305
            /* Fall through.  */
306

    
307
        case 2:
308
            /* Deep-Idle */
309
            cpu_interrupt(s->env, CPU_INTERRUPT_HALT);
310
            s->pm_regs[RCSR >> 2] |= 0x8;        /* Set GPR */
311
            goto message;
312

    
313
        case 3:
314
            s->env->uncached_cpsr =
315
                    ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
316
            s->env->cp15.c1_sys = 0;
317
            s->env->cp15.c1_coproc = 0;
318
            s->env->cp15.c2_base0 = 0;
319
            s->env->cp15.c3 = 0;
320
            s->pm_regs[PSSR >> 2] |= 0x8;        /* Set STS */
321
            s->pm_regs[RCSR >> 2] |= 0x8;        /* Set GPR */
322

    
323
            /*
324
             * The scratch-pad register is almost universally used
325
             * for storing the return address on suspend.  For the
326
             * lack of a resuming bootloader, perform a jump
327
             * directly to that address.
328
             */
329
            memset(s->env->regs, 0, 4 * 15);
330
            s->env->regs[15] = s->pm_regs[PSPR >> 2];
331

    
332
#if 0
333
            buffer = 0xe59ff000;        /* ldr     pc, [pc, #0] */
334
            cpu_physical_memory_write(0, &buffer, 4);
335
            buffer = s->pm_regs[PSPR >> 2];
336
            cpu_physical_memory_write(8, &buffer, 4);
337
#endif
338

    
339
            /* Suspend */
340
            cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HALT);
341

    
342
            goto message;
343

    
344
        default:
345
        message:
346
            printf("%s: machine entered %s mode\n", __FUNCTION__,
347
                            pwrmode[value & 7]);
348
        }
349
        break;
350

    
351
    default:
352
        printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
353
        break;
354
    }
355
}
356

    
357
/* Performace Monitoring Registers */
358
#define CPPMNC                0        /* Performance Monitor Control register */
359
#define CPCCNT                1        /* Clock Counter register */
360
#define CPINTEN                4        /* Interrupt Enable register */
361
#define CPFLAG                5        /* Overflow Flag register */
362
#define CPEVTSEL        8        /* Event Selection register */
363

    
364
#define CPPMN0                0        /* Performance Count register 0 */
365
#define CPPMN1                1        /* Performance Count register 1 */
366
#define CPPMN2                2        /* Performance Count register 2 */
367
#define CPPMN3                3        /* Performance Count register 3 */
368

    
369
static uint32_t pxa2xx_perf_read(void *opaque, int op2, int reg, int crm)
370
{
371
    struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
372

    
373
    switch (reg) {
374
    case CPPMNC:
375
        return s->pmnc;
376
    case CPCCNT:
377
        if (s->pmnc & 1)
378
            return qemu_get_clock(vm_clock);
379
        else
380
            return 0;
381
    case CPINTEN:
382
    case CPFLAG:
383
    case CPEVTSEL:
384
        return 0;
385

    
386
    default:
387
        printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
388
        break;
389
    }
390
    return 0;
391
}
392

    
393
static void pxa2xx_perf_write(void *opaque, int op2, int reg, int crm,
394
                uint32_t value)
395
{
396
    struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
397

    
398
    switch (reg) {
399
    case CPPMNC:
400
        s->pmnc = value;
401
        break;
402

    
403
    case CPCCNT:
404
    case CPINTEN:
405
    case CPFLAG:
406
    case CPEVTSEL:
407
        break;
408

    
409
    default:
410
        printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
411
        break;
412
    }
413
}
414

    
415
static uint32_t pxa2xx_cp14_read(void *opaque, int op2, int reg, int crm)
416
{
417
    switch (crm) {
418
    case 0:
419
        return pxa2xx_clkpwr_read(opaque, op2, reg, crm);
420
    case 1:
421
        return pxa2xx_perf_read(opaque, op2, reg, crm);
422
    case 2:
423
        switch (reg) {
424
        case CPPMN0:
425
        case CPPMN1:
426
        case CPPMN2:
427
        case CPPMN3:
428
            return 0;
429
        }
430
        /* Fall through */
431
    default:
432
        printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
433
        break;
434
    }
435
    return 0;
436
}
437

    
438
static void pxa2xx_cp14_write(void *opaque, int op2, int reg, int crm,
439
                uint32_t value)
440
{
441
    switch (crm) {
442
    case 0:
443
        pxa2xx_clkpwr_write(opaque, op2, reg, crm, value);
444
        break;
445
    case 1:
446
        pxa2xx_perf_write(opaque, op2, reg, crm, value);
447
        break;
448
    case 2:
449
        switch (reg) {
450
        case CPPMN0:
451
        case CPPMN1:
452
        case CPPMN2:
453
        case CPPMN3:
454
            return;
455
        }
456
        /* Fall through */
457
    default:
458
        printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
459
        break;
460
    }
461
}
462

    
463
#define MDCNFG                0x00        /* SDRAM Configuration register */
464
#define MDREFR                0x04        /* SDRAM Refresh Control register */
465
#define MSC0                0x08        /* Static Memory Control register 0 */
466
#define MSC1                0x0c        /* Static Memory Control register 1 */
467
#define MSC2                0x10        /* Static Memory Control register 2 */
468
#define MECR                0x14        /* Expansion Memory Bus Config register */
469
#define SXCNFG                0x1c        /* Synchronous Static Memory Config register */
470
#define MCMEM0                0x28        /* PC Card Memory Socket 0 Timing register */
471
#define MCMEM1                0x2c        /* PC Card Memory Socket 1 Timing register */
472
#define MCATT0                0x30        /* PC Card Attribute Socket 0 register */
473
#define MCATT1                0x34        /* PC Card Attribute Socket 1 register */
474
#define MCIO0                0x38        /* PC Card I/O Socket 0 Timing register */
475
#define MCIO1                0x3c        /* PC Card I/O Socket 1 Timing register */
476
#define MDMRS                0x40        /* SDRAM Mode Register Set Config register */
477
#define BOOT_DEF        0x44        /* Boot-time Default Configuration register */
478
#define ARB_CNTL        0x48        /* Arbiter Control register */
479
#define BSCNTR0                0x4c        /* Memory Buffer Strength Control register 0 */
480
#define BSCNTR1                0x50        /* Memory Buffer Strength Control register 1 */
481
#define LCDBSCNTR        0x54        /* LCD Buffer Strength Control register */
482
#define MDMRSLP                0x58        /* Low Power SDRAM Mode Set Config register */
483
#define BSCNTR2                0x5c        /* Memory Buffer Strength Control register 2 */
484
#define BSCNTR3                0x60        /* Memory Buffer Strength Control register 3 */
485
#define SA1110                0x64        /* SA-1110 Memory Compatibility register */
486

    
487
static uint32_t pxa2xx_mm_read(void *opaque, target_phys_addr_t addr)
488
{
489
    struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
490
    addr -= s->mm_base;
491

    
492
    switch (addr) {
493
    case MDCNFG ... SA1110:
494
        if ((addr & 3) == 0)
495
            return s->mm_regs[addr >> 2];
496

    
497
    default:
498
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
499
        break;
500
    }
501
    return 0;
502
}
503

    
504
static void pxa2xx_mm_write(void *opaque, target_phys_addr_t addr,
505
                uint32_t value)
506
{
507
    struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
508
    addr -= s->mm_base;
509

    
510
    switch (addr) {
511
    case MDCNFG ... SA1110:
512
        if ((addr & 3) == 0) {
513
            s->mm_regs[addr >> 2] = value;
514
            break;
515
        }
516

    
517
    default:
518
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
519
        break;
520
    }
521
}
522

    
523
static CPUReadMemoryFunc *pxa2xx_mm_readfn[] = {
524
    pxa2xx_mm_read,
525
    pxa2xx_mm_read,
526
    pxa2xx_mm_read,
527
};
528

    
529
static CPUWriteMemoryFunc *pxa2xx_mm_writefn[] = {
530
    pxa2xx_mm_write,
531
    pxa2xx_mm_write,
532
    pxa2xx_mm_write,
533
};
534

    
535
static void pxa2xx_mm_save(QEMUFile *f, void *opaque)
536
{
537
    struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
538
    int i;
539

    
540
    for (i = 0; i < 0x1a; i ++)
541
        qemu_put_be32s(f, &s->mm_regs[i]);
542
}
543

    
544
static int pxa2xx_mm_load(QEMUFile *f, void *opaque, int version_id)
545
{
546
    struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
547
    int i;
548

    
549
    for (i = 0; i < 0x1a; i ++)
550
        qemu_get_be32s(f, &s->mm_regs[i]);
551

    
552
    return 0;
553
}
554

    
555
/* Synchronous Serial Ports */
556
struct pxa2xx_ssp_s {
557
    target_phys_addr_t base;
558
    qemu_irq irq;
559
    int enable;
560

    
561
    uint32_t sscr[2];
562
    uint32_t sspsp;
563
    uint32_t ssto;
564
    uint32_t ssitr;
565
    uint32_t sssr;
566
    uint8_t sstsa;
567
    uint8_t ssrsa;
568
    uint8_t ssacd;
569

    
570
    uint32_t rx_fifo[16];
571
    int rx_level;
572
    int rx_start;
573

    
574
    uint32_t (*readfn)(void *opaque);
575
    void (*writefn)(void *opaque, uint32_t value);
576
    void *opaque;
577
};
578

    
579
#define SSCR0        0x00        /* SSP Control register 0 */
580
#define SSCR1        0x04        /* SSP Control register 1 */
581
#define SSSR        0x08        /* SSP Status register */
582
#define SSITR        0x0c        /* SSP Interrupt Test register */
583
#define SSDR        0x10        /* SSP Data register */
584
#define SSTO        0x28        /* SSP Time-Out register */
585
#define SSPSP        0x2c        /* SSP Programmable Serial Protocol register */
586
#define SSTSA        0x30        /* SSP TX Time Slot Active register */
587
#define SSRSA        0x34        /* SSP RX Time Slot Active register */
588
#define SSTSS        0x38        /* SSP Time Slot Status register */
589
#define SSACD        0x3c        /* SSP Audio Clock Divider register */
590

