Statistics
| Branch: | Revision:

root / qemu-doc.texi @ caa88be0

History | View | Annotate | Download (88.4 kB)

1
\input texinfo @c -*- texinfo -*-
2
@c %**start of header
3
@setfilename qemu-doc.info
4
@settitle QEMU Emulator User Documentation
5
@exampleindent 0
6
@paragraphindent 0
7
@c %**end of header
8

    
9
@iftex
10
@titlepage
11
@sp 7
12
@center @titlefont{QEMU Emulator}
13
@sp 1
14
@center @titlefont{User Documentation}
15
@sp 3
16
@end titlepage
17
@end iftex
18

    
19
@ifnottex
20
@node Top
21
@top
22

    
23
@menu
24
* Introduction::
25
* Installation::
26
* QEMU PC System emulator::
27
* QEMU System emulator for non PC targets::
28
* QEMU User space emulator::
29
* compilation:: Compilation from the sources
30
* Index::
31
@end menu
32
@end ifnottex
33

    
34
@contents
35

    
36
@node Introduction
37
@chapter Introduction
38

    
39
@menu
40
* intro_features:: Features
41
@end menu
42

    
43
@node intro_features
44
@section Features
45

    
46
QEMU is a FAST! processor emulator using dynamic translation to
47
achieve good emulation speed.
48

    
49
QEMU has two operating modes:
50

    
51
@itemize @minus
52

    
53
@item
54
Full system emulation. In this mode, QEMU emulates a full system (for
55
example a PC), including one or several processors and various
56
peripherals. It can be used to launch different Operating Systems
57
without rebooting the PC or to debug system code.
58

    
59
@item
60
User mode emulation. In this mode, QEMU can launch
61
processes compiled for one CPU on another CPU. It can be used to
62
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63
to ease cross-compilation and cross-debugging.
64

    
65
@end itemize
66

    
67
QEMU can run without an host kernel driver and yet gives acceptable
68
performance.
69

    
70
For system emulation, the following hardware targets are supported:
71
@itemize
72
@item PC (x86 or x86_64 processor)
73
@item ISA PC (old style PC without PCI bus)
74
@item PREP (PowerPC processor)
75
@item G3 BW PowerMac (PowerPC processor)
76
@item Mac99 PowerMac (PowerPC processor, in progress)
77
@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
78
@item Sun4u (64-bit Sparc processor, in progress)
79
@item Malta board (32-bit and 64-bit MIPS processors)
80
@item MIPS Magnum (64-bit MIPS processor)
81
@item ARM Integrator/CP (ARM)
82
@item ARM Versatile baseboard (ARM)
83
@item ARM RealView Emulation baseboard (ARM)
84
@item Spitz, Akita, Borzoi and Terrier PDAs (PXA270 processor)
85
@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
86
@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
87
@item Freescale MCF5208EVB (ColdFire V2).
88
@item Arnewsh MCF5206 evaluation board (ColdFire V2).
89
@item Palm Tungsten|E PDA (OMAP310 processor)
90
@item N800 and N810 tablets (OMAP2420 processor)
91
@item MusicPal (MV88W8618 ARM processor)
92
@end itemize
93

    
94
For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
95

    
96
@node Installation
97
@chapter Installation
98

    
99
If you want to compile QEMU yourself, see @ref{compilation}.
100

    
101
@menu
102
* install_linux::   Linux
103
* install_windows:: Windows
104
* install_mac::     Macintosh
105
@end menu
106

    
107
@node install_linux
108
@section Linux
109

    
110
If a precompiled package is available for your distribution - you just
111
have to install it. Otherwise, see @ref{compilation}.
112

    
113
@node install_windows
114
@section Windows
115

    
116
Download the experimental binary installer at
117
@url{http://www.free.oszoo.org/@/download.html}.
118

    
119
@node install_mac
120
@section Mac OS X
121

    
122
Download the experimental binary installer at
123
@url{http://www.free.oszoo.org/@/download.html}.
124

    
125
@node QEMU PC System emulator
126
@chapter QEMU PC System emulator
127

    
128
@menu
129
* pcsys_introduction:: Introduction
130
* pcsys_quickstart::   Quick Start
131
* sec_invocation::     Invocation
132
* pcsys_keys::         Keys
133
* pcsys_monitor::      QEMU Monitor
134
* disk_images::        Disk Images
135
* pcsys_network::      Network emulation
136
* direct_linux_boot::  Direct Linux Boot
137
* pcsys_usb::          USB emulation
138
* vnc_security::       VNC security
139
* gdb_usage::          GDB usage
140
* pcsys_os_specific::  Target OS specific information
141
@end menu
142

    
143
@node pcsys_introduction
144
@section Introduction
145

    
146
@c man begin DESCRIPTION
147

    
148
The QEMU PC System emulator simulates the
149
following peripherals:
150

    
151
@itemize @minus
152
@item
153
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
154
@item
155
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
156
extensions (hardware level, including all non standard modes).
157
@item
158
PS/2 mouse and keyboard
159
@item
160
2 PCI IDE interfaces with hard disk and CD-ROM support
161
@item
162
Floppy disk
163
@item
164
PCI/ISA PCI network adapters
165
@item
166
Serial ports
167
@item
168
Creative SoundBlaster 16 sound card
169
@item
170
ENSONIQ AudioPCI ES1370 sound card
171
@item
172
Intel 82801AA AC97 Audio compatible sound card
173
@item
174
Adlib(OPL2) - Yamaha YM3812 compatible chip
175
@item
176
Gravis Ultrasound GF1 sound card
177
@item
178
CS4231A compatible sound card
179
@item
180
PCI UHCI USB controller and a virtual USB hub.
181
@end itemize
182

    
183
SMP is supported with up to 255 CPUs.
184

    
185
Note that adlib, ac97, gus and cs4231a are only available when QEMU
186
was configured with --enable-adlib, --enable-ac97, --enable-gus or
187
--enable-cs4231a respectively.
188

