Statistics
| Branch: | Revision:

root / hw / spapr.c @ c8787ad4

History | View | Annotate | Download (27.9 kB)

1
/*
2
 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3
 *
4
 * Copyright (c) 2004-2007 Fabrice Bellard
5
 * Copyright (c) 2007 Jocelyn Mayer
6
 * Copyright (c) 2010 David Gibson, IBM Corporation.
7
 *
8
 * Permission is hereby granted, free of charge, to any person obtaining a copy
9
 * of this software and associated documentation files (the "Software"), to deal
10
 * in the Software without restriction, including without limitation the rights
11
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12
 * copies of the Software, and to permit persons to whom the Software is
13
 * furnished to do so, subject to the following conditions:
14
 *
15
 * The above copyright notice and this permission notice shall be included in
16
 * all copies or substantial portions of the Software.
17
 *
18
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24
 * THE SOFTWARE.
25
 *
26
 */
27
#include "sysemu.h"
28
#include "hw.h"
29
#include "elf.h"
30
#include "net.h"
31
#include "blockdev.h"
32
#include "cpus.h"
33
#include "kvm.h"
34
#include "kvm_ppc.h"
35

    
36
#include "hw/boards.h"
37
#include "hw/ppc.h"
38
#include "hw/loader.h"
39

    
40
#include "hw/spapr.h"
41
#include "hw/spapr_vio.h"
42
#include "hw/spapr_pci.h"
43
#include "hw/xics.h"
44
#include "hw/msi.h"
45

    
46
#include "kvm.h"
47
#include "kvm_ppc.h"
48
#include "pci.h"
49
#include "vga-pci.h"
50

    
51
#include "exec-memory.h"
52
#include "hw/usb.h"
53

    
54
#include <libfdt.h>
55

    
56
/* SLOF memory layout:
57
 *
58
 * SLOF raw image loaded at 0, copies its romfs right below the flat
59
 * device-tree, then position SLOF itself 31M below that
60
 *
61
 * So we set FW_OVERHEAD to 40MB which should account for all of that
62
 * and more
63
 *
64
 * We load our kernel at 4M, leaving space for SLOF initial image
65
 */
66
#define FDT_MAX_SIZE            0x10000
67
#define RTAS_MAX_SIZE           0x10000
68
#define FW_MAX_SIZE             0x400000
69
#define FW_FILE_NAME            "slof.bin"
70
#define FW_OVERHEAD             0x2800000
71
#define KERNEL_LOAD_ADDR        FW_MAX_SIZE
72

    
73
#define MIN_RMA_SLOF            128UL
74

    
75
#define TIMEBASE_FREQ           512000000ULL
76

    
77
#define MAX_CPUS                256
78
#define XICS_IRQS               1024
79

    
80
#define SPAPR_PCI_BUID          0x800000020000001ULL
81
#define SPAPR_PCI_MEM_WIN_ADDR  (0x10000000000ULL + 0xA0000000)
82
#define SPAPR_PCI_MEM_WIN_SIZE  0x20000000
83
#define SPAPR_PCI_IO_WIN_ADDR   (0x10000000000ULL + 0x80000000)
84
#define SPAPR_PCI_MSI_WIN_ADDR  (0x10000000000ULL + 0x90000000)
85

    
86
#define PHANDLE_XICP            0x00001111
87

    
88
sPAPREnvironment *spapr;
89

    
90
int spapr_allocate_irq(int hint, enum xics_irq_type type)
91
{
92
    int irq;
93

    
94
    if (hint) {
95
        irq = hint;
96
        /* FIXME: we should probably check for collisions somehow */
97
    } else {
98
        irq = spapr->next_irq++;
99
    }
100

    
101
    /* Configure irq type */
102
    if (!xics_get_qirq(spapr->icp, irq)) {
103
        return 0;
104
    }
105

    
106
    xics_set_irq_type(spapr->icp, irq, type);
107

    
108
    return irq;
109
}
110

    
111
/* Allocate block of consequtive IRQs, returns a number of the first */
112
int spapr_allocate_irq_block(int num, enum xics_irq_type type)
113
{
114
    int first = -1;
115
    int i;
116

    
117
    for (i = 0; i < num; ++i) {
118
        int irq;
119

    
120
        irq = spapr_allocate_irq(0, type);
121
        if (!irq) {
122
            return -1;
123
        }
124