    
591
/* Bitfields for above registers */
592
#define SSCR0_SPI(x)        (((x) & 0x30) == 0x00)
593
#define SSCR0_SSP(x)        (((x) & 0x30) == 0x10)
594
#define SSCR0_UWIRE(x)        (((x) & 0x30) == 0x20)
595
#define SSCR0_PSP(x)        (((x) & 0x30) == 0x30)
596
#define SSCR0_SSE        (1 << 7)
597
#define SSCR0_RIM        (1 << 22)
598
#define SSCR0_TIM        (1 << 23)
599
#define SSCR0_MOD        (1 << 31)
600
#define SSCR0_DSS(x)        (((((x) >> 16) & 0x10) | ((x) & 0xf)) + 1)
601
#define SSCR1_RIE        (1 << 0)
602
#define SSCR1_TIE        (1 << 1)
603
#define SSCR1_LBM        (1 << 2)
604
#define SSCR1_MWDS        (1 << 5)
605
#define SSCR1_TFT(x)        ((((x) >> 6) & 0xf) + 1)
606
#define SSCR1_RFT(x)        ((((x) >> 10) & 0xf) + 1)
607
#define SSCR1_EFWR        (1 << 14)
608
#define SSCR1_PINTE        (1 << 18)
609
#define SSCR1_TINTE        (1 << 19)
610
#define SSCR1_RSRE        (1 << 20)
611
#define SSCR1_TSRE        (1 << 21)
612
#define SSCR1_EBCEI        (1 << 29)
613
#define SSITR_INT        (7 << 5)
614
#define SSSR_TNF        (1 << 2)
615
#define SSSR_RNE        (1 << 3)
616
#define SSSR_TFS        (1 << 5)
617
#define SSSR_RFS        (1 << 6)
618
#define SSSR_ROR        (1 << 7)
619
#define SSSR_PINT        (1 << 18)
620
#define SSSR_TINT        (1 << 19)
621
#define SSSR_EOC        (1 << 20)
622
#define SSSR_TUR        (1 << 21)
623
#define SSSR_BCE        (1 << 23)
624
#define SSSR_RW                0x00bc0080
625

    
626
static void pxa2xx_ssp_int_update(struct pxa2xx_ssp_s *s)
627
{
628
    int level = 0;
629

    
630
    level |= s->ssitr & SSITR_INT;
631
    level |= (s->sssr & SSSR_BCE)  &&  (s->sscr[1] & SSCR1_EBCEI);
632
    level |= (s->sssr & SSSR_TUR)  && !(s->sscr[0] & SSCR0_TIM);
633
    level |= (s->sssr & SSSR_EOC)  &&  (s->sssr & (SSSR_TINT | SSSR_PINT));
634
    level |= (s->sssr & SSSR_TINT) &&  (s->sscr[1] & SSCR1_TINTE);
635
    level |= (s->sssr & SSSR_PINT) &&  (s->sscr[1] & SSCR1_PINTE);
636
    level |= (s->sssr & SSSR_ROR)  && !(s->sscr[0] & SSCR0_RIM);
637
    level |= (s->sssr & SSSR_RFS)  &&  (s->sscr[1] & SSCR1_RIE);
638
    level |= (s->sssr & SSSR_TFS)  &&  (s->sscr[1] & SSCR1_TIE);
639
    qemu_set_irq(s->irq, !!level);
640
}
641

    
642
static void pxa2xx_ssp_fifo_update(struct pxa2xx_ssp_s *s)
643
{
644
    s->sssr &= ~(0xf << 12);        /* Clear RFL */
645
    s->sssr &= ~(0xf << 8);        /* Clear TFL */
646
    s->sssr &= ~SSSR_TNF;
647
    if (s->enable) {
648
        s->sssr |= ((s->rx_level - 1) & 0xf) << 12;
649
        if (s->rx_level >= SSCR1_RFT(s->sscr[1]))
650
            s->sssr |= SSSR_RFS;
651
        else
652
            s->sssr &= ~SSSR_RFS;
653
        if (0 <= SSCR1_TFT(s->sscr[1]))
654
            s->sssr |= SSSR_TFS;
655
        else
656
            s->sssr &= ~SSSR_TFS;
657
        if (s->rx_level)
658
            s->sssr |= SSSR_RNE;
659
        else
660
            s->sssr &= ~SSSR_RNE;
661
        s->sssr |= SSSR_TNF;
662
    }
663

    
664
    pxa2xx_ssp_int_update(s);
665
}
666

    
667
static uint32_t pxa2xx_ssp_read(void *opaque, target_phys_addr_t addr)
668
{
669
    struct pxa2xx_ssp_s *s = (struct pxa2xx_ssp_s *) opaque;
670
    uint32_t retval;
671
    addr -= s->base;
672

    
673
    switch (addr) {
674
    case SSCR0:
675
        return s->sscr[0];
676
    case SSCR1:
677
        return s->sscr[1];
678
    case SSPSP:
679
        return s->sspsp;
680
    case SSTO:
681
        return s->ssto;
682
    case SSITR:
683
        return s->ssitr;
684
    case SSSR:
685
        return s->sssr | s->ssitr;
686
    case SSDR:
687
        if (!s->enable)
688
            return 0xffffffff;
689
        if (s->rx_level < 1) {
690
            printf("%s: SSP Rx Underrun\n", __FUNCTION__);
691
            return 0xffffffff;
692
        }
693
        s->rx_level --;
694
        retval = s->rx_fifo[s->rx_start ++];
695
        s->rx_start &= 0xf;
696
        pxa2xx_ssp_fifo_update(s);
697
        return retval;
698
    case SSTSA:
699
        return s->sstsa;
700
    case SSRSA:
701
        return s->ssrsa;
702
    case SSTSS:
703
        return 0;
704
    case SSACD:
705
        return s->ssacd;
706
    default:
707
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
708
        break;
709
    }
710
    return 0;
711
}
712

    
713
static void pxa2xx_ssp_write(void *opaque, target_phys_addr_t addr,
714
                uint32_t value)
715
{
716
    struct pxa2xx_ssp_s *s = (struct pxa2xx_ssp_s *) opaque;
717
    addr -= s->base;
718

    
719
    switch (addr) {
720
    case SSCR0:
721
        s->sscr[0] = value & 0xc7ffffff;
722
        s->enable = value & SSCR0_SSE;
723
        if (value & SSCR0_MOD)
724
            printf("%s: Attempt to use network mode\n", __FUNCTION__);
725
        if (s->enable && SSCR0_DSS(value) < 4)
726
            printf("%s: Wrong data size: %i bits\n", __FUNCTION__,
727
                            SSCR0_DSS(value));
728
        if (!(value & SSCR0_SSE)) {
729
            s->sssr = 0;
730
            s->ssitr = 0;
731
            s->rx_level = 0;
732
        }
733
        pxa2xx_ssp_fifo_update(s);
734
        break;
735

    
736
    case SSCR1:
737
        s->sscr[1] = value;
738
        if (value & (SSCR1_LBM | SSCR1_EFWR))
739
            printf("%s: Attempt to use SSP test mode\n", __FUNCTION__);
740
        pxa2xx_ssp_fifo_update(s);
741
        break;
742

    
743
    case SSPSP:
744
        s->sspsp = value;
745
        break;
746

    
747
    case SSTO:
748
        s->ssto = value;
749
        break;
750

    
751
    case SSITR:
752
        s->ssitr = value & SSITR_INT;
753
        pxa2xx_ssp_int_update(s);
754
        break;
755

    
756
    case SSSR:
757
        s->sssr &= ~(value & SSSR_RW);
758
        pxa2xx_ssp_int_update(s);
759
        break;
760

    
761
    case SSDR:
762
        if (SSCR0_UWIRE(s->sscr[0])) {
763
            if (s->sscr[1] & SSCR1_MWDS)
764
                value &= 0xffff;
765
            else
766
                value &= 0xff;
767
        } else
768
            /* Note how 32bits overflow does no harm here */
769
            value &= (1 << SSCR0_DSS(s->sscr[0])) - 1;
770

    
771
        /* Data goes from here to the Tx FIFO and is shifted out from
772
         * there directly to the slave, no need to buffer it.
773
         */
774
        if (s->enable) {
775
            if (s->writefn)
776
                s->writefn(s->opaque, value);
777

    
778
            if (s->rx_level < 0x10) {
779
                if (s->readfn)
780
                    s->rx_fifo[(s->rx_start + s->rx_level ++) & 0xf] =
781
                            s->readfn(s->opaque);
782
                else
783
                    s->rx_fifo[(s->rx_start + s->rx_level ++) & 0xf] = 0x0;
784
            } else
785
                s->sssr |= SSSR_ROR;
786
        }
787
        pxa2xx_ssp_fifo_update(s);
788
        break;
789

    
790
    case SSTSA:
791
        s->sstsa = value;
792
        break;
793

    
794
    case SSRSA:
795
        s->ssrsa = value;
796
        break;
797

    
798
    case SSACD:
799
        s->ssacd = value;
800
        break;
801

    
802
    default:
803
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
804
        break;
805
    }
806
}
807

    
808
void pxa2xx_ssp_attach(struct pxa2xx_ssp_s *port,
809
                uint32_t (*readfn)(void *opaque),
810
                void (*writefn)(void *opaque, uint32_t value), void *opaque)
811
{
812
    if (!port) {
813
        printf("%s: no such SSP\n", __FUNCTION__);
814
        exit(-1);
815
    }
816

    
817
    port->opaque = opaque;
818
    port->readfn = readfn;
819
    port->writefn = writefn;
820
}
821

    
822
static CPUReadMemoryFunc *pxa2xx_ssp_readfn[] = {
823
    pxa2xx_ssp_read,
824
    pxa2xx_ssp_read,
825
    pxa2xx_ssp_read,
826
};
827

    
828
static CPUWriteMemoryFunc *pxa2xx_ssp_writefn[] = {
829
    pxa2xx_ssp_write,
830
    pxa2xx_ssp_write,
831
    pxa2xx_ssp_write,
832
};
833

    
834
static void pxa2xx_ssp_save(QEMUFile *f, void *opaque)
835
{
836
    struct pxa2xx_ssp_s *s = (struct pxa2xx_ssp_s *) opaque;
837
    int i;
838

    
839
    qemu_put_be32(f, s->enable);
840

    
841
    qemu_put_be32s(f, &s->sscr[0]);
842
    qemu_put_be32s(f, &s->sscr[1]);
843
    qemu_put_be32s(f, &s->sspsp);
844
    qemu_put_be32s(f, &s->ssto);
845
    qemu_put_be32s(f, &s->ssitr);
846
    qemu_put_be32s(f, &s->sssr);
847
    qemu_put_8s(f, &s->sstsa);
848
    qemu_put_8s(f, &s->ssrsa);
849
    qemu_put_8s(f, &s->ssacd);
850

    
851
    qemu_put_byte(f, s->rx_level);
852
    for (i = 0; i < s->rx_level; i ++)
853
        qemu_put_byte(f, s->rx_fifo[(s->rx_start + i) & 0xf]);
854
}
855

    
856
static int pxa2xx_ssp_load(QEMUFile *f, void *opaque, int version_id)
857
{
858
    struct pxa2xx_ssp_s *s = (struct pxa2xx_ssp_s *) opaque;
859
    int i;
860