    
189
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
190
VGA BIOS.
191

    
192
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
193

    
194
QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
195
by Tibor "TS" Sch?tz.
196

    
197
CS4231A is the chip used in Windows Sound System and GUSMAX products
198

    
199
@c man end
200

    
201
@node pcsys_quickstart
202
@section Quick Start
203

    
204
Download and uncompress the linux image (@file{linux.img}) and type:
205

    
206
@example
207
qemu linux.img
208
@end example
209

    
210
Linux should boot and give you a prompt.
211

    
212
@node sec_invocation
213
@section Invocation
214

    
215
@example
216
@c man begin SYNOPSIS
217
usage: qemu [options] [@var{disk_image}]
218
@c man end
219
@end example
220

    
221
@c man begin OPTIONS
222
@var{disk_image} is a raw hard disk image for IDE hard disk 0.
223

    
224
General options:
225
@table @option
226
@item -M @var{machine}
227
Select the emulated @var{machine} (@code{-M ?} for list)
228

    
229
@item -fda @var{file}
230
@item -fdb @var{file}
231
Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
232
use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
233

    
234
@item -hda @var{file}
235
@item -hdb @var{file}
236
@item -hdc @var{file}
237
@item -hdd @var{file}
238
Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
239

    
240
@item -cdrom @var{file}
241
Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
242
@option{-cdrom} at the same time). You can use the host CD-ROM by
243
using @file{/dev/cdrom} as filename (@pxref{host_drives}).
244

    
245
@item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
246

    
247
Define a new drive. Valid options are:
248

    
249
@table @code
250
@item file=@var{file}
251
This option defines which disk image (@pxref{disk_images}) to use with
252
this drive. If the filename contains comma, you must double it
253
(for instance, "file=my,,file" to use file "my,file").
254
@item if=@var{interface}
255
This option defines on which type on interface the drive is connected.
256
Available types are: ide, scsi, sd, mtd, floppy, pflash.
257
@item bus=@var{bus},unit=@var{unit}
258
These options define where is connected the drive by defining the bus number and
259
the unit id.
260
@item index=@var{index}
261
This option defines where is connected the drive by using an index in the list
262
of available connectors of a given interface type.
263
@item media=@var{media}
264
This option defines the type of the media: disk or cdrom.
265
@item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
266
These options have the same definition as they have in @option{-hdachs}.
267
@item snapshot=@var{snapshot}
268
@var{snapshot} is "on" or "off" and allows to enable snapshot for given drive (see @option{-snapshot}).
269
@item cache=@var{cache}
270
@var{cache} is "on" or "off" and allows to disable host cache to access data.
271
@item format=@var{format}
272
Specify which disk @var{format} will be used rather than detecting
273
the format.  Can be used to specifiy format=raw to avoid interpreting
274
an untrusted format header.
275
@end table
276

    
277
Instead of @option{-cdrom} you can use:
278
@example
279
qemu -drive file=file,index=2,media=cdrom
280
@end example
281

    
282
Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
283
use:
284
@example
285
qemu -drive file=file,index=0,media=disk
286
qemu -drive file=file,index=1,media=disk
287
qemu -drive file=file,index=2,media=disk
288
qemu -drive file=file,index=3,media=disk
289
@end example
290

    
291
You can connect a CDROM to the slave of ide0:
292
@example
293
qemu -drive file=file,if=ide,index=1,media=cdrom
294
@end example
295

    
296
If you don't specify the "file=" argument, you define an empty drive:
297
@example
298
qemu -drive if=ide,index=1,media=cdrom
299
@end example
300

    
301
You can connect a SCSI disk with unit ID 6 on the bus #0:
302
@example
303
qemu -drive file=file,if=scsi,bus=0,unit=6
304
@end example
305

    
306
Instead of @option{-fda}, @option{-fdb}, you can use:
307
@example
308
qemu -drive file=file,index=0,if=floppy
309
qemu -drive file=file,index=1,if=floppy
310
@end example
311

    
312
By default, @var{interface} is "ide" and @var{index} is automatically
313
incremented:
314
@example
315
qemu -drive file=a -drive file=b"
316
@end example
317
is interpreted like:
318
@example
319
qemu -hda a -hdb b
320
@end example
321

    
322
@item -boot [a|c|d|n]
323
Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
324
is the default.
325

    
326
@item -snapshot
327
Write to temporary files instead of disk image files. In this case,
328
the raw disk image you use is not written back. You can however force
329
the write back by pressing @key{C-a s} (@pxref{disk_images}).
330

    
331
@item -no-fd-bootchk
332
Disable boot signature checking for floppy disks in Bochs BIOS. It may
333
be needed to boot from old floppy disks.
334

    
335
@item -m @var{megs}
336
Set virtual RAM size to @var{megs} megabytes. Default is 128 MiB.  Optionally,
337
a suffix of ``M'' or ``G'' can be used to signify a value in megabytes or
338
gigabytes respectively.
339

    
340
@item -smp @var{n}
341
Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
342
CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
343
to 4.
344

    
345
@item -audio-help
346

    
347
Will show the audio subsystem help: list of drivers, tunable
348
parameters.
349

    
350
@item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
351

    
352
Enable audio and selected sound hardware. Use ? to print all
353
available sound hardware.
354

    
355
@example
356
qemu -soundhw sb16,adlib hda
357
qemu -soundhw es1370 hda
358
qemu -soundhw ac97 hda
359
qemu -soundhw all hda
360
qemu -soundhw ?
361
@end example
362

    
363
Note that Linux's i810_audio OSS kernel (for AC97) module might
364
require manually specifying clocking.
365

    
366
@example
367
modprobe i810_audio clocking=48000
368
@end example
369

    
370
@item -localtime
371
Set the real time clock to local time (the default is to UTC
372
time). This option is needed to have correct date in MS-DOS or
373
Windows.
374