    
125
        if (0 == i) {
126
            first = irq;
127
        }
128

    
129
        /* If the above doesn't create a consecutive block then that's
130
         * an internal bug */
131
        assert(irq == (first + i));
132
    }
133

    
134
    return first;
135
}
136

    
137
static int spapr_set_associativity(void *fdt, sPAPREnvironment *spapr)
138
{
139
    int ret = 0, offset;
140
    CPUPPCState *env;
141
    char cpu_model[32];
142
    int smt = kvmppc_smt_threads();
143

    
144
    assert(spapr->cpu_model);
145

    
146
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
147
        uint32_t associativity[] = {cpu_to_be32(0x5),
148
                                    cpu_to_be32(0x0),
149
                                    cpu_to_be32(0x0),
150
                                    cpu_to_be32(0x0),
151
                                    cpu_to_be32(env->numa_node),
152
                                    cpu_to_be32(env->cpu_index)};
153

    
154
        if ((env->cpu_index % smt) != 0) {
155
            continue;
156
        }
157

    
158
        snprintf(cpu_model, 32, "/cpus/%s@%x", spapr->cpu_model,
159
                 env->cpu_index);
160

    
161
        offset = fdt_path_offset(fdt, cpu_model);
162
        if (offset < 0) {
163
            return offset;
164
        }
165

    
166
        ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
167
                          sizeof(associativity));
168
        if (ret < 0) {
169
            return ret;
170
        }
171
    }
172
    return ret;
173
}
174

    
175

    
176
static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
177
                                     size_t maxsize)
178
{
179
    size_t maxcells = maxsize / sizeof(uint32_t);
180
    int i, j, count;
181
    uint32_t *p = prop;
182

    
183
    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
184
        struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
185

    
186
        if (!sps->page_shift) {
187
            break;
188
        }
189
        for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
190
            if (sps->enc[count].page_shift == 0) {
191
                break;
192
            }
193
        }
194
        if ((p - prop) >= (maxcells - 3 - count * 2)) {
195
            break;
196
        }
197
        *(p++) = cpu_to_be32(sps->page_shift);
198
        *(p++) = cpu_to_be32(sps->slb_enc);
199
        *(p++) = cpu_to_be32(count);
200
        for (j = 0; j < count; j++) {
201
            *(p++) = cpu_to_be32(sps->enc[j].page_shift);
202
            *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
203
        }
204
    }
205

    
206
    return (p - prop) * sizeof(uint32_t);
207
}
208

    
209
static void *spapr_create_fdt_skel(const char *cpu_model,
210
                                   target_phys_addr_t rma_size,
211
                                   target_phys_addr_t initrd_base,
212
                                   target_phys_addr_t initrd_size,
213
                                   target_phys_addr_t kernel_size,
214
                                   const char *boot_device,
215
                                   const char *kernel_cmdline,
216
                                   long hash_shift)
217
{
218
    void *fdt;
219
    CPUPPCState *env;
220
    uint64_t mem_reg_property[2];
221
    uint32_t start_prop = cpu_to_be32(initrd_base);
222
    uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
223
    uint32_t pft_size_prop[] = {0, cpu_to_be32(hash_shift)};
224
    char hypertas_prop[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt"
225
        "\0hcall-tce\0hcall-vio\0hcall-splpar\0hcall-bulk";
226
    char qemu_hypertas_prop[] = "hcall-memop1";
227
    uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
228
    int i;
229
    char *modelname;
230
    int smt = kvmppc_smt_threads();
231
    unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
232
    uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
233
    uint32_t associativity[] = {cpu_to_be32(0x4), cpu_to_be32(0x0),
234
                                cpu_to_be32(0x0), cpu_to_be32(0x0),
235
                                cpu_to_be32(0x0)};
236
    char mem_name[32];
237
    target_phys_addr_t node0_size, mem_start;
238

    
239
#define _FDT(exp) \
240
    do { \
241
        int ret = (exp);                                           \
242
        if (ret < 0) {                                             \
243
            fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
244
                    #exp, fdt_strerror(ret));                      \
245
            exit(1);                                               \
246
        }                                                          \
247
    } while (0)
248

    
249
    fdt = g_malloc0(FDT_MAX_SIZE);
250
    _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
251

    
252
    if (kernel_size) {
253
        _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
254
    }
255
    if (initrd_size) {
256
        _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
257
    }
258
    _FDT((fdt_finish_reservemap(fdt)));
259