    
861
    s->enable = qemu_get_be32(f);
862

    
863
    qemu_get_be32s(f, &s->sscr[0]);
864
    qemu_get_be32s(f, &s->sscr[1]);
865
    qemu_get_be32s(f, &s->sspsp);
866
    qemu_get_be32s(f, &s->ssto);
867
    qemu_get_be32s(f, &s->ssitr);
868
    qemu_get_be32s(f, &s->sssr);
869
    qemu_get_8s(f, &s->sstsa);
870
    qemu_get_8s(f, &s->ssrsa);
871
    qemu_get_8s(f, &s->ssacd);
872

    
873
    s->rx_level = qemu_get_byte(f);
874
    s->rx_start = 0;
875
    for (i = 0; i < s->rx_level; i ++)
876
        s->rx_fifo[i] = qemu_get_byte(f);
877

    
878
    return 0;
879
}
880

    
881
/* Real-Time Clock */
882
#define RCNR                0x00        /* RTC Counter register */
883
#define RTAR                0x04        /* RTC Alarm register */
884
#define RTSR                0x08        /* RTC Status register */
885
#define RTTR                0x0c        /* RTC Timer Trim register */
886
#define RDCR                0x10        /* RTC Day Counter register */
887
#define RYCR                0x14        /* RTC Year Counter register */
888
#define RDAR1                0x18        /* RTC Wristwatch Day Alarm register 1 */
889
#define RYAR1                0x1c        /* RTC Wristwatch Year Alarm register 1 */
890
#define RDAR2                0x20        /* RTC Wristwatch Day Alarm register 2 */
891
#define RYAR2                0x24        /* RTC Wristwatch Year Alarm register 2 */
892
#define SWCR                0x28        /* RTC Stopwatch Counter register */
893
#define SWAR1                0x2c        /* RTC Stopwatch Alarm register 1 */
894
#define SWAR2                0x30        /* RTC Stopwatch Alarm register 2 */
895
#define RTCPICR                0x34        /* RTC Periodic Interrupt Counter register */
896
#define PIAR                0x38        /* RTC Periodic Interrupt Alarm register */
897

    
898
static inline void pxa2xx_rtc_int_update(struct pxa2xx_state_s *s)
899
{
900
    qemu_set_irq(s->pic[PXA2XX_PIC_RTCALARM], !!(s->rtsr & 0x2553));
901
}
902

    
903
static void pxa2xx_rtc_hzupdate(struct pxa2xx_state_s *s)
904
{
905
    int64_t rt = qemu_get_clock(rt_clock);
906
    s->last_rcnr += ((rt - s->last_hz) << 15) /
907
            (1000 * ((s->rttr & 0xffff) + 1));
908
    s->last_rdcr += ((rt - s->last_hz) << 15) /
909
            (1000 * ((s->rttr & 0xffff) + 1));
910
    s->last_hz = rt;
911
}
912

    
913
static void pxa2xx_rtc_swupdate(struct pxa2xx_state_s *s)
914
{
915
    int64_t rt = qemu_get_clock(rt_clock);
916
    if (s->rtsr & (1 << 12))
917
        s->last_swcr += (rt - s->last_sw) / 10;
918
    s->last_sw = rt;
919
}
920

    
921
static void pxa2xx_rtc_piupdate(struct pxa2xx_state_s *s)
922
{
923
    int64_t rt = qemu_get_clock(rt_clock);
924
    if (s->rtsr & (1 << 15))
925
        s->last_swcr += rt - s->last_pi;
926
    s->last_pi = rt;
927
}
928

    
929
static inline void pxa2xx_rtc_alarm_update(struct pxa2xx_state_s *s,
930
                uint32_t rtsr)
931
{
932
    if ((rtsr & (1 << 2)) && !(rtsr & (1 << 0)))
933
        qemu_mod_timer(s->rtc_hz, s->last_hz +
934
                (((s->rtar - s->last_rcnr) * 1000 *
935
                  ((s->rttr & 0xffff) + 1)) >> 15));
936
    else
937
        qemu_del_timer(s->rtc_hz);
938

    
939
    if ((rtsr & (1 << 5)) && !(rtsr & (1 << 4)))
940
        qemu_mod_timer(s->rtc_rdal1, s->last_hz +
941
                (((s->rdar1 - s->last_rdcr) * 1000 *
942
                  ((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */
943
    else
944
        qemu_del_timer(s->rtc_rdal1);
945

    
946
    if ((rtsr & (1 << 7)) && !(rtsr & (1 << 6)))
947
        qemu_mod_timer(s->rtc_rdal2, s->last_hz +
948
                (((s->rdar2 - s->last_rdcr) * 1000 *
949
                  ((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */
950
    else
951
        qemu_del_timer(s->rtc_rdal2);
952

    
953
    if ((rtsr & 0x1200) == 0x1200 && !(rtsr & (1 << 8)))
954
        qemu_mod_timer(s->rtc_swal1, s->last_sw +
955
                        (s->swar1 - s->last_swcr) * 10); /* TODO: fixup */
956
    else
957
        qemu_del_timer(s->rtc_swal1);
958

    
959
    if ((rtsr & 0x1800) == 0x1800 && !(rtsr & (1 << 10)))
960
        qemu_mod_timer(s->rtc_swal2, s->last_sw +
961
                        (s->swar2 - s->last_swcr) * 10); /* TODO: fixup */
962
    else
963
        qemu_del_timer(s->rtc_swal2);
964

    
965
    if ((rtsr & 0xc000) == 0xc000 && !(rtsr & (1 << 13)))
966
        qemu_mod_timer(s->rtc_pi, s->last_pi +
967
                        (s->piar & 0xffff) - s->last_rtcpicr);
968
    else
969
        qemu_del_timer(s->rtc_pi);
970
}
971

    
972
static inline void pxa2xx_rtc_hz_tick(void *opaque)
973
{
974
    struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
975
    s->rtsr |= (1 << 0);
976
    pxa2xx_rtc_alarm_update(s, s->rtsr);
977
    pxa2xx_rtc_int_update(s);
978
}
979

    
980
static inline void pxa2xx_rtc_rdal1_tick(void *opaque)
981
{
982
    struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
983
    s->rtsr |= (1 << 4);
984
    pxa2xx_rtc_alarm_update(s, s->rtsr);
985
    pxa2xx_rtc_int_update(s);
986
}
987

    
988
static inline void pxa2xx_rtc_rdal2_tick(void *opaque)
989
{
990
    struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
991
    s->rtsr |= (1 << 6);
992
    pxa2xx_rtc_alarm_update(s, s->rtsr);
993
    pxa2xx_rtc_int_update(s);
994
}
995

    
996
static inline void pxa2xx_rtc_swal1_tick(void *opaque)
997
{
998
    struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
999
    s->rtsr |= (1 << 8);
1000
    pxa2xx_rtc_alarm_update(s, s->rtsr);
1001
    pxa2xx_rtc_int_update(s);
1002
}
1003

    
1004
static inline void pxa2xx_rtc_swal2_tick(void *opaque)
1005
{
1006
    struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
1007
    s->rtsr |= (1 << 10);
1008
    pxa2xx_rtc_alarm_update(s, s->rtsr);
1009
    pxa2xx_rtc_int_update(s);
1010
}
1011

    
1012
static inline void pxa2xx_rtc_pi_tick(void *opaque)
1013
{
1014
    struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
1015
    s->rtsr |= (1 << 13);
1016
    pxa2xx_rtc_piupdate(s);
1017
    s->last_rtcpicr = 0;
1018
    pxa2xx_rtc_alarm_update(s, s->rtsr);
1019
    pxa2xx_rtc_int_update(s);
1020
}
1021

    
1022
static uint32_t pxa2xx_rtc_read(void *opaque, target_phys_addr_t addr)
1023
{
1024
    struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
1025
    addr -= s->rtc_base;
1026

    
1027
    switch (addr) {
1028
    case RTTR:
1029
        return s->rttr;
1030
    case RTSR:
1031
        return s->rtsr;
1032
    case RTAR:
1033
        return s->rtar;
1034
    case RDAR1:
1035
        return s->rdar1;
1036
    case RDAR2:
1037
        return s->rdar2;
1038
    case RYAR1:
1039
        return s->ryar1;
1040
    case RYAR2:
1041
        return s->ryar2;
1042
    case SWAR1:
1043
        return s->swar1;
1044
    case SWAR2:
1045
        return s->swar2;
1046
    case PIAR:
1047
        return s->piar;
1048
    case RCNR:
1049
        return s->last_rcnr + ((qemu_get_clock(rt_clock) - s->last_hz) << 15) /
1050
                (1000 * ((s->rttr & 0xffff) + 1));
1051
    case RDCR:
1052
        return s->last_rdcr + ((qemu_get_clock(rt_clock) - s->last_hz) << 15) /
1053
                (1000 * ((s->rttr & 0xffff) + 1));
1054
    case RYCR:
1055
        return s->last_rycr;
1056
    case SWCR:
1057
        if (s->rtsr & (1 << 12))
1058
            return s->last_swcr + (qemu_get_clock(rt_clock) - s->last_sw) / 10;
1059
        else
1060
            return s->last_swcr;
1061
    default:
1062
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1063
        break;
1064
    }
1065
    return 0;
1066
}
1067

    
1068
static void pxa2xx_rtc_write(void *opaque, target_phys_addr_t addr,
1069
                uint32_t value)
1070
{
1071
    struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
1072
    addr -= s->rtc_base;
1073

    
1074
    switch (addr) {
1075
    case RTTR:
1076
        if (!(s->rttr & (1 << 31))) {
1077
            pxa2xx_rtc_hzupdate(s);
1078
            s->rttr = value;
1079
            pxa2xx_rtc_alarm_update(s, s->rtsr);
1080
        }
1081
        break;
1082

    
1083
    case RTSR:
1084
        if ((s->rtsr ^ value) & (1 << 15))
1085
            pxa2xx_rtc_piupdate(s);
1086

    
1087
        if ((s->rtsr ^ value) & (1 << 12))
1088
            pxa2xx_rtc_swupdate(s);
1089

    
1090
        if (((s->rtsr ^ value) & 0x4aac) | (value & ~0xdaac))
1091
            pxa2xx_rtc_alarm_update(s, value);
1092

    
1093
        s->rtsr = (value & 0xdaac) | (s->rtsr & ~(value & ~0xdaac));
1094
        pxa2xx_rtc_int_update(s);
1095
        break;
1096

    
1097
    case RTAR:
1098
        s->rtar = value;
1099
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1100
        break;
1101

    
1102
    case RDAR1:
1103
        s->rdar1 = value;
1104
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1105
        break;
1106