    
375
@item -startdate @var{date}
376
Set the initial date of the real time clock. Valid format for
377
@var{date} are: @code{now} or @code{2006-06-17T16:01:21} or
378
@code{2006-06-17}. The default value is @code{now}.
379

    
380
@item -pidfile @var{file}
381
Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
382
from a script.
383

    
384
@item -daemonize
385
Daemonize the QEMU process after initialization.  QEMU will not detach from
386
standard IO until it is ready to receive connections on any of its devices.
387
This option is a useful way for external programs to launch QEMU without having
388
to cope with initialization race conditions.
389

    
390
@item -win2k-hack
391
Use it when installing Windows 2000 to avoid a disk full bug. After
392
Windows 2000 is installed, you no longer need this option (this option
393
slows down the IDE transfers).
394

    
395
@item -option-rom @var{file}
396
Load the contents of @var{file} as an option ROM.
397
This option is useful to load things like EtherBoot.
398

    
399
@item -name @var{name}
400
Sets the @var{name} of the guest.
401
This name will be display in the SDL window caption.
402
The @var{name} will also be used for the VNC server.
403

    
404
@end table
405

    
406
Display options:
407
@table @option
408

    
409
@item -nographic
410

    
411
Normally, QEMU uses SDL to display the VGA output. With this option,
412
you can totally disable graphical output so that QEMU is a simple
413
command line application. The emulated serial port is redirected on
414
the console. Therefore, you can still use QEMU to debug a Linux kernel
415
with a serial console.
416

    
417
@item -curses
418

    
419
Normally, QEMU uses SDL to display the VGA output.  With this option,
420
QEMU can display the VGA output when in text mode using a 
421
curses/ncurses interface.  Nothing is displayed in graphical mode.
422

    
423
@item -no-frame
424

    
425
Do not use decorations for SDL windows and start them using the whole
426
available screen space. This makes the using QEMU in a dedicated desktop
427
workspace more convenient.
428

    
429
@item -no-quit
430

    
431
Disable SDL window close capability.
432

    
433
@item -full-screen
434
Start in full screen.
435

    
436
@item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
437

    
438
Normally, QEMU uses SDL to display the VGA output.  With this option,
439
you can have QEMU listen on VNC display @var{display} and redirect the VGA
440
display over the VNC session.  It is very useful to enable the usb
441
tablet device when using this option (option @option{-usbdevice
442
tablet}). When using the VNC display, you must use the @option{-k}
443
parameter to set the keyboard layout if you are not using en-us. Valid
444
syntax for the @var{display} is
445

    
446
@table @code
447

    
448
@item @var{host}:@var{d}
449

    
450
TCP connections will only be allowed from @var{host} on display @var{d}.
451
By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
452
be omitted in which case the server will accept connections from any host.
453

    
454
@item @code{unix}:@var{path}
455

    
456
Connections will be allowed over UNIX domain sockets where @var{path} is the
457
location of a unix socket to listen for connections on.
458

    
459
@item none
460

    
461
VNC is initialized but not started. The monitor @code{change} command
462
can be used to later start the VNC server.
463

    
464
@end table
465

    
466
Following the @var{display} value there may be one or more @var{option} flags
467
separated by commas. Valid options are
468

    
469
@table @code
470

    
471
@item reverse
472

    
473
Connect to a listening VNC client via a ``reverse'' connection. The
474
client is specified by the @var{display}. For reverse network
475
connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
476
is a TCP port number, not a display number.
477

    
478
@item password
479

    
480
Require that password based authentication is used for client connections.
481
The password must be set separately using the @code{change} command in the
482
@ref{pcsys_monitor}
483

    
484
@item tls
485

    
486
Require that client use TLS when communicating with the VNC server. This
487
uses anonymous TLS credentials so is susceptible to a man-in-the-middle
488
attack. It is recommended that this option be combined with either the
489
@var{x509} or @var{x509verify} options.
490

    
491
@item x509=@var{/path/to/certificate/dir}
492

    
493
Valid if @option{tls} is specified. Require that x509 credentials are used
494
for negotiating the TLS session. The server will send its x509 certificate
495
to the client. It is recommended that a password be set on the VNC server
496
to provide authentication of the client when this is used. The path following
497
this option specifies where the x509 certificates are to be loaded from.
498
See the @ref{vnc_security} section for details on generating certificates.
499

    
500
@item x509verify=@var{/path/to/certificate/dir}
501

    
502
Valid if @option{tls} is specified. Require that x509 credentials are used
503
for negotiating the TLS session. The server will send its x509 certificate
504
to the client, and request that the client send its own x509 certificate.
505
The server will validate the client's certificate against the CA certificate,
506
and reject clients when validation fails. If the certificate authority is
507
trusted, this is a sufficient authentication mechanism. You may still wish
508
to set a password on the VNC server as a second authentication layer. The
509
path following this option specifies where the x509 certificates are to
510
be loaded from. See the @ref{vnc_security} section for details on generating
511
certificates.
512

    
513
@end table
514

    
515
@item -k @var{language}
516

    
517
Use keyboard layout @var{language} (for example @code{fr} for
518
French). This option is only needed where it is not easy to get raw PC
519
keycodes (e.g. on Macs, with some X11 servers or with a VNC
520
display). You don't normally need to use it on PC/Linux or PC/Windows
521
hosts.
522

    
523
The available layouts are:
524
@example
525
ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
526
da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
527
de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
528
@end example
529

    
530
The default is @code{en-us}.
531

    
532
@end table
533

    
534
USB options:
535
@table @option
536

    
537
@item -usb
538
Enable the USB driver (will be the default soon)
539

    
540
@item -usbdevice @var{devname}
541
Add the USB device @var{devname}. @xref{usb_devices}.
542