    
260
    /* Root node */
261
    _FDT((fdt_begin_node(fdt, "")));
262
    _FDT((fdt_property_string(fdt, "device_type", "chrp")));
263
    _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
264

    
265
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
266
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
267

    
268
    /* /chosen */
269
    _FDT((fdt_begin_node(fdt, "chosen")));
270

    
271
    /* Set Form1_affinity */
272
    _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
273

    
274
    _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
275
    _FDT((fdt_property(fdt, "linux,initrd-start",
276
                       &start_prop, sizeof(start_prop))));
277
    _FDT((fdt_property(fdt, "linux,initrd-end",
278
                       &end_prop, sizeof(end_prop))));
279
    if (kernel_size) {
280
        uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
281
                              cpu_to_be64(kernel_size) };
282

    
283
        _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
284
    }
285
    _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device)));
286
    _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
287
    _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
288
    _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
289

    
290
    _FDT((fdt_end_node(fdt)));
291

    
292
    /* memory node(s) */
293
    node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size;
294
    if (rma_size > node0_size) {
295
        rma_size = node0_size;
296
    }
297

    
298
    /* RMA */
299
    mem_reg_property[0] = 0;
300
    mem_reg_property[1] = cpu_to_be64(rma_size);
301
    _FDT((fdt_begin_node(fdt, "memory@0")));
302
    _FDT((fdt_property_string(fdt, "device_type", "memory")));
303
    _FDT((fdt_property(fdt, "reg", mem_reg_property,
304
        sizeof(mem_reg_property))));
305
    _FDT((fdt_property(fdt, "ibm,associativity", associativity,
306
        sizeof(associativity))));
307
    _FDT((fdt_end_node(fdt)));
308

    
309
    /* RAM: Node 0 */
310
    if (node0_size > rma_size) {
311
        mem_reg_property[0] = cpu_to_be64(rma_size);
312
        mem_reg_property[1] = cpu_to_be64(node0_size - rma_size);
313

    
314
        sprintf(mem_name, "memory@" TARGET_FMT_lx, rma_size);
315
        _FDT((fdt_begin_node(fdt, mem_name)));
316
        _FDT((fdt_property_string(fdt, "device_type", "memory")));
317
        _FDT((fdt_property(fdt, "reg", mem_reg_property,
318
                           sizeof(mem_reg_property))));
319
        _FDT((fdt_property(fdt, "ibm,associativity", associativity,
320
                           sizeof(associativity))));
321
        _FDT((fdt_end_node(fdt)));
322
    }
323

    
324
    /* RAM: Node 1 and beyond */
325
    mem_start = node0_size;
326
    for (i = 1; i < nb_numa_nodes; i++) {
327
        mem_reg_property[0] = cpu_to_be64(mem_start);
328
        mem_reg_property[1] = cpu_to_be64(node_mem[i]);
329
        associativity[3] = associativity[4] = cpu_to_be32(i);
330
        sprintf(mem_name, "memory@" TARGET_FMT_lx, mem_start);
331
        _FDT((fdt_begin_node(fdt, mem_name)));
332
        _FDT((fdt_property_string(fdt, "device_type", "memory")));
333
        _FDT((fdt_property(fdt, "reg", mem_reg_property,
334
            sizeof(mem_reg_property))));
335
        _FDT((fdt_property(fdt, "ibm,associativity", associativity,
336
            sizeof(associativity))));
337
        _FDT((fdt_end_node(fdt)));
338
        mem_start += node_mem[i];
339
    }
340

    
341
    /* cpus */
342
    _FDT((fdt_begin_node(fdt, "cpus")));
343

    
344
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
345
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
346

    
347
    modelname = g_strdup(cpu_model);
348

    
349
    for (i = 0; i < strlen(modelname); i++) {
350
        modelname[i] = toupper(modelname[i]);
351
    }
352

    
353
    /* This is needed during FDT finalization */
354
    spapr->cpu_model = g_strdup(modelname);
355

    
356
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
357
        int index = env->cpu_index;
358
        uint32_t servers_prop[smp_threads];
359
        uint32_t gservers_prop[smp_threads * 2];
360
        char *nodename;
361
        uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
362
                           0xffffffff, 0xffffffff};
363
        uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
364
        uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
365
        uint32_t page_sizes_prop[64];
366
        size_t page_sizes_prop_size;
367

    
368
        if ((index % smt) != 0) {
369
            continue;
370
        }
371