    
1107
    case RDAR2:
1108
        s->rdar2 = value;
1109
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1110
        break;
1111

    
1112
    case RYAR1:
1113
        s->ryar1 = value;
1114
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1115
        break;
1116

    
1117
    case RYAR2:
1118
        s->ryar2 = value;
1119
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1120
        break;
1121

    
1122
    case SWAR1:
1123
        pxa2xx_rtc_swupdate(s);
1124
        s->swar1 = value;
1125
        s->last_swcr = 0;
1126
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1127
        break;
1128

    
1129
    case SWAR2:
1130
        s->swar2 = value;
1131
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1132
        break;
1133

    
1134
    case PIAR:
1135
        s->piar = value;
1136
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1137
        break;
1138

    
1139
    case RCNR:
1140
        pxa2xx_rtc_hzupdate(s);
1141
        s->last_rcnr = value;
1142
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1143
        break;
1144

    
1145
    case RDCR:
1146
        pxa2xx_rtc_hzupdate(s);
1147
        s->last_rdcr = value;
1148
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1149
        break;
1150

    
1151
    case RYCR:
1152
        s->last_rycr = value;
1153
        break;
1154

    
1155
    case SWCR:
1156
        pxa2xx_rtc_swupdate(s);
1157
        s->last_swcr = value;
1158
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1159
        break;
1160

    
1161
    case RTCPICR:
1162
        pxa2xx_rtc_piupdate(s);
1163
        s->last_rtcpicr = value & 0xffff;
1164
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1165
        break;
1166

    
1167
    default:
1168
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1169
    }
1170
}
1171

    
1172
static CPUReadMemoryFunc *pxa2xx_rtc_readfn[] = {
1173
    pxa2xx_rtc_read,
1174
    pxa2xx_rtc_read,
1175
    pxa2xx_rtc_read,
1176
};
1177

    
1178
static CPUWriteMemoryFunc *pxa2xx_rtc_writefn[] = {
1179
    pxa2xx_rtc_write,
1180
    pxa2xx_rtc_write,
1181
    pxa2xx_rtc_write,
1182
};
1183

    
1184
static void pxa2xx_rtc_init(struct pxa2xx_state_s *s)
1185
{
1186
    struct tm tm;
1187
    int wom;
1188

    
1189
    s->rttr = 0x7fff;
1190
    s->rtsr = 0;
1191

    
1192
    qemu_get_timedate(&tm, 0);
1193
    wom = ((tm.tm_mday - 1) / 7) + 1;
1194

    
1195
    s->last_rcnr = (uint32_t) mktime(&tm);
1196
    s->last_rdcr = (wom << 20) | ((tm.tm_wday + 1) << 17) |
1197
            (tm.tm_hour << 12) | (tm.tm_min << 6) | tm.tm_sec;
1198
    s->last_rycr = ((tm.tm_year + 1900) << 9) |
1199
            ((tm.tm_mon + 1) << 5) | tm.tm_mday;
1200
    s->last_swcr = (tm.tm_hour << 19) |
1201
            (tm.tm_min << 13) | (tm.tm_sec << 7);
1202
    s->last_rtcpicr = 0;
1203
    s->last_hz = s->last_sw = s->last_pi = qemu_get_clock(rt_clock);
1204

    
1205
    s->rtc_hz    = qemu_new_timer(rt_clock, pxa2xx_rtc_hz_tick,    s);
1206
    s->rtc_rdal1 = qemu_new_timer(rt_clock, pxa2xx_rtc_rdal1_tick, s);
1207
    s->rtc_rdal2 = qemu_new_timer(rt_clock, pxa2xx_rtc_rdal2_tick, s);
1208
    s->rtc_swal1 = qemu_new_timer(rt_clock, pxa2xx_rtc_swal1_tick, s);
1209
    s->rtc_swal2 = qemu_new_timer(rt_clock, pxa2xx_rtc_swal2_tick, s);
1210
    s->rtc_pi    = qemu_new_timer(rt_clock, pxa2xx_rtc_pi_tick,    s);
1211
}
1212

    
1213
static void pxa2xx_rtc_save(QEMUFile *f, void *opaque)
1214
{
1215
    struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
1216

    
1217
    pxa2xx_rtc_hzupdate(s);
1218
    pxa2xx_rtc_piupdate(s);
1219
    pxa2xx_rtc_swupdate(s);
1220

    
1221
    qemu_put_be32s(f, &s->rttr);
1222
    qemu_put_be32s(f, &s->rtsr);
1223
    qemu_put_be32s(f, &s->rtar);
1224
    qemu_put_be32s(f, &s->rdar1);
1225
    qemu_put_be32s(f, &s->rdar2);
1226
    qemu_put_be32s(f, &s->ryar1);
1227
    qemu_put_be32s(f, &s->ryar2);
1228
    qemu_put_be32s(f, &s->swar1);
1229
    qemu_put_be32s(f, &s->swar2);
1230
    qemu_put_be32s(f, &s->piar);
1231
    qemu_put_be32s(f, &s->last_rcnr);
1232
    qemu_put_be32s(f, &s->last_rdcr);
1233
    qemu_put_be32s(f, &s->last_rycr);
1234
    qemu_put_be32s(f, &s->last_swcr);
1235
    qemu_put_be32s(f, &s->last_rtcpicr);
1236
    qemu_put_be64s(f, (uint64_t *) &s->last_hz);
1237
    qemu_put_be64s(f, (uint64_t *) &s->last_sw);
1238
    qemu_put_be64s(f, (uint64_t *) &s->last_pi);
1239
}
1240

    
1241
static int pxa2xx_rtc_load(QEMUFile *f, void *opaque, int version_id)
1242
{
1243
    struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
1244

    
1245
    qemu_get_be32s(f, &s->rttr);
1246
    qemu_get_be32s(f, &s->rtsr);
1247
    qemu_get_be32s(f, &s->rtar);
1248
    qemu_get_be32s(f, &s->rdar1);
1249
    qemu_get_be32s(f, &s->rdar2);
1250
    qemu_get_be32s(f, &s->ryar1);
1251
    qemu_get_be32s(f, &s->ryar2);
1252
    qemu_get_be32s(f, &s->swar1);
1253
    qemu_get_be32s(f, &s->swar2);
1254
    qemu_get_be32s(f, &s->piar);
1255
    qemu_get_be32s(f, &s->last_rcnr);
1256
    qemu_get_be32s(f, &s->last_rdcr);
1257
    qemu_get_be32s(f, &s->last_rycr);
1258
    qemu_get_be32s(f, &s->last_swcr);
1259
    qemu_get_be32s(f, &s->last_rtcpicr);
1260
    qemu_get_be64s(f, (uint64_t *) &s->last_hz);
1261
    qemu_get_be64s(f, (uint64_t *) &s->last_sw);
1262
    qemu_get_be64s(f, (uint64_t *) &s->last_pi);
1263

    
1264
    pxa2xx_rtc_alarm_update(s, s->rtsr);
1265

    
1266
    return 0;
1267
}
1268

    
1269
/* I2C Interface */
1270
struct pxa2xx_i2c_s {
1271
    i2c_slave slave;
1272
    i2c_bus *bus;
1273
    target_phys_addr_t base;
1274
    qemu_irq irq;
1275

    
1276
    uint16_t control;
1277
    uint16_t status;
1278
    uint8_t ibmr;
1279
    uint8_t data;
1280
};
1281

    
1282
#define IBMR        0x80        /* I2C Bus Monitor register */
1283
#define IDBR        0x88        /* I2C Data Buffer register */
1284
#define ICR        0x90        /* I2C Control register */
1285
#define ISR        0x98        /* I2C Status register */
1286
#define ISAR        0xa0        /* I2C Slave Address register */
1287

    
1288
static void pxa2xx_i2c_update(struct pxa2xx_i2c_s *s)
1289
{
1290
    uint16_t level = 0;
1291
    level |= s->status & s->control & (1 << 10);                /* BED */
1292
    level |= (s->status & (1 << 7)) && (s->control & (1 << 9));        /* IRF */
1293
    level |= (s->status & (1 << 6)) && (s->control & (1 << 8));        /* ITE */
1294
    level |= s->status & (1 << 9);                                /* SAD */
1295
    qemu_set_irq(s->irq, !!level);
1296
}
1297

    
1298
/* These are only stubs now.  */
1299
static void pxa2xx_i2c_event(i2c_slave *i2c, enum i2c_event event)
1300
{
1301
    struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *) i2c;
1302

    
1303
    switch (event) {
1304
    case I2C_START_SEND:
1305
        s->status |= (1 << 9);                                /* set SAD */
1306
        s->status &= ~(1 << 0);                                /* clear RWM */
1307
        break;
1308
    case I2C_START_RECV:
1309
        s->status |= (1 << 9);                                /* set SAD */
1310
        s->status |= 1 << 0;                                /* set RWM */
1311
        break;
1312
    case I2C_FINISH:
1313
        s->status |= (1 << 4);                                /* set SSD */
1314
        break;
1315
    case I2C_NACK:
1316
        s->status |= 1 << 1;                                /* set ACKNAK */
1317
        break;
1318
    }
1319
    pxa2xx_i2c_update(s);
1320
}
1321

    
1322
static int pxa2xx_i2c_rx(i2c_slave *i2c)
1323
{
1324
    struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *) i2c;
1325
    if ((s->control & (1 << 14)) || !(s->control & (1 << 6)))
1326
        return 0;
1327

    
1328
    if (s->status & (1 << 0)) {                        /* RWM */
1329
        s->status |= 1 << 6;                        /* set ITE */
1330
    }
1331
    pxa2xx_i2c_update(s);
1332

    
1333
    return s->data;
1334
}
1335

    
1336
static int pxa2xx_i2c_tx(i2c_slave *i2c, uint8_t data)
1337
{
1338
    struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *) i2c;
1339
    if ((s->control & (1 << 14)) || !(s->control & (1 << 6)))
1340
        return 1;
1341

    
1342
    if (!(s->status & (1 << 0))) {                /* RWM */
1343
        s->status |= 1 << 7;                        /* set IRF */
1344
        s->data = data;
1345
    }
1346
    pxa2xx_i2c_update(s);
1347

    
1348
    return 1;
1349
}
1350

    
1351
static uint32_t pxa2xx_i2c_read(void *opaque, target_phys_addr_t addr)
1352
{
1353
    struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *) opaque;
1354
    addr -= s->base;
1355