    
543
@table @code
544

    
545
@item mouse
546
Virtual Mouse. This will override the PS/2 mouse emulation when activated.
547

    
548
@item tablet
549
Pointer device that uses absolute coordinates (like a touchscreen). This
550
means qemu is able to report the mouse position without having to grab the
551
mouse. Also overrides the PS/2 mouse emulation when activated.
552

    
553
@item disk:file
554
Mass storage device based on file
555

    
556
@item host:bus.addr
557
Pass through the host device identified by bus.addr (Linux only).
558

    
559
@item host:vendor_id:product_id
560
Pass through the host device identified by vendor_id:product_id (Linux only).
561

    
562
@item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev}
563
Serial converter to host character device @var{dev}, see @code{-serial} for the
564
available devices.
565

    
566
@item braille
567
Braille device.  This will use BrlAPI to display the braille output on a real
568
or fake device.
569

    
570
@end table
571

    
572
@end table
573

    
574
Network options:
575

    
576
@table @option
577

    
578
@item -net nic[,vlan=@var{n}][,macaddr=@var{addr}][,model=@var{type}]
579
Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
580
= 0 is the default). The NIC is an ne2k_pci by default on the PC
581
target. Optionally, the MAC address can be changed. If no
582
@option{-net} option is specified, a single NIC is created.
583
Qemu can emulate several different models of network card.
584
Valid values for @var{type} are
585
@code{i82551}, @code{i82557b}, @code{i82559er},
586
@code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
587
@code{e1000}, @code{smc91c111}, @code{lance} and @code{mcf_fec}.
588
Not all devices are supported on all targets.  Use -net nic,model=?
589
for a list of available devices for your target.
590

    
591
@item -net user[,vlan=@var{n}][,hostname=@var{name}]
592
Use the user mode network stack which requires no administrator
593
privilege to run.  @option{hostname=name} can be used to specify the client
594
hostname reported by the builtin DHCP server.
595

    
596
@item -net tap[,vlan=@var{n}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}]
597
Connect the host TAP network interface @var{name} to VLAN @var{n} and
598
use the network script @var{file} to configure it. The default
599
network script is @file{/etc/qemu-ifup}. Use @option{script=no} to
600
disable script execution. If @var{name} is not
601
provided, the OS automatically provides one. @option{fd}=@var{h} can be
602
used to specify the handle of an already opened host TAP interface. Example:
603

    
604
@example
605
qemu linux.img -net nic -net tap
606
@end example
607

    
608
More complicated example (two NICs, each one connected to a TAP device)
609
@example
610
qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
611
               -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
612
@end example
613

    
614

    
615
@item -net socket[,vlan=@var{n}][,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
616

    
617
Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
618
machine using a TCP socket connection. If @option{listen} is
619
specified, QEMU waits for incoming connections on @var{port}
620
(@var{host} is optional). @option{connect} is used to connect to
621
another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
622
specifies an already opened TCP socket.
623

    
624
Example:
625
@example
626
# launch a first QEMU instance
627
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
628
               -net socket,listen=:1234
629
# connect the VLAN 0 of this instance to the VLAN 0
630
# of the first instance
631
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
632
               -net socket,connect=127.0.0.1:1234
633
@end example
634

    
635
@item -net socket[,vlan=@var{n}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}]
636

    
637
Create a VLAN @var{n} shared with another QEMU virtual
638
machines using a UDP multicast socket, effectively making a bus for
639
every QEMU with same multicast address @var{maddr} and @var{port}.
640
NOTES:
641
@enumerate
642
@item
643
Several QEMU can be running on different hosts and share same bus (assuming
644
correct multicast setup for these hosts).
645
@item
646
mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
647
@url{http://user-mode-linux.sf.net}.
648
@item
649
Use @option{fd=h} to specify an already opened UDP multicast socket.
650
@end enumerate
651

    
652
Example:
653
@example
654
# launch one QEMU instance
655
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
656
               -net socket,mcast=230.0.0.1:1234
657
# launch another QEMU instance on same "bus"
658
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
659
               -net socket,mcast=230.0.0.1:1234
660
# launch yet another QEMU instance on same "bus"
661
qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
662
               -net socket,mcast=230.0.0.1:1234
663
@end example
664

    
665
Example (User Mode Linux compat.):
666
@example
667
# launch QEMU instance (note mcast address selected
668
# is UML's default)
669
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
670
               -net socket,mcast=239.192.168.1:1102
671
# launch UML
672
/path/to/linux ubd0=/path/to/root_fs eth0=mcast
673
@end example
674

    
675
@item -net none
676
Indicate that no network devices should be configured. It is used to
677
override the default configuration (@option{-net nic -net user}) which
678
is activated if no @option{-net} options are provided.
679

    
680
@item -tftp @var{dir}
681
When using the user mode network stack, activate a built-in TFTP
682
server. The files in @var{dir} will be exposed as the root of a TFTP server.
683
The TFTP client on the guest must be configured in binary mode (use the command
684
@code{bin} of the Unix TFTP client). The host IP address on the guest is as
685
usual 10.0.2.2.
686

    
687
@item -bootp @var{file}
688
When using the user mode network stack, broadcast @var{file} as the BOOTP
689
filename.  In conjunction with @option{-tftp}, this can be used to network boot
690
a guest from a local directory.
691

    
692
Example (using pxelinux):
693
@example
694
qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
695
@end example
696

    
697
@item -smb @var{dir}
698
When using the user mode network stack, activate a built-in SMB
699
server so that Windows OSes can access to the host files in @file{@var{dir}}
700
transparently.
701

    
702
In the guest Windows OS, the line:
703
@example
704
10.0.2.4 smbserver
705
@end example
706
must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
707
or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
708

    
709
Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
710

    
711
Note that a SAMBA server must be installed on the host OS in
712
@file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
713
2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
714