    
372
        if (asprintf(&nodename, "%s@%x", modelname, index) < 0) {
373
            fprintf(stderr, "Allocation failure\n");
374
            exit(1);
375
        }
376

    
377
        _FDT((fdt_begin_node(fdt, nodename)));
378

    
379
        free(nodename);
380

    
381
        _FDT((fdt_property_cell(fdt, "reg", index)));
382
        _FDT((fdt_property_string(fdt, "device_type", "cpu")));
383

    
384
        _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
385
        _FDT((fdt_property_cell(fdt, "dcache-block-size",
386
                                env->dcache_line_size)));
387
        _FDT((fdt_property_cell(fdt, "icache-block-size",
388
                                env->icache_line_size)));
389
        _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq)));
390
        _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq)));
391
        _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
392
        _FDT((fdt_property(fdt, "ibm,pft-size",
393
                           pft_size_prop, sizeof(pft_size_prop))));
394
        _FDT((fdt_property_string(fdt, "status", "okay")));
395
        _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
396

    
397
        /* Build interrupt servers and gservers properties */
398
        for (i = 0; i < smp_threads; i++) {
399
            servers_prop[i] = cpu_to_be32(index + i);
400
            /* Hack, direct the group queues back to cpu 0 */
401
            gservers_prop[i*2] = cpu_to_be32(index + i);
402
            gservers_prop[i*2 + 1] = 0;
403
        }
404
        _FDT((fdt_property(fdt, "ibm,ppc-interrupt-server#s",
405
                           servers_prop, sizeof(servers_prop))));
406
        _FDT((fdt_property(fdt, "ibm,ppc-interrupt-gserver#s",
407
                           gservers_prop, sizeof(gservers_prop))));
408

    
409
        if (env->mmu_model & POWERPC_MMU_1TSEG) {
410
            _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
411
                               segs, sizeof(segs))));
412
        }
413

    
414
        /* Advertise VMX/VSX (vector extensions) if available
415
         *   0 / no property == no vector extensions
416
         *   1               == VMX / Altivec available
417
         *   2               == VSX available */
418
        if (env->insns_flags & PPC_ALTIVEC) {
419
            uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
420

    
421
            _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx)));
422
        }
423

    
424
        /* Advertise DFP (Decimal Floating Point) if available
425
         *   0 / no property == no DFP
426
         *   1               == DFP available */
427
        if (env->insns_flags2 & PPC2_DFP) {
428
            _FDT((fdt_property_cell(fdt, "ibm,dfp", 1)));
429
        }
430

    
431
        page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
432
                                                      sizeof(page_sizes_prop));
433
        if (page_sizes_prop_size) {
434
            _FDT((fdt_property(fdt, "ibm,segment-page-sizes",
435
                               page_sizes_prop, page_sizes_prop_size)));
436
        }
437

    
438
        _FDT((fdt_end_node(fdt)));
439
    }
440

    
441
    g_free(modelname);
442

    
443
    _FDT((fdt_end_node(fdt)));
444

    
445
    /* RTAS */
446
    _FDT((fdt_begin_node(fdt, "rtas")));
447

    
448
    _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop,
449
                       sizeof(hypertas_prop))));
450
    _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas_prop,
451
                       sizeof(qemu_hypertas_prop))));
452

    
453
    _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
454
        refpoints, sizeof(refpoints))));
455

    
456
    _FDT((fdt_end_node(fdt)));
457

    
458
    /* interrupt controller */
459
    _FDT((fdt_begin_node(fdt, "interrupt-controller")));
460

    
461
    _FDT((fdt_property_string(fdt, "device_type",
462
                              "PowerPC-External-Interrupt-Presentation")));
463
    _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
464
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
465
    _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
466
                       interrupt_server_ranges_prop,
467
                       sizeof(interrupt_server_ranges_prop))));
468
    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
469
    _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
470
    _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
471

    
472
    _FDT((fdt_end_node(fdt)));
473

    
474
    /* vdevice */
475
    _FDT((fdt_begin_node(fdt, "vdevice")));
476

    
477
    _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
478
    _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
479
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
480
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
481
    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
482
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
483

    
484
    _FDT((fdt_end_node(fdt)));
485

    
486
    _FDT((fdt_end_node(fdt))); /* close root node */
487
    _FDT((fdt_finish(fdt)));
488