    
1356
    switch (addr) {
1357
    case ICR:
1358
        return s->control;
1359
    case ISR:
1360
        return s->status | (i2c_bus_busy(s->bus) << 2);
1361
    case ISAR:
1362
        return s->slave.address;
1363
    case IDBR:
1364
        return s->data;
1365
    case IBMR:
1366
        if (s->status & (1 << 2))
1367
            s->ibmr ^= 3;        /* Fake SCL and SDA pin changes */
1368
        else
1369
            s->ibmr = 0;
1370
        return s->ibmr;
1371
    default:
1372
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1373
        break;
1374
    }
1375
    return 0;
1376
}
1377

    
1378
static void pxa2xx_i2c_write(void *opaque, target_phys_addr_t addr,
1379
                uint32_t value)
1380
{
1381
    struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *) opaque;
1382
    int ack;
1383
    addr -= s->base;
1384

    
1385
    switch (addr) {
1386
    case ICR:
1387
        s->control = value & 0xfff7;
1388
        if ((value & (1 << 3)) && (value & (1 << 6))) {        /* TB and IUE */
1389
            /* TODO: slave mode */
1390
            if (value & (1 << 0)) {                        /* START condition */
1391
                if (s->data & 1)
1392
                    s->status |= 1 << 0;                /* set RWM */
1393
                else
1394
                    s->status &= ~(1 << 0);                /* clear RWM */
1395
                ack = !i2c_start_transfer(s->bus, s->data >> 1, s->data & 1);
1396
            } else {
1397
                if (s->status & (1 << 0)) {                /* RWM */
1398
                    s->data = i2c_recv(s->bus);
1399
                    if (value & (1 << 2))                /* ACKNAK */
1400
                        i2c_nack(s->bus);
1401
                    ack = 1;
1402
                } else
1403
                    ack = !i2c_send(s->bus, s->data);
1404
            }
1405

    
1406
            if (value & (1 << 1))                        /* STOP condition */
1407
                i2c_end_transfer(s->bus);
1408

    
1409
            if (ack) {
1410
                if (value & (1 << 0))                        /* START condition */
1411
                    s->status |= 1 << 6;                /* set ITE */
1412
                else
1413
                    if (s->status & (1 << 0))                /* RWM */
1414
                        s->status |= 1 << 7;                /* set IRF */
1415
                    else
1416
                        s->status |= 1 << 6;                /* set ITE */
1417
                s->status &= ~(1 << 1);                        /* clear ACKNAK */
1418
            } else {
1419
                s->status |= 1 << 6;                        /* set ITE */
1420
                s->status |= 1 << 10;                        /* set BED */
1421
                s->status |= 1 << 1;                        /* set ACKNAK */
1422
            }
1423
        }
1424
        if (!(value & (1 << 3)) && (value & (1 << 6)))        /* !TB and IUE */
1425
            if (value & (1 << 4))                        /* MA */
1426
                i2c_end_transfer(s->bus);
1427
        pxa2xx_i2c_update(s);
1428
        break;
1429

    
1430
    case ISR:
1431
        s->status &= ~(value & 0x07f0);
1432
        pxa2xx_i2c_update(s);
1433
        break;
1434

    
1435
    case ISAR:
1436
        i2c_set_slave_address(&s->slave, value & 0x7f);
1437
        break;
1438

    
1439
    case IDBR:
1440
        s->data = value & 0xff;
1441
        break;
1442

    
1443
    default:
1444
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1445
    }
1446
}
1447

    
1448
static CPUReadMemoryFunc *pxa2xx_i2c_readfn[] = {
1449
    pxa2xx_i2c_read,
1450
    pxa2xx_i2c_read,
1451
    pxa2xx_i2c_read,
1452
};
1453

    
1454
static CPUWriteMemoryFunc *pxa2xx_i2c_writefn[] = {
1455
    pxa2xx_i2c_write,
1456
    pxa2xx_i2c_write,
1457
    pxa2xx_i2c_write,
1458
};
1459

    
1460
static void pxa2xx_i2c_save(QEMUFile *f, void *opaque)
1461
{
1462
    struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *) opaque;
1463

    
1464
    qemu_put_be16s(f, &s->control);
1465
    qemu_put_be16s(f, &s->status);
1466
    qemu_put_8s(f, &s->ibmr);
1467
    qemu_put_8s(f, &s->data);
1468

    
1469
    i2c_slave_save(f, &s->slave);
1470
}
1471

    
1472
static int pxa2xx_i2c_load(QEMUFile *f, void *opaque, int version_id)
1473
{
1474
    struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *) opaque;
1475

    
1476
    if (version_id != 1)
1477
        return -EINVAL;
1478

    
1479
    qemu_get_be16s(f, &s->control);
1480
    qemu_get_be16s(f, &s->status);
1481
    qemu_get_8s(f, &s->ibmr);
1482
    qemu_get_8s(f, &s->data);
1483

    
1484
    i2c_slave_load(f, &s->slave);
1485
    return 0;
1486
}
1487

    
1488
struct pxa2xx_i2c_s *pxa2xx_i2c_init(target_phys_addr_t base,
1489
                qemu_irq irq, uint32_t page_size)
1490
{
1491
    int iomemtype;
1492
    /* FIXME: Should the slave device really be on a separate bus?  */
1493
    struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *)
1494
            i2c_slave_init(i2c_init_bus(), 0, sizeof(struct pxa2xx_i2c_s));
1495

    
1496
    s->base = base;
1497
    s->irq = irq;
1498
    s->slave.event = pxa2xx_i2c_event;
1499
    s->slave.recv = pxa2xx_i2c_rx;
1500
    s->slave.send = pxa2xx_i2c_tx;
1501
    s->bus = i2c_init_bus();
1502

    
1503
    iomemtype = cpu_register_io_memory(0, pxa2xx_i2c_readfn,
1504
                    pxa2xx_i2c_writefn, s);
1505
    cpu_register_physical_memory(s->base & ~page_size, page_size, iomemtype);
1506

    
1507
    register_savevm("pxa2xx_i2c", base, 1,
1508
                    pxa2xx_i2c_save, pxa2xx_i2c_load, s);
1509

    
1510
    return s;
1511
}
1512

    
1513
i2c_bus *pxa2xx_i2c_bus(struct pxa2xx_i2c_s *s)
1514
{
1515
    return s->bus;
1516
}
1517

    
1518
/* PXA Inter-IC Sound Controller */
1519
static void pxa2xx_i2s_reset(struct pxa2xx_i2s_s *i2s)
1520
{
1521
    i2s->rx_len = 0;
1522
    i2s->tx_len = 0;
1523
    i2s->fifo_len = 0;
1524
    i2s->clk = 0x1a;
1525
    i2s->control[0] = 0x00;
1526
    i2s->control[1] = 0x00;
1527
    i2s->status = 0x00;
1528
    i2s->mask = 0x00;
1529
}
1530

    
1531
#define SACR_TFTH(val)        ((val >> 8) & 0xf)
1532
#define SACR_RFTH(val)        ((val >> 12) & 0xf)
1533
#define SACR_DREC(val)        (val & (1 << 3))
1534
#define SACR_DPRL(val)        (val & (1 << 4))
1535

    
1536
static inline void pxa2xx_i2s_update(struct pxa2xx_i2s_s *i2s)
1537
{
1538
    int rfs, tfs;
1539
    rfs = SACR_RFTH(i2s->control[0]) < i2s->rx_len &&
1540
            !SACR_DREC(i2s->control[1]);
1541
    tfs = (i2s->tx_len || i2s->fifo_len < SACR_TFTH(i2s->control[0])) &&
1542
            i2s->enable && !SACR_DPRL(i2s->control[1]);
1543

    
1544
    pxa2xx_dma_request(i2s->dma, PXA2XX_RX_RQ_I2S, rfs);
1545
    pxa2xx_dma_request(i2s->dma, PXA2XX_TX_RQ_I2S, tfs);
1546

    
1547
    i2s->status &= 0xe0;
1548
    if (i2s->fifo_len < 16 || !i2s->enable)
1549
        i2s->status |= 1 << 0;                        /* TNF */
1550
    if (i2s->rx_len)
1551
        i2s->status |= 1 << 1;                        /* RNE */
1552
    if (i2s->enable)
1553
        i2s->status |= 1 << 2;                        /* BSY */
1554
    if (tfs)
1555
        i2s->status |= 1 << 3;                        /* TFS */
1556
    if (rfs)
1557
        i2s->status |= 1 << 4;                        /* RFS */
1558
    if (!(i2s->tx_len && i2s->enable))
1559
        i2s->status |= i2s->fifo_len << 8;        /* TFL */
1560
    i2s->status |= MAX(i2s->rx_len, 0xf) << 12;        /* RFL */
1561

    
1562
    qemu_set_irq(i2s->irq, i2s->status & i2s->mask);
1563
}
1564

    
1565
#define SACR0        0x00        /* Serial Audio Global Control register */
1566
#define SACR1        0x04        /* Serial Audio I2S/MSB-Justified Control register */
1567
#define SASR0        0x0c        /* Serial Audio Interface and FIFO Status register */
1568
#define SAIMR        0x14        /* Serial Audio Interrupt Mask register */
1569
#define SAICR        0x18        /* Serial Audio Interrupt Clear register */
1570
#define SADIV        0x60        /* Serial Audio Clock Divider register */
1571
#define SADR        0x80        /* Serial Audio Data register */
1572

    
1573
static uint32_t pxa2xx_i2s_read(void *opaque, target_phys_addr_t addr)
1574
{
1575
    struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *) opaque;
1576
    addr -= s->base;
1577

    
1578
    switch (addr) {
1579
    case SACR0:
1580
        return s->control[0];
1581
    case SACR1:
1582
        return s->control[1];
1583
    case SASR0:
1584
        return s->status;
1585
    case SAIMR:
1586
        return s->mask;
1587
    case SAICR:
1588
        return 0;
1589
    case SADIV:
1590
        return s->clk;
1591
    case SADR:
1592
        if (s->rx_len > 0) {
1593
            s->rx_len --;
1594
            pxa2xx_i2s_update(s);
1595
            return s->codec_in(s->opaque);
1596
        }
1597
        return 0;
1598
    default:
1599
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1600
        break;
1601
    }
1602
    return 0;
1603
}
1604

    
1605
static void pxa2xx_i2s_write(void *opaque, target_phys_addr_t addr,
1606
                uint32_t value)
1607
{
1608
    struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *) opaque;
1609
    uint32_t *sample;
1610
    addr -= s->base;
1611