    
715
@item -redir [tcp|udp]:@var{host-port}:[@var{guest-host}]:@var{guest-port}
716

    
717
When using the user mode network stack, redirect incoming TCP or UDP
718
connections to the host port @var{host-port} to the guest
719
@var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
720
is not specified, its value is 10.0.2.15 (default address given by the
721
built-in DHCP server).
722

    
723
For example, to redirect host X11 connection from screen 1 to guest
724
screen 0, use the following:
725

    
726
@example
727
# on the host
728
qemu -redir tcp:6001::6000 [...]
729
# this host xterm should open in the guest X11 server
730
xterm -display :1
731
@end example
732

    
733
To redirect telnet connections from host port 5555 to telnet port on
734
the guest, use the following:
735

    
736
@example
737
# on the host
738
qemu -redir tcp:5555::23 [...]
739
telnet localhost 5555
740
@end example
741

    
742
Then when you use on the host @code{telnet localhost 5555}, you
743
connect to the guest telnet server.
744

    
745
@end table
746

    
747
Linux boot specific: When using these options, you can use a given
748
Linux kernel without installing it in the disk image. It can be useful
749
for easier testing of various kernels.
750

    
751
@table @option
752

    
753
@item -kernel @var{bzImage}
754
Use @var{bzImage} as kernel image.
755

    
756
@item -append @var{cmdline}
757
Use @var{cmdline} as kernel command line
758

    
759
@item -initrd @var{file}
760
Use @var{file} as initial ram disk.
761

    
762
@end table
763

    
764
Debug/Expert options:
765
@table @option
766

    
767
@item -serial @var{dev}
768
Redirect the virtual serial port to host character device
769
@var{dev}. The default device is @code{vc} in graphical mode and
770
@code{stdio} in non graphical mode.
771

    
772
This option can be used several times to simulate up to 4 serials
773
ports.
774

    
775
Use @code{-serial none} to disable all serial ports.
776

    
777
Available character devices are:
778
@table @code
779
@item vc[:WxH]
780
Virtual console. Optionally, a width and height can be given in pixel with
781
@example
782
vc:800x600
783
@end example
784
It is also possible to specify width or height in characters:
785
@example
786
vc:80Cx24C
787
@end example
788
@item pty
789
[Linux only] Pseudo TTY (a new PTY is automatically allocated)
790
@item none
791
No device is allocated.
792
@item null
793
void device
794
@item /dev/XXX
795
[Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
796
parameters are set according to the emulated ones.
797
@item /dev/parport@var{N}
798
[Linux only, parallel port only] Use host parallel port
799
@var{N}. Currently SPP and EPP parallel port features can be used.
800
@item file:@var{filename}
801
Write output to @var{filename}. No character can be read.
802
@item stdio
803
[Unix only] standard input/output
804
@item pipe:@var{filename}
805
name pipe @var{filename}
806
@item COM@var{n}
807
[Windows only] Use host serial port @var{n}
808
@item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
809
This implements UDP Net Console.
810
When @var{remote_host} or @var{src_ip} are not specified
811
they default to @code{0.0.0.0}.
812
When not using a specified @var{src_port} a random port is automatically chosen.
813

    
814
If you just want a simple readonly console you can use @code{netcat} or
815
@code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
816
@code{nc -u -l -p 4555}. Any time qemu writes something to that port it
817
will appear in the netconsole session.
818

    
819
If you plan to send characters back via netconsole or you want to stop
820
and start qemu a lot of times, you should have qemu use the same
821
source port each time by using something like @code{-serial
822
udp::4555@@:4556} to qemu. Another approach is to use a patched
823
version of netcat which can listen to a TCP port and send and receive
824
characters via udp.  If you have a patched version of netcat which
825
activates telnet remote echo and single char transfer, then you can
826
use the following options to step up a netcat redirector to allow
827
telnet on port 5555 to access the qemu port.
828
@table @code
829
@item Qemu Options:
830
-serial udp::4555@@:4556
831
@item netcat options:
832
-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
833
@item telnet options:
834
localhost 5555
835
@end table
836

    
837

    
838
@item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay]
839
The TCP Net Console has two modes of operation.  It can send the serial
840
I/O to a location or wait for a connection from a location.  By default
841
the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
842
the @var{server} option QEMU will wait for a client socket application
843
to connect to the port before continuing, unless the @code{nowait}
844
option was specified.  The @code{nodelay} option disables the Nagle buffering
845
algorithm.  If @var{host} is omitted, 0.0.0.0 is assumed. Only
846
one TCP connection at a time is accepted. You can use @code{telnet} to
847
connect to the corresponding character device.
848
@table @code
849
@item Example to send tcp console to 192.168.0.2 port 4444
850
-serial tcp:192.168.0.2:4444
851
@item Example to listen and wait on port 4444 for connection
852
-serial tcp::4444,server
853
@item Example to not wait and listen on ip 192.168.0.100 port 4444
854
-serial tcp:192.168.0.100:4444,server,nowait
855
@end table
856

    
857
@item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
858
The telnet protocol is used instead of raw tcp sockets.  The options
859
work the same as if you had specified @code{-serial tcp}.  The
860
difference is that the port acts like a telnet server or client using
861
telnet option negotiation.  This will also allow you to send the
862
MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
863
sequence.  Typically in unix telnet you do it with Control-] and then
864
type "send break" followed by pressing the enter key.
865

    
866
@item unix:@var{path}[,server][,nowait]
867
A unix domain socket is used instead of a tcp socket.  The option works the
868
same as if you had specified @code{-serial tcp} except the unix domain socket
869
@var{path} is used for connections.
870