    
489
    return fdt;
490
}
491

    
492
static void spapr_finalize_fdt(sPAPREnvironment *spapr,
493
                               target_phys_addr_t fdt_addr,
494
                               target_phys_addr_t rtas_addr,
495
                               target_phys_addr_t rtas_size)
496
{
497
    int ret;
498
    void *fdt;
499
    sPAPRPHBState *phb;
500

    
501
    fdt = g_malloc(FDT_MAX_SIZE);
502

    
503
    /* open out the base tree into a temp buffer for the final tweaks */
504
    _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
505

    
506
    ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
507
    if (ret < 0) {
508
        fprintf(stderr, "couldn't setup vio devices in fdt\n");
509
        exit(1);
510
    }
511

    
512
    QLIST_FOREACH(phb, &spapr->phbs, list) {
513
        ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
514
    }
515

    
516
    if (ret < 0) {
517
        fprintf(stderr, "couldn't setup PCI devices in fdt\n");
518
        exit(1);
519
    }
520

    
521
    /* RTAS */
522
    ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
523
    if (ret < 0) {
524
        fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
525
    }
526

    
527
    /* Advertise NUMA via ibm,associativity */
528
    if (nb_numa_nodes > 1) {
529
        ret = spapr_set_associativity(fdt, spapr);
530
        if (ret < 0) {
531
            fprintf(stderr, "Couldn't set up NUMA device tree properties\n");
532
        }
533
    }
534

    
535
    if (!spapr->has_graphics) {
536
        spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
537
    }
538

    
539
    _FDT((fdt_pack(fdt)));
540

    
541
    if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
542
        hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
543
                 fdt_totalsize(fdt), FDT_MAX_SIZE);
544
        exit(1);
545
    }
546

    
547
    cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
548

    
549
    g_free(fdt);
550
}
551

    
552
static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
553
{
554
    return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
555
}
556

    
557
static void emulate_spapr_hypercall(CPUPPCState *env)
558
{
559
    env->gpr[3] = spapr_hypercall(env, env->gpr[3], &env->gpr[4]);
560
}
561

    
562
static void ppc_spapr_reset(void)
563
{
564
    /* flush out the hash table */
565
    memset(spapr->htab, 0, spapr->htab_size);
566

    
567
    qemu_devices_reset();
568

    
569
    /* Load the fdt */
570
    spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
571
                       spapr->rtas_size);
572

    
573
    /* Set up the entry state */
574
    first_cpu->gpr[3] = spapr->fdt_addr;
575
    first_cpu->gpr[5] = 0;
576
    first_cpu->halted = 0;
577
    first_cpu->nip = spapr->entry_point;
578

    
579
}
580

    
581
static void spapr_cpu_reset(void *opaque)
582
{
583
    PowerPCCPU *cpu = opaque;
584
    CPUPPCState *env = &cpu->env;
585

    
586
    cpu_reset(CPU(cpu));
587

    
588
    /* All CPUs start halted.  CPU0 is unhalted from the machine level
589
     * reset code and the rest are explicitly started up by the guest
590
     * using an RTAS call */
591
    env->halted = 1;
592

    
593
    env->spr[SPR_HIOR] = 0;
594
}
595

    
596
/* Returns whether we want to use VGA or not */
597
static int spapr_vga_init(PCIBus *pci_bus)
598
{
599
    switch (vga_interface_type) {
600
    case VGA_STD:
601
        pci_vga_init(pci_bus);
602
        return 1;
603
    case VGA_NONE:
604
        return 0;
605
    default:
606
        fprintf(stderr, "This vga model is not supported,"
607
                "currently it only supports -vga std\n");
608
        exit(0);
609
        break;
610
    }
611
}
612

    
613
/* pSeries LPAR / sPAPR hardware init */
614
static void ppc_spapr_init(ram_addr_t ram_size,
615
                           const char *boot_device,
616
                           const char *kernel_filename,
617
                           const char *kernel_cmdline,
618
                           const char *initrd_filename,
619
                           const char *cpu_model)
620
{
621
    PowerPCCPU *cpu;
622
    CPUPPCState *env;
623
    PCIHostState *phb;
624
    int i;
625
    MemoryRegion *sysmem = get_system_memory();
626
    MemoryRegion *ram = g_new(MemoryRegion, 1);
627
    target_phys_addr_t rma_alloc_size, rma_size;
628
    uint32_t initrd_base = 0;
629
    long kernel_size = 0, initrd_size = 0;
630
    long load_limit, rtas_limit, fw_size;
631
    long pteg_shift = 17;
632
    char *filename;
633