    
1612
    switch (addr) {
1613
    case SACR0:
1614
        if (value & (1 << 3))                                /* RST */
1615
            pxa2xx_i2s_reset(s);
1616
        s->control[0] = value & 0xff3d;
1617
        if (!s->enable && (value & 1) && s->tx_len) {        /* ENB */
1618
            for (sample = s->fifo; s->fifo_len > 0; s->fifo_len --, sample ++)
1619
                s->codec_out(s->opaque, *sample);
1620
            s->status &= ~(1 << 7);                        /* I2SOFF */
1621
        }
1622
        if (value & (1 << 4))                                /* EFWR */
1623
            printf("%s: Attempt to use special function\n", __FUNCTION__);
1624
        s->enable = ((value ^ 4) & 5) == 5;                /* ENB && !RST*/
1625
        pxa2xx_i2s_update(s);
1626
        break;
1627
    case SACR1:
1628
        s->control[1] = value & 0x0039;
1629
        if (value & (1 << 5))                                /* ENLBF */
1630
            printf("%s: Attempt to use loopback function\n", __FUNCTION__);
1631
        if (value & (1 << 4))                                /* DPRL */
1632
            s->fifo_len = 0;
1633
        pxa2xx_i2s_update(s);
1634
        break;
1635
    case SAIMR:
1636
        s->mask = value & 0x0078;
1637
        pxa2xx_i2s_update(s);
1638
        break;
1639
    case SAICR:
1640
        s->status &= ~(value & (3 << 5));
1641
        pxa2xx_i2s_update(s);
1642
        break;
1643
    case SADIV:
1644
        s->clk = value & 0x007f;
1645
        break;
1646
    case SADR:
1647
        if (s->tx_len && s->enable) {
1648
            s->tx_len --;
1649
            pxa2xx_i2s_update(s);
1650
            s->codec_out(s->opaque, value);
1651
        } else if (s->fifo_len < 16) {
1652
            s->fifo[s->fifo_len ++] = value;
1653
            pxa2xx_i2s_update(s);
1654
        }
1655
        break;
1656
    default:
1657
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1658
    }
1659
}
1660

    
1661
static CPUReadMemoryFunc *pxa2xx_i2s_readfn[] = {
1662
    pxa2xx_i2s_read,
1663
    pxa2xx_i2s_read,
1664
    pxa2xx_i2s_read,
1665
};
1666

    
1667
static CPUWriteMemoryFunc *pxa2xx_i2s_writefn[] = {
1668
    pxa2xx_i2s_write,
1669
    pxa2xx_i2s_write,
1670
    pxa2xx_i2s_write,
1671
};
1672

    
1673
static void pxa2xx_i2s_save(QEMUFile *f, void *opaque)
1674
{
1675
    struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *) opaque;
1676

    
1677
    qemu_put_be32s(f, &s->control[0]);
1678
    qemu_put_be32s(f, &s->control[1]);
1679
    qemu_put_be32s(f, &s->status);
1680
    qemu_put_be32s(f, &s->mask);
1681
    qemu_put_be32s(f, &s->clk);
1682

    
1683
    qemu_put_be32(f, s->enable);
1684
    qemu_put_be32(f, s->rx_len);
1685
    qemu_put_be32(f, s->tx_len);
1686
    qemu_put_be32(f, s->fifo_len);
1687
}
1688

    
1689
static int pxa2xx_i2s_load(QEMUFile *f, void *opaque, int version_id)
1690
{
1691
    struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *) opaque;
1692

    
1693
    qemu_get_be32s(f, &s->control[0]);
1694
    qemu_get_be32s(f, &s->control[1]);
1695
    qemu_get_be32s(f, &s->status);
1696
    qemu_get_be32s(f, &s->mask);
1697
    qemu_get_be32s(f, &s->clk);
1698

    
1699
    s->enable = qemu_get_be32(f);
1700
    s->rx_len = qemu_get_be32(f);
1701
    s->tx_len = qemu_get_be32(f);
1702
    s->fifo_len = qemu_get_be32(f);
1703

    
1704
    return 0;
1705
}
1706

    
1707
static void pxa2xx_i2s_data_req(void *opaque, int tx, int rx)
1708
{
1709
    struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *) opaque;
1710
    uint32_t *sample;
1711

    
1712
    /* Signal FIFO errors */
1713
    if (s->enable && s->tx_len)
1714
        s->status |= 1 << 5;                /* TUR */
1715
    if (s->enable && s->rx_len)
1716
        s->status |= 1 << 6;                /* ROR */
1717

    
1718
    /* Should be tx - MIN(tx, s->fifo_len) but we don't really need to
1719
     * handle the cases where it makes a difference.  */
1720
    s->tx_len = tx - s->fifo_len;
1721
    s->rx_len = rx;
1722
    /* Note that is s->codec_out wasn't set, we wouldn't get called.  */
1723
    if (s->enable)
1724
        for (sample = s->fifo; s->fifo_len; s->fifo_len --, sample ++)
1725
            s->codec_out(s->opaque, *sample);
1726
    pxa2xx_i2s_update(s);
1727
}
1728

    
1729
static struct pxa2xx_i2s_s *pxa2xx_i2s_init(target_phys_addr_t base,
1730
                qemu_irq irq, struct pxa2xx_dma_state_s *dma)
1731
{
1732
    int iomemtype;
1733
    struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *)
1734
            qemu_mallocz(sizeof(struct pxa2xx_i2s_s));
1735

    
1736
    s->base = base;
1737
    s->irq = irq;
1738
    s->dma = dma;
1739
    s->data_req = pxa2xx_i2s_data_req;
1740

    
1741
    pxa2xx_i2s_reset(s);
1742

    
1743
    iomemtype = cpu_register_io_memory(0, pxa2xx_i2s_readfn,
1744
                    pxa2xx_i2s_writefn, s);
1745
    cpu_register_physical_memory(s->base & 0xfff00000, 0x100000, iomemtype);
1746

    
1747
    register_savevm("pxa2xx_i2s", base, 0,
1748
                    pxa2xx_i2s_save, pxa2xx_i2s_load, s);
1749

    
1750
    return s;
1751
}
1752

    
1753
/* PXA Fast Infra-red Communications Port */
1754
struct pxa2xx_fir_s {
1755
    target_phys_addr_t base;
1756
    qemu_irq irq;
1757
    struct pxa2xx_dma_state_s *dma;
1758
    int enable;
1759
    CharDriverState *chr;
1760

    
1761
    uint8_t control[3];
1762
    uint8_t status[2];
1763

    
1764
    int rx_len;
1765
    int rx_start;
1766
    uint8_t rx_fifo[64];
1767
};
1768

    
1769
static void pxa2xx_fir_reset(struct pxa2xx_fir_s *s)
1770
{
1771
    s->control[0] = 0x00;
1772
    s->control[1] = 0x00;
1773
    s->control[2] = 0x00;
1774
    s->status[0] = 0x00;
1775
    s->status[1] = 0x00;
1776
    s->enable = 0;
1777
}
1778

    
1779
static inline void pxa2xx_fir_update(struct pxa2xx_fir_s *s)
1780
{
1781
    static const int tresh[4] = { 8, 16, 32, 0 };
1782
    int intr = 0;
1783
    if ((s->control[0] & (1 << 4)) &&                        /* RXE */
1784
                    s->rx_len >= tresh[s->control[2] & 3])        /* TRIG */
1785
        s->status[0] |= 1 << 4;                                /* RFS */
1786
    else
1787
        s->status[0] &= ~(1 << 4);                        /* RFS */
1788
    if (s->control[0] & (1 << 3))                        /* TXE */
1789
        s->status[0] |= 1 << 3;                                /* TFS */
1790
    else
1791
        s->status[0] &= ~(1 << 3);                        /* TFS */
1792
    if (s->rx_len)
1793
        s->status[1] |= 1 << 2;                                /* RNE */
1794
    else
1795
        s->status[1] &= ~(1 << 2);                        /* RNE */
1796
    if (s->control[0] & (1 << 4))                        /* RXE */
1797
        s->status[1] |= 1 << 0;                                /* RSY */
1798
    else
1799
        s->status[1] &= ~(1 << 0);                        /* RSY */
1800

    
1801
    intr |= (s->control[0] & (1 << 5)) &&                /* RIE */
1802
            (s->status[0] & (1 << 4));                        /* RFS */
1803
    intr |= (s->control[0] & (1 << 6)) &&                /* TIE */
1804
            (s->status[0] & (1 << 3));                        /* TFS */
1805
    intr |= (s->control[2] & (1 << 4)) &&                /* TRAIL */
1806
            (s->status[0] & (1 << 6));                        /* EOC */
1807
    intr |= (s->control[0] & (1 << 2)) &&                /* TUS */
1808
            (s->status[0] & (1 << 1));                        /* TUR */
1809
    intr |= s->status[0] & 0x25;                        /* FRE, RAB, EIF */
1810

    
1811
    pxa2xx_dma_request(s->dma, PXA2XX_RX_RQ_ICP, (s->status[0] >> 4) & 1);
1812
    pxa2xx_dma_request(s->dma, PXA2XX_TX_RQ_ICP, (s->status[0] >> 3) & 1);
1813

    
1814
    qemu_set_irq(s->irq, intr && s->enable);
1815
}
1816

    
1817
#define ICCR0        0x00        /* FICP Control register 0 */
1818
#define ICCR1        0x04        /* FICP Control register 1 */
1819
#define ICCR2        0x08        /* FICP Control register 2 */
1820
#define ICDR        0x0c        /* FICP Data register */
1821
#define ICSR0        0x14        /* FICP Status register 0 */
1822
#define ICSR1        0x18        /* FICP Status register 1 */
1823
#define ICFOR        0x1c        /* FICP FIFO Occupancy Status register */
1824

    
1825
static uint32_t pxa2xx_fir_read(void *opaque, target_phys_addr_t addr)
1826
{
1827
    struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque;
1828
    uint8_t ret;
1829
    addr -= s->base;
1830

    
1831
    switch (addr) {
1832
    case ICCR0:
1833
        return s->control[0];
1834
    case ICCR1:
1835
        return s->control[1];
1836
    case ICCR2:
1837
        return s->control[2];
1838
    case ICDR:
1839
        s->status[0] &= ~0x01;
1840
        s->status[1] &= ~0x72;
1841
        if (s->rx_len) {
1842
            s->rx_len --;
1843
            ret = s->rx_fifo[s->rx_start ++];
1844
            s->rx_start &= 63;
1845
            pxa2xx_fir_update(s);
1846
            return ret;
1847
        }
1848
        printf("%s: Rx FIFO underrun.\n", __FUNCTION__);
1849
        break;
1850
    case ICSR0:
1851
        return s->status[0];
1852
    case ICSR1:
1853
        return s->status[1] | (1 << 3);                        /* TNF */
1854
    case ICFOR:
1855
        return s->rx_len;
1856
    default:
1857
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1858
        break;
1859
    }
1860
    return 0;
1861
}
1862

    
1863
static void pxa2xx_fir_write(void *opaque, target_phys_addr_t addr,
1864
                uint32_t value)
1865
{
1866
    struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque;
1867
    uint8_t ch;
1868
    addr -= s->base;
1869