    
871
@item mon:@var{dev_string}
872
This is a special option to allow the monitor to be multiplexed onto
873
another serial port.  The monitor is accessed with key sequence of
874
@key{Control-a} and then pressing @key{c}. See monitor access
875
@ref{pcsys_keys} in the -nographic section for more keys.
876
@var{dev_string} should be any one of the serial devices specified
877
above.  An example to multiplex the monitor onto a telnet server
878
listening on port 4444 would be:
879
@table @code
880
@item -serial mon:telnet::4444,server,nowait
881
@end table
882

    
883
@item braille
884
Braille device.  This will use BrlAPI to display the braille output on a real
885
or fake device.
886

    
887
@end table
888

    
889
@item -parallel @var{dev}
890
Redirect the virtual parallel port to host device @var{dev} (same
891
devices as the serial port). On Linux hosts, @file{/dev/parportN} can
892
be used to use hardware devices connected on the corresponding host
893
parallel port.
894

    
895
This option can be used several times to simulate up to 3 parallel
896
ports.
897

    
898
Use @code{-parallel none} to disable all parallel ports.
899

    
900
@item -monitor @var{dev}
901
Redirect the monitor to host device @var{dev} (same devices as the
902
serial port).
903
The default device is @code{vc} in graphical mode and @code{stdio} in
904
non graphical mode.
905

    
906
@item -echr numeric_ascii_value
907
Change the escape character used for switching to the monitor when using
908
monitor and serial sharing.  The default is @code{0x01} when using the
909
@code{-nographic} option.  @code{0x01} is equal to pressing
910
@code{Control-a}.  You can select a different character from the ascii
911
control keys where 1 through 26 map to Control-a through Control-z.  For
912
instance you could use the either of the following to change the escape
913
character to Control-t.
914
@table @code
915
@item -echr 0x14
916
@item -echr 20
917
@end table
918

    
919
@item -s
920
Wait gdb connection to port 1234 (@pxref{gdb_usage}).
921
@item -p @var{port}
922
Change gdb connection port.  @var{port} can be either a decimal number
923
to specify a TCP port, or a host device (same devices as the serial port).
924
@item -S
925
Do not start CPU at startup (you must type 'c' in the monitor).
926
@item -d
927
Output log in /tmp/qemu.log
928
@item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
929
Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
930
@var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
931
translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
932
all those parameters. This option is useful for old MS-DOS disk
933
images.
934

    
935
@item -L path
936
Set the directory for the BIOS, VGA BIOS and keymaps.
937

    
938
@item -std-vga
939
Simulate a standard VGA card with Bochs VBE extensions (default is
940
Cirrus Logic GD5446 PCI VGA). If your guest OS supports the VESA 2.0
941
VBE extensions (e.g. Windows XP) and if you want to use high
942
resolution modes (>= 1280x1024x16) then you should use this option.
943

    
944
@item -no-acpi
945
Disable ACPI (Advanced Configuration and Power Interface) support. Use
946
it if your guest OS complains about ACPI problems (PC target machine
947
only).
948

    
949
@item -no-reboot
950
Exit instead of rebooting.
951

    
952
@item -no-shutdown
953
Don't exit QEMU on guest shutdown, but instead only stop the emulation.
954
This allows for instance switching to monitor to commit changes to the
955
disk image.
956

    
957
@item -loadvm file
958
Start right away with a saved state (@code{loadvm} in monitor)
959

    
960
@item -semihosting
961
Enable semihosting syscall emulation (ARM and M68K target machines only).
962

    
963
On ARM this implements the "Angel" interface.
964
On M68K this implements the "ColdFire GDB" interface used by libgloss.
965

    
966
Note that this allows guest direct access to the host filesystem,
967
so should only be used with trusted guest OS.
968
@end table
969

    
970
@c man end
971

    
972
@node pcsys_keys
973
@section Keys
974

    
975
@c man begin OPTIONS
976

    
977
During the graphical emulation, you can use the following keys:
978
@table @key
979
@item Ctrl-Alt-f
980
Toggle full screen
981

    
982
@item Ctrl-Alt-n
983
Switch to virtual console 'n'. Standard console mappings are:
984
@table @emph
985
@item 1
986
Target system display
987
@item 2
988
Monitor
989
@item 3
990
Serial port
991
@end table
992

    
993
@item Ctrl-Alt
994
Toggle mouse and keyboard grab.
995
@end table
996

    
997
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
998
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
999

    
1000
During emulation, if you are using the @option{-nographic} option, use
1001
@key{Ctrl-a h} to get terminal commands:
1002

    
1003
@table @key
1004
@item Ctrl-a h
1005
Print this help
1006
@item Ctrl-a x
1007
Exit emulator
1008
@item Ctrl-a s
1009
Save disk data back to file (if -snapshot)
1010
@item Ctrl-a t
1011
toggle console timestamps
1012
@item Ctrl-a b
1013
Send break (magic sysrq in Linux)
1014
@item Ctrl-a c
1015
Switch between console and monitor
1016
@item Ctrl-a Ctrl-a
1017
Send Ctrl-a
1018
@end table
1019
@c man end
1020

    
1021
@ignore
1022

    
1023
@c man begin SEEALSO
1024
The HTML documentation of QEMU for more precise information and Linux
1025
user mode emulator invocation.
1026
@c man end
1027

    
1028
@c man begin AUTHOR
1029
Fabrice Bellard
1030
@c man end
1031

    
1032
@end ignore
1033

    
1034
@node pcsys_monitor
1035
@section QEMU Monitor
1036

    
1037
The QEMU monitor is used to give complex commands to the QEMU
1038
emulator. You can use it to:
1039

    
1040
@itemize @minus
1041

    
1042
@item
1043
Remove or insert removable media images
1044
(such as CD-ROM or floppies).
1045

    
1046
@item
1047
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
1048
from a disk file.
1049