    
634
    msi_supported = true;
635

    
636
    spapr = g_malloc0(sizeof(*spapr));
637
    QLIST_INIT(&spapr->phbs);
638

    
639
    cpu_ppc_hypercall = emulate_spapr_hypercall;
640

    
641
    /* Allocate RMA if necessary */
642
    rma_alloc_size = kvmppc_alloc_rma("ppc_spapr.rma", sysmem);
643

    
644
    if (rma_alloc_size == -1) {
645
        hw_error("qemu: Unable to create RMA\n");
646
        exit(1);
647
    }
648
    if (rma_alloc_size && (rma_alloc_size < ram_size)) {
649
        rma_size = rma_alloc_size;
650
    } else {
651
        rma_size = ram_size;
652
    }
653

    
654
    /* We place the device tree and RTAS just below either the top of the RMA,
655
     * or just below 2GB, whichever is lowere, so that it can be
656
     * processed with 32-bit real mode code if necessary */
657
    rtas_limit = MIN(rma_size, 0x80000000);
658
    spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
659
    spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
660
    load_limit = spapr->fdt_addr - FW_OVERHEAD;
661

    
662
    /* init CPUs */
663
    if (cpu_model == NULL) {
664
        cpu_model = kvm_enabled() ? "host" : "POWER7";
665
    }
666
    for (i = 0; i < smp_cpus; i++) {
667
        cpu = cpu_ppc_init(cpu_model);
668
        if (cpu == NULL) {
669
            fprintf(stderr, "Unable to find PowerPC CPU definition\n");
670
            exit(1);
671
        }
672
        env = &cpu->env;
673

    
674
        /* Set time-base frequency to 512 MHz */
675
        cpu_ppc_tb_init(env, TIMEBASE_FREQ);
676

    
677
        /* PAPR always has exception vectors in RAM not ROM */
678
        env->hreset_excp_prefix = 0;
679

    
680
        /* Tell KVM that we're in PAPR mode */
681
        if (kvm_enabled()) {
682
            kvmppc_set_papr(env);
683
        }
684

    
685
        qemu_register_reset(spapr_cpu_reset, cpu);
686
    }
687

    
688
    /* allocate RAM */
689
    spapr->ram_limit = ram_size;
690
    if (spapr->ram_limit > rma_alloc_size) {
691
        ram_addr_t nonrma_base = rma_alloc_size;
692
        ram_addr_t nonrma_size = spapr->ram_limit - rma_alloc_size;
693

    
694
        memory_region_init_ram(ram, "ppc_spapr.ram", nonrma_size);
695
        vmstate_register_ram_global(ram);
696
        memory_region_add_subregion(sysmem, nonrma_base, ram);
697
    }
698

    
699
    /* allocate hash page table.  For now we always make this 16mb,
700
     * later we should probably make it scale to the size of guest
701
     * RAM.  FIXME: setting the htab information in the CPU env really
702
     * belongs at CPU reset time, but we can get away with it for now
703
     * because the PAPR guest is not permitted to write SDR1 so in
704
     * fact these settings will never change during the run */
705
    spapr->htab_size = 1ULL << (pteg_shift + 7);
706
    spapr->htab = qemu_memalign(spapr->htab_size, spapr->htab_size);
707

    
708
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
709
        env->external_htab = spapr->htab;
710
        env->htab_base = -1;
711
        env->htab_mask = spapr->htab_size - 1;
712

    
713
        /* Tell KVM that we're in PAPR mode */
714
        env->spr[SPR_SDR1] = (unsigned long)spapr->htab |
715
                             ((pteg_shift + 7) - 18);
716
    }
717

    
718
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
719
    spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr,
720
                                           rtas_limit - spapr->rtas_addr);
721
    if (spapr->rtas_size < 0) {
722
        hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
723
        exit(1);
724
    }
725
    if (spapr->rtas_size > RTAS_MAX_SIZE) {
726
        hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n",
727
                 spapr->rtas_size, RTAS_MAX_SIZE);
728
        exit(1);
729
    }
730
    g_free(filename);
731

    
732

    
733
    /* Set up Interrupt Controller */
734
    spapr->icp = xics_system_init(XICS_IRQS);
735
    spapr->next_irq = 16;
736