    
1870
    switch (addr) {
1871
    case ICCR0:
1872
        s->control[0] = value;
1873
        if (!(value & (1 << 4)))                        /* RXE */
1874
            s->rx_len = s->rx_start = 0;
1875
        if (!(value & (1 << 3)))                        /* TXE */
1876
            /* Nop */;
1877
        s->enable = value & 1;                                /* ITR */
1878
        if (!s->enable)
1879
            s->status[0] = 0;
1880
        pxa2xx_fir_update(s);
1881
        break;
1882
    case ICCR1:
1883
        s->control[1] = value;
1884
        break;
1885
    case ICCR2:
1886
        s->control[2] = value & 0x3f;
1887
        pxa2xx_fir_update(s);
1888
        break;
1889
    case ICDR:
1890
        if (s->control[2] & (1 << 2))                        /* TXP */
1891
            ch = value;
1892
        else
1893
            ch = ~value;
1894
        if (s->chr && s->enable && (s->control[0] & (1 << 3)))        /* TXE */
1895
            qemu_chr_write(s->chr, &ch, 1);
1896
        break;
1897
    case ICSR0:
1898
        s->status[0] &= ~(value & 0x66);
1899
        pxa2xx_fir_update(s);
1900
        break;
1901
    case ICFOR:
1902
        break;
1903
    default:
1904
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1905
    }
1906
}
1907

    
1908
static CPUReadMemoryFunc *pxa2xx_fir_readfn[] = {
1909
    pxa2xx_fir_read,
1910
    pxa2xx_fir_read,
1911
    pxa2xx_fir_read,
1912
};
1913

    
1914
static CPUWriteMemoryFunc *pxa2xx_fir_writefn[] = {
1915
    pxa2xx_fir_write,
1916
    pxa2xx_fir_write,
1917
    pxa2xx_fir_write,
1918
};
1919

    
1920
static int pxa2xx_fir_is_empty(void *opaque)
1921
{
1922
    struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque;
1923
    return (s->rx_len < 64);
1924
}
1925

    
1926
static void pxa2xx_fir_rx(void *opaque, const uint8_t *buf, int size)
1927
{
1928
    struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque;
1929
    if (!(s->control[0] & (1 << 4)))                        /* RXE */
1930
        return;
1931

    
1932
    while (size --) {
1933
        s->status[1] |= 1 << 4;                                /* EOF */
1934
        if (s->rx_len >= 64) {
1935
            s->status[1] |= 1 << 6;                        /* ROR */
1936
            break;
1937
        }
1938

    
1939
        if (s->control[2] & (1 << 3))                        /* RXP */
1940
            s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = *(buf ++);
1941
        else
1942
            s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = ~*(buf ++);
1943
    }
1944

    
1945
    pxa2xx_fir_update(s);
1946
}
1947

    
1948
static void pxa2xx_fir_event(void *opaque, int event)
1949
{
1950
}
1951

    
1952
static void pxa2xx_fir_save(QEMUFile *f, void *opaque)
1953
{
1954
    struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque;
1955
    int i;
1956

    
1957
    qemu_put_be32(f, s->enable);
1958

    
1959
    qemu_put_8s(f, &s->control[0]);
1960
    qemu_put_8s(f, &s->control[1]);
1961
    qemu_put_8s(f, &s->control[2]);
1962
    qemu_put_8s(f, &s->status[0]);
1963
    qemu_put_8s(f, &s->status[1]);
1964

    
1965
    qemu_put_byte(f, s->rx_len);
1966
    for (i = 0; i < s->rx_len; i ++)
1967
        qemu_put_byte(f, s->rx_fifo[(s->rx_start + i) & 63]);
1968
}
1969

    
1970
static int pxa2xx_fir_load(QEMUFile *f, void *opaque, int version_id)
1971
{
1972
    struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque;
1973
    int i;
1974

    
1975
    s->enable = qemu_get_be32(f);
1976

    
1977
    qemu_get_8s(f, &s->control[0]);
1978
    qemu_get_8s(f, &s->control[1]);
1979
    qemu_get_8s(f, &s->control[2]);
1980
    qemu_get_8s(f, &s->status[0]);
1981
    qemu_get_8s(f, &s->status[1]);
1982

    
1983
    s->rx_len = qemu_get_byte(f);
1984
    s->rx_start = 0;
1985
    for (i = 0; i < s->rx_len; i ++)
1986
        s->rx_fifo[i] = qemu_get_byte(f);
1987

    
1988
    return 0;
1989
}
1990

    
1991
static struct pxa2xx_fir_s *pxa2xx_fir_init(target_phys_addr_t base,
1992
                qemu_irq irq, struct pxa2xx_dma_state_s *dma,
1993
                CharDriverState *chr)
1994
{
1995
    int iomemtype;
1996
    struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *)
1997
            qemu_mallocz(sizeof(struct pxa2xx_fir_s));
1998

    
1999
    s->base = base;
2000
    s->irq = irq;
2001
    s->dma = dma;
2002
    s->chr = chr;
2003

    
2004
    pxa2xx_fir_reset(s);
2005

    
2006
    iomemtype = cpu_register_io_memory(0, pxa2xx_fir_readfn,
2007
                    pxa2xx_fir_writefn, s);
2008
    cpu_register_physical_memory(s->base, 0x1000, iomemtype);
2009

    
2010
    if (chr)
2011
        qemu_chr_add_handlers(chr, pxa2xx_fir_is_empty,
2012
                        pxa2xx_fir_rx, pxa2xx_fir_event, s);
2013

    
2014
    register_savevm("pxa2xx_fir", 0, 0, pxa2xx_fir_save, pxa2xx_fir_load, s);
2015

    
2016
    return s;
2017
}
2018

    
2019
static void pxa2xx_reset(void *opaque, int line, int level)
2020
{
2021
    struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
2022

    
2023
    if (level && (s->pm_regs[PCFR >> 2] & 0x10)) {        /* GPR_EN */
2024
        cpu_reset(s->env);
2025
        /* TODO: reset peripherals */
2026
    }
2027
}
2028

    
2029
/* Initialise a PXA270 integrated chip (ARM based core).  */
2030
struct pxa2xx_state_s *pxa270_init(unsigned int sdram_size,
2031
                DisplayState *ds, const char *revision)
2032
{
2033
    struct pxa2xx_state_s *s;
2034
    struct pxa2xx_ssp_s *ssp;
2035
    int iomemtype, i;
2036
    int index;
2037
    s = (struct pxa2xx_state_s *) qemu_mallocz(sizeof(struct pxa2xx_state_s));
2038

    
2039
    if (revision && strncmp(revision, "pxa27", 5)) {
2040
        fprintf(stderr, "Machine requires a PXA27x processor.\n");
2041
        exit(1);
2042
    }
2043
    if (!revision)
2044
        revision = "pxa270";
2045
    
2046
    s->env = cpu_init(revision);
2047
    if (!s->env) {
2048
        fprintf(stderr, "Unable to find CPU definition\n");
2049
        exit(1);
2050
    }
2051
    s->reset = qemu_allocate_irqs(pxa2xx_reset, s, 1)[0];
2052

    
2053
    /* SDRAM & Internal Memory Storage */
2054
    cpu_register_physical_memory(PXA2XX_SDRAM_BASE,
2055
                    sdram_size, qemu_ram_alloc(sdram_size) | IO_MEM_RAM);
2056
    cpu_register_physical_memory(PXA2XX_INTERNAL_BASE,
2057
                    0x40000, qemu_ram_alloc(0x40000) | IO_MEM_RAM);
2058

    
2059
    s->pic = pxa2xx_pic_init(0x40d00000, s->env);
2060

    
2061
    s->dma = pxa27x_dma_init(0x40000000, s->pic[PXA2XX_PIC_DMA]);
2062

    
2063
    pxa27x_timer_init(0x40a00000, &s->pic[PXA2XX_PIC_OST_0],
2064
                    s->pic[PXA27X_PIC_OST_4_11]);
2065

    
2066
    s->gpio = pxa2xx_gpio_init(0x40e00000, s->env, s->pic, 121);
2067

    
2068
    index = drive_get_index(IF_SD, 0, 0);
2069
    if (index == -1) {
2070
        fprintf(stderr, "qemu: missing SecureDigital device\n");
2071
        exit(1);
2072
    }
2073
    s->mmc = pxa2xx_mmci_init(0x41100000, drives_table[index].bdrv,
2074
                              s->pic[PXA2XX_PIC_MMC], s->dma);
2075

    
2076
    for (i = 0; pxa270_serial[i].io_base; i ++)
2077
        if (serial_hds[i])
2078
            serial_mm_init(pxa270_serial[i].io_base, 2,
2079
                           s->pic[pxa270_serial[i].irqn], 14857000/16,
2080
                           serial_hds[i], 1);
2081
        else
2082
            break;
2083
    if (serial_hds[i])
2084
        s->fir = pxa2xx_fir_init(0x40800000, s->pic[PXA2XX_PIC_ICP],
2085
                        s->dma, serial_hds[i]);
2086

    
2087
    if (ds)
2088
        s->lcd = pxa2xx_lcdc_init(0x44000000, s->pic[PXA2XX_PIC_LCD], ds);
2089

    
2090
    s->cm_base = 0x41300000;
2091
    s->cm_regs[CCCR >> 2] = 0x02000210;        /* 416.0 MHz */
2092
    s->clkcfg = 0x00000009;                /* Turbo mode active */
2093
    iomemtype = cpu_register_io_memory(0, pxa2xx_cm_readfn,
2094
                    pxa2xx_cm_writefn, s);
2095
    cpu_register_physical_memory(s->cm_base, 0x1000, iomemtype);
2096
    register_savevm("pxa2xx_cm", 0, 0, pxa2xx_cm_save, pxa2xx_cm_load, s);
2097

    
2098
    cpu_arm_set_cp_io(s->env, 14, pxa2xx_cp14_read, pxa2xx_cp14_write, s);
2099

    
2100
    s->mm_base = 0x48000000;
2101
    s->mm_regs[MDMRS >> 2] = 0x00020002;
2102
    s->mm_regs[MDREFR >> 2] = 0x03ca4000;
2103
    s->mm_regs[MECR >> 2] = 0x00000001;        /* Two PC Card sockets */
2104
    iomemtype = cpu_register_io_memory(0, pxa2xx_mm_readfn,
2105
                    pxa2xx_mm_writefn, s);
2106
    cpu_register_physical_memory(s->mm_base, 0x1000, iomemtype);
2107
    register_savevm("pxa2xx_mm", 0, 0, pxa2xx_mm_save, pxa2xx_mm_load, s);
2108