    
1050
@item Inspect the VM state without an external debugger.
1051

    
1052
@end itemize
1053

    
1054
@subsection Commands
1055

    
1056
The following commands are available:
1057

    
1058
@table @option
1059

    
1060
@item help or ? [@var{cmd}]
1061
Show the help for all commands or just for command @var{cmd}.
1062

    
1063
@item commit
1064
Commit changes to the disk images (if -snapshot is used).
1065

    
1066
@item info @var{subcommand}
1067
Show various information about the system state.
1068

    
1069
@table @option
1070
@item info network
1071
show the various VLANs and the associated devices
1072
@item info block
1073
show the block devices
1074
@item info registers
1075
show the cpu registers
1076
@item info history
1077
show the command line history
1078
@item info pci
1079
show emulated PCI device
1080
@item info usb
1081
show USB devices plugged on the virtual USB hub
1082
@item info usbhost
1083
show all USB host devices
1084
@item info capture
1085
show information about active capturing
1086
@item info snapshots
1087
show list of VM snapshots
1088
@item info mice
1089
show which guest mouse is receiving events
1090
@end table
1091

    
1092
@item q or quit
1093
Quit the emulator.
1094

    
1095
@item eject [-f] @var{device}
1096
Eject a removable medium (use -f to force it).
1097

    
1098
@item change @var{device} @var{setting}
1099

    
1100
Change the configuration of a device.
1101

    
1102
@table @option
1103
@item change @var{diskdevice} @var{filename}
1104
Change the medium for a removable disk device to point to @var{filename}. eg
1105

    
1106
@example
1107
(qemu) change ide1-cd0 /path/to/some.iso
1108
@end example
1109

    
1110
@item change vnc @var{display},@var{options}
1111
Change the configuration of the VNC server. The valid syntax for @var{display}
1112
and @var{options} are described at @ref{sec_invocation}. eg
1113

    
1114
@example
1115
(qemu) change vnc localhost:1
1116
@end example
1117

    
1118
@item change vnc password
1119

    
1120
Change the password associated with the VNC server. The monitor will prompt for
1121
the new password to be entered. VNC passwords are only significant upto 8 letters.
1122
eg.
1123

    
1124
@example
1125
(qemu) change vnc password
1126
Password: ********
1127
@end example
1128

    
1129
@end table
1130

    
1131
@item screendump @var{filename}
1132
Save screen into PPM image @var{filename}.
1133

    
1134
@item mouse_move @var{dx} @var{dy} [@var{dz}]
1135
Move the active mouse to the specified coordinates @var{dx} @var{dy}
1136
with optional scroll axis @var{dz}.
1137

    
1138
@item mouse_button @var{val}
1139
Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
1140

    
1141
@item mouse_set @var{index}
1142
Set which mouse device receives events at given @var{index}, index
1143
can be obtained with
1144
@example
1145
info mice
1146
@end example
1147

    
1148
@item wavcapture @var{filename} [@var{frequency} [@var{bits} [@var{channels}]]]
1149
Capture audio into @var{filename}. Using sample rate @var{frequency}
1150
bits per sample @var{bits} and number of channels @var{channels}.
1151

    
1152
Defaults:
1153
@itemize @minus
1154
@item Sample rate = 44100 Hz - CD quality
1155
@item Bits = 16
1156
@item Number of channels = 2 - Stereo
1157
@end itemize
1158

    
1159
@item stopcapture @var{index}
1160
Stop capture with a given @var{index}, index can be obtained with
1161
@example
1162
info capture
1163
@end example
1164

    
1165
@item log @var{item1}[,...]
1166
Activate logging of the specified items to @file{/tmp/qemu.log}.
1167

    
1168
@item savevm [@var{tag}|@var{id}]
1169
Create a snapshot of the whole virtual machine. If @var{tag} is
1170
provided, it is used as human readable identifier. If there is already
1171
a snapshot with the same tag or ID, it is replaced. More info at
1172
@ref{vm_snapshots}.
1173

    
1174
@item loadvm @var{tag}|@var{id}
1175
Set the whole virtual machine to the snapshot identified by the tag
1176
@var{tag} or the unique snapshot ID @var{id}.
1177

    
1178
@item delvm @var{tag}|@var{id}
1179
Delete the snapshot identified by @var{tag} or @var{id}.
1180

    
1181
@item stop
1182
Stop emulation.
1183

    
1184
@item c or cont
1185
Resume emulation.
1186

    
1187
@item gdbserver [@var{port}]
1188
Start gdbserver session (default @var{port}=1234)
1189

    
1190
@item x/fmt @var{addr}
1191
Virtual memory dump starting at @var{addr}.
1192

    
1193
@item xp /@var{fmt} @var{addr}
1194
Physical memory dump starting at @var{addr}.
1195

    
1196
@var{fmt} is a format which tells the command how to format the
1197
data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
1198

    
1199
@table @var
1200
@item count
1201
is the number of items to be dumped.
1202

    
1203
@item format
1204
can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
1205
c (char) or i (asm instruction).
1206

    
1207
@item size
1208
can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
1209
@code{h} or @code{w} can be specified with the @code{i} format to
1210
respectively select 16 or 32 bit code instruction size.
1211

    
1212
@end table
1213

    
1214
Examples:
1215
@itemize
1216
@item
1217
Dump 10 instructions at the current instruction pointer:
1218
@example
1219
(qemu) x/10i $eip
1220
0x90107063:  ret
1221
0x90107064:  sti
1222
0x90107065:  lea    0x0(%esi,1),%esi
1223
0x90107069:  lea    0x0(%edi,1),%edi
1224
0x90107070:  ret
1225
0x90107071:  jmp    0x90107080
1226
0x90107073:  nop
1227
0x90107074:  nop
1228
0x90107075:  nop
1229
0x90107076:  nop
1230
@end example
1231