    
737
    /* Set up IOMMU */
738
    spapr_iommu_init();
739

    
740
    /* Set up VIO bus */
741
    spapr->vio_bus = spapr_vio_bus_init();
742

    
743
    for (i = 0; i < MAX_SERIAL_PORTS; i++) {
744
        if (serial_hds[i]) {
745
            spapr_vty_create(spapr->vio_bus, serial_hds[i]);
746
        }
747
    }
748

    
749
    /* Set up PCI */
750
    spapr_pci_rtas_init();
751

    
752
    spapr_create_phb(spapr, "pci", SPAPR_PCI_BUID,
753
                     SPAPR_PCI_MEM_WIN_ADDR,
754
                     SPAPR_PCI_MEM_WIN_SIZE,
755
                     SPAPR_PCI_IO_WIN_ADDR,
756
                     SPAPR_PCI_MSI_WIN_ADDR);
757
    phb = PCI_HOST_BRIDGE(QLIST_FIRST(&spapr->phbs));
758

    
759
    for (i = 0; i < nb_nics; i++) {
760
        NICInfo *nd = &nd_table[i];
761

    
762
        if (!nd->model) {
763
            nd->model = g_strdup("ibmveth");
764
        }
765

    
766
        if (strcmp(nd->model, "ibmveth") == 0) {
767
            spapr_vlan_create(spapr->vio_bus, nd);
768
        } else {
769
            pci_nic_init_nofail(&nd_table[i], nd->model, NULL);
770
        }
771
    }
772

    
773
    for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
774
        spapr_vscsi_create(spapr->vio_bus);
775
    }
776

    
777
    /* Graphics */
778
    if (spapr_vga_init(phb->bus)) {
779
        spapr->has_graphics = true;
780
    }
781

    
782
    if (usb_enabled) {
783
        pci_create_simple(phb->bus, -1, "pci-ohci");
784
        if (spapr->has_graphics) {
785
            usbdevice_create("keyboard");
786
            usbdevice_create("mouse");
787
        }
788
    }
789

    
790
    if (rma_size < (MIN_RMA_SLOF << 20)) {
791
        fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
792
                "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
793
        exit(1);
794
    }
795

    
796
    if (kernel_filename) {
797
        uint64_t lowaddr = 0;
798

    
799
        kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
800
                               NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
801
        if (kernel_size < 0) {
802
            kernel_size = load_image_targphys(kernel_filename,
803
                                              KERNEL_LOAD_ADDR,
804
                                              load_limit - KERNEL_LOAD_ADDR);
805
        }
806
        if (kernel_size < 0) {
807
            fprintf(stderr, "qemu: could not load kernel '%s'\n",
808
                    kernel_filename);
809
            exit(1);
810
        }
811

    
812
        /* load initrd */
813
        if (initrd_filename) {
814
            /* Try to locate the initrd in the gap between the kernel
815
             * and the firmware. Add a bit of space just in case
816
             */
817
            initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
818
            initrd_size = load_image_targphys(initrd_filename, initrd_base,
819
                                              load_limit - initrd_base);
820
            if (initrd_size < 0) {
821
                fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
822
                        initrd_filename);
823
                exit(1);
824
            }
825
        } else {
826
            initrd_base = 0;
827
            initrd_size = 0;
828
        }
829
    }
830

    
831
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, FW_FILE_NAME);
832
    fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
833
    if (fw_size < 0) {
834
        hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
835
        exit(1);
836
    }
837
    g_free(filename);
838

    
839
    spapr->entry_point = 0x100;
840

    
841
    /* Prepare the device tree */
842
    spapr->fdt_skel = spapr_create_fdt_skel(cpu_model, rma_size,
843
                                            initrd_base, initrd_size,
844
                                            kernel_size,
845
                                            boot_device, kernel_cmdline,
846
                                            pteg_shift + 7);
847
    assert(spapr->fdt_skel != NULL);
848
}
849

    
850
static QEMUMachine spapr_machine = {
851
    .name = "pseries",
852
    .desc = "pSeries Logical Partition (PAPR compliant)",
853
    .init = ppc_spapr_init,
854
    .reset = ppc_spapr_reset,
855
    .max_cpus = MAX_CPUS,
856
    .no_parallel = 1,
857
    .use_scsi = 1,
858
};
859

    
860
static void spapr_machine_init(void)
861
{
862
    qemu_register_machine(&spapr_machine);
863
}
864

    
865
machine_init(spapr_machine_init);