    
2109
    s->pm_base = 0x40f00000;
2110
    iomemtype = cpu_register_io_memory(0, pxa2xx_pm_readfn,
2111
                    pxa2xx_pm_writefn, s);
2112
    cpu_register_physical_memory(s->pm_base, 0x100, iomemtype);
2113
    register_savevm("pxa2xx_pm", 0, 0, pxa2xx_pm_save, pxa2xx_pm_load, s);
2114

    
2115
    for (i = 0; pxa27x_ssp[i].io_base; i ++);
2116
    s->ssp = (struct pxa2xx_ssp_s **)
2117
            qemu_mallocz(sizeof(struct pxa2xx_ssp_s *) * i);
2118
    ssp = (struct pxa2xx_ssp_s *)
2119
            qemu_mallocz(sizeof(struct pxa2xx_ssp_s) * i);
2120
    for (i = 0; pxa27x_ssp[i].io_base; i ++) {
2121
        s->ssp[i] = &ssp[i];
2122
        ssp[i].base = pxa27x_ssp[i].io_base;
2123
        ssp[i].irq = s->pic[pxa27x_ssp[i].irqn];
2124

    
2125
        iomemtype = cpu_register_io_memory(0, pxa2xx_ssp_readfn,
2126
                        pxa2xx_ssp_writefn, &ssp[i]);
2127
        cpu_register_physical_memory(ssp[i].base, 0x1000, iomemtype);
2128
        register_savevm("pxa2xx_ssp", i, 0,
2129
                        pxa2xx_ssp_save, pxa2xx_ssp_load, s);
2130
    }
2131

    
2132
    if (usb_enabled) {
2133
        usb_ohci_init_pxa(0x4c000000, 3, -1, s->pic[PXA2XX_PIC_USBH1]);
2134
    }
2135

    
2136
    s->pcmcia[0] = pxa2xx_pcmcia_init(0x20000000);
2137
    s->pcmcia[1] = pxa2xx_pcmcia_init(0x30000000);
2138

    
2139
    s->rtc_base = 0x40900000;
2140
    iomemtype = cpu_register_io_memory(0, pxa2xx_rtc_readfn,
2141
                    pxa2xx_rtc_writefn, s);
2142
    cpu_register_physical_memory(s->rtc_base, 0x1000, iomemtype);
2143
    pxa2xx_rtc_init(s);
2144
    register_savevm("pxa2xx_rtc", 0, 0, pxa2xx_rtc_save, pxa2xx_rtc_load, s);
2145

    
2146
    s->i2c[0] = pxa2xx_i2c_init(0x40301600, s->pic[PXA2XX_PIC_I2C], 0xffff);
2147
    s->i2c[1] = pxa2xx_i2c_init(0x40f00100, s->pic[PXA2XX_PIC_PWRI2C], 0xff);
2148

    
2149
    s->i2s = pxa2xx_i2s_init(0x40400000, s->pic[PXA2XX_PIC_I2S], s->dma);
2150

    
2151
    s->kp = pxa27x_keypad_init(0x41500000, s->pic[PXA2XX_PIC_KEYPAD]);
2152

    
2153
    /* GPIO1 resets the processor */
2154
    /* The handler can be overridden by board-specific code */
2155
    pxa2xx_gpio_out_set(s->gpio, 1, s->reset);
2156
    return s;
2157
}
2158

    
2159
/* Initialise a PXA255 integrated chip (ARM based core).  */
2160
struct pxa2xx_state_s *pxa255_init(unsigned int sdram_size,
2161
                DisplayState *ds)
2162
{
2163
    struct pxa2xx_state_s *s;
2164
    struct pxa2xx_ssp_s *ssp;
2165
    int iomemtype, i;
2166
    int index;
2167

    
2168
    s = (struct pxa2xx_state_s *) qemu_mallocz(sizeof(struct pxa2xx_state_s));
2169

    
2170
    s->env = cpu_init("pxa255");
2171
    if (!s->env) {
2172
        fprintf(stderr, "Unable to find CPU definition\n");
2173
        exit(1);
2174
    }
2175
    s->reset = qemu_allocate_irqs(pxa2xx_reset, s, 1)[0];
2176

    
2177
    /* SDRAM & Internal Memory Storage */
2178
    cpu_register_physical_memory(PXA2XX_SDRAM_BASE, sdram_size,
2179
                    qemu_ram_alloc(sdram_size) | IO_MEM_RAM);
2180
    cpu_register_physical_memory(PXA2XX_INTERNAL_BASE, PXA2XX_INTERNAL_SIZE,
2181
                    qemu_ram_alloc(PXA2XX_INTERNAL_SIZE) | IO_MEM_RAM);
2182

    
2183
    s->pic = pxa2xx_pic_init(0x40d00000, s->env);
2184

    
2185
    s->dma = pxa255_dma_init(0x40000000, s->pic[PXA2XX_PIC_DMA]);
2186

    
2187
    pxa25x_timer_init(0x40a00000, &s->pic[PXA2XX_PIC_OST_0]);
2188

    
2189
    s->gpio = pxa2xx_gpio_init(0x40e00000, s->env, s->pic, 85);
2190

    
2191
    index = drive_get_index(IF_SD, 0, 0);
2192
    if (index == -1) {
2193
        fprintf(stderr, "qemu: missing SecureDigital device\n");
2194
        exit(1);
2195
    }
2196
    s->mmc = pxa2xx_mmci_init(0x41100000, drives_table[index].bdrv,
2197
                              s->pic[PXA2XX_PIC_MMC], s->dma);
2198

    
2199
    for (i = 0; pxa255_serial[i].io_base; i ++)
2200
        if (serial_hds[i])
2201
            serial_mm_init(pxa255_serial[i].io_base, 2,
2202
                           s->pic[pxa255_serial[i].irqn], 14745600/16,
2203
                           serial_hds[i], 1);
2204
        else
2205
            break;
2206
    if (serial_hds[i])
2207
        s->fir = pxa2xx_fir_init(0x40800000, s->pic[PXA2XX_PIC_ICP],
2208
                        s->dma, serial_hds[i]);
2209

    
2210
    if (ds)
2211
        s->lcd = pxa2xx_lcdc_init(0x44000000, s->pic[PXA2XX_PIC_LCD], ds);
2212

    
2213
    s->cm_base = 0x41300000;
2214
    s->cm_regs[CCCR >> 2] = 0x02000210;        /* 416.0 MHz */
2215
    s->clkcfg = 0x00000009;                /* Turbo mode active */
2216
    iomemtype = cpu_register_io_memory(0, pxa2xx_cm_readfn,
2217
                    pxa2xx_cm_writefn, s);
2218
    cpu_register_physical_memory(s->cm_base, 0x1000, iomemtype);
2219
    register_savevm("pxa2xx_cm", 0, 0, pxa2xx_cm_save, pxa2xx_cm_load, s);
2220

    
2221
    cpu_arm_set_cp_io(s->env, 14, pxa2xx_cp14_read, pxa2xx_cp14_write, s);
2222

    
2223
    s->mm_base = 0x48000000;
2224
    s->mm_regs[MDMRS >> 2] = 0x00020002;
2225
    s->mm_regs[MDREFR >> 2] = 0x03ca4000;
2226
    s->mm_regs[MECR >> 2] = 0x00000001;        /* Two PC Card sockets */
2227
    iomemtype = cpu_register_io_memory(0, pxa2xx_mm_readfn,
2228
                    pxa2xx_mm_writefn, s);
2229
    cpu_register_physical_memory(s->mm_base, 0x1000, iomemtype);
2230
    register_savevm("pxa2xx_mm", 0, 0, pxa2xx_mm_save, pxa2xx_mm_load, s);
2231

    
2232
    s->pm_base = 0x40f00000;
2233
    iomemtype = cpu_register_io_memory(0, pxa2xx_pm_readfn,
2234
                    pxa2xx_pm_writefn, s);
2235
    cpu_register_physical_memory(s->pm_base, 0x100, iomemtype);
2236
    register_savevm("pxa2xx_pm", 0, 0, pxa2xx_pm_save, pxa2xx_pm_load, s);
2237

    
2238
    for (i = 0; pxa255_ssp[i].io_base; i ++);
2239
    s->ssp = (struct pxa2xx_ssp_s **)
2240
            qemu_mallocz(sizeof(struct pxa2xx_ssp_s *) * i);
2241
    ssp = (struct pxa2xx_ssp_s *)
2242
            qemu_mallocz(sizeof(struct pxa2xx_ssp_s) * i);
2243
    for (i = 0; pxa255_ssp[i].io_base; i ++) {
2244
        s->ssp[i] = &ssp[i];
2245
        ssp[i].base = pxa255_ssp[i].io_base;
2246
        ssp[i].irq = s->pic[pxa255_ssp[i].irqn];
2247

    
2248
        iomemtype = cpu_register_io_memory(0, pxa2xx_ssp_readfn,
2249
                        pxa2xx_ssp_writefn, &ssp[i]);
2250
        cpu_register_physical_memory(ssp[i].base, 0x1000, iomemtype);
2251
        register_savevm("pxa2xx_ssp", i, 0,
2252
                        pxa2xx_ssp_save, pxa2xx_ssp_load, s);
2253
    }
2254

    
2255
    if (usb_enabled) {
2256
        usb_ohci_init_pxa(0x4c000000, 3, -1, s->pic[PXA2XX_PIC_USBH1]);
2257
    }
2258

    
2259
    s->pcmcia[0] = pxa2xx_pcmcia_init(0x20000000);
2260
    s->pcmcia[1] = pxa2xx_pcmcia_init(0x30000000);
2261

    
2262
    s->rtc_base = 0x40900000;
2263
    iomemtype = cpu_register_io_memory(0, pxa2xx_rtc_readfn,
2264
                    pxa2xx_rtc_writefn, s);
2265
    cpu_register_physical_memory(s->rtc_base, 0x1000, iomemtype);
2266
    pxa2xx_rtc_init(s);
2267
    register_savevm("pxa2xx_rtc", 0, 0, pxa2xx_rtc_save, pxa2xx_rtc_load, s);
2268

    
2269
    s->i2c[0] = pxa2xx_i2c_init(0x40301600, s->pic[PXA2XX_PIC_I2C], 0xffff);
2270
    s->i2c[1] = pxa2xx_i2c_init(0x40f00100, s->pic[PXA2XX_PIC_PWRI2C], 0xff);
2271

    
2272
    s->i2s = pxa2xx_i2s_init(0x40400000, s->pic[PXA2XX_PIC_I2S], s->dma);
2273

    
2274
    /* GPIO1 resets the processor */
2275
    /* The handler can be overridden by board-specific code */
2276
    pxa2xx_gpio_out_set(s->gpio, 1, s->reset);
2277
    return s;
2278
}