    
1232
@item
1233
Dump 80 16 bit values at the start of the video memory.
1234
@smallexample
1235
(qemu) xp/80hx 0xb8000
1236
0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
1237
0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
1238
0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
1239
0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
1240
0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
1241
0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
1242
0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1243
0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1244
0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1245
0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1246
@end smallexample
1247
@end itemize
1248

    
1249
@item p or print/@var{fmt} @var{expr}
1250

    
1251
Print expression value. Only the @var{format} part of @var{fmt} is
1252
used.
1253

    
1254
@item sendkey @var{keys}
1255

    
1256
Send @var{keys} to the emulator. Use @code{-} to press several keys
1257
simultaneously. Example:
1258
@example
1259
sendkey ctrl-alt-f1
1260
@end example
1261

    
1262
This command is useful to send keys that your graphical user interface
1263
intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
1264

    
1265
@item system_reset
1266

    
1267
Reset the system.
1268

    
1269
@item boot_set @var{bootdevicelist}
1270

    
1271
Define new values for the boot device list. Those values will override
1272
the values specified on the command line through the @code{-boot} option.
1273

    
1274
The values that can be specified here depend on the machine type, but are
1275
the same that can be specified in the @code{-boot} command line option.
1276

    
1277
@item usb_add @var{devname}
1278

    
1279
Add the USB device @var{devname}.  For details of available devices see
1280
@ref{usb_devices}
1281

    
1282
@item usb_del @var{devname}
1283

    
1284
Remove the USB device @var{devname} from the QEMU virtual USB
1285
hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
1286
command @code{info usb} to see the devices you can remove.
1287

    
1288
@end table
1289

    
1290
@subsection Integer expressions
1291

    
1292
The monitor understands integers expressions for every integer
1293
argument. You can use register names to get the value of specifics
1294
CPU registers by prefixing them with @emph{$}.
1295

    
1296
@node disk_images
1297
@section Disk Images
1298

    
1299
Since version 0.6.1, QEMU supports many disk image formats, including
1300
growable disk images (their size increase as non empty sectors are
1301
written), compressed and encrypted disk images. Version 0.8.3 added
1302
the new qcow2 disk image format which is essential to support VM
1303
snapshots.
1304

    
1305
@menu
1306
* disk_images_quickstart::    Quick start for disk image creation
1307
* disk_images_snapshot_mode:: Snapshot mode
1308
* vm_snapshots::              VM snapshots
1309
* qemu_img_invocation::       qemu-img Invocation
1310
* host_drives::               Using host drives
1311
* disk_images_fat_images::    Virtual FAT disk images
1312
@end menu
1313

    
1314
@node disk_images_quickstart
1315
@subsection Quick start for disk image creation
1316

    
1317
You can create a disk image with the command:
1318
@example
1319
qemu-img create myimage.img mysize
1320
@end example
1321
where @var{myimage.img} is the disk image filename and @var{mysize} is its
1322
size in kilobytes. You can add an @code{M} suffix to give the size in
1323
megabytes and a @code{G} suffix for gigabytes.
1324

    
1325
See @ref{qemu_img_invocation} for more information.
1326

    
1327
@node disk_images_snapshot_mode
1328
@subsection Snapshot mode
1329

    
1330
If you use the option @option{-snapshot}, all disk images are
1331
considered as read only. When sectors in written, they are written in
1332
a temporary file created in @file{/tmp}. You can however force the
1333
write back to the raw disk images by using the @code{commit} monitor
1334
command (or @key{C-a s} in the serial console).
1335

    
1336
@node vm_snapshots
1337
@subsection VM snapshots
1338

    
1339
VM snapshots are snapshots of the complete virtual machine including
1340
CPU state, RAM, device state and the content of all the writable
1341
disks. In order to use VM snapshots, you must have at least one non
1342
removable and writable block device using the @code{qcow2} disk image
1343
format. Normally this device is the first virtual hard drive.
1344

    
1345
Use the monitor command @code{savevm} to create a new VM snapshot or
1346
replace an existing one. A human readable name can be assigned to each
1347
snapshot in addition to its numerical ID.
1348

    
1349
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1350
a VM snapshot. @code{info snapshots} lists the available snapshots
1351
with their associated information:
1352

    
1353
@example
1354
(qemu) info snapshots
1355
Snapshot devices: hda
1356
Snapshot list (from hda):
1357
ID        TAG                 VM SIZE                DATE       VM CLOCK
1358
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
1359
2                                 40M 2006-08-06 12:43:29   00:00:18.633
1360
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
1361
@end example
1362

    
1363
A VM snapshot is made of a VM state info (its size is shown in
1364
@code{info snapshots}) and a snapshot of every writable disk image.
1365
The VM state info is stored in the first @code{qcow2} non removable
1366
and writable block device. The disk image snapshots are stored in
1367
every disk image. The size of a snapshot in a disk image is difficult
1368
to evaluate and is not shown by @code{info snapshots} because the
1369
associated disk sectors are shared among all the snapshots to save
1370
disk space (otherwise each snapshot would need a full copy of all the
1371
disk images).
1372

    
1373
When using the (unrelated) @code{-snapshot} option
1374
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1375
but they are deleted as soon as you exit QEMU.
1376

    
1377
VM snapshots currently have the following known limitations:
1378
@itemize
1379
@item
1380
They cannot cope with removable devices if they are removed or
1381
inserted after a snapshot is done.
1382
@item
1383
A few device drivers still have incomplete snapshot support so their
1384
state is not saved or restored properly (in particular USB).
1385
@end itemize
1386

    
1387
@node qemu_img_invocation
1388
@subsection @code{qemu-img} Invocation
1389

    
1390
@include qemu-img.texi
1391

    
1392
@node host_drives
1393
@subsection Using host drives
1394

    
1395
In addition to disk image files, QEMU can directly access host
1396
devices. We describe here the usage for QEMU version >= 0.8.3.
1397

    
1398
@subsubsection Linux
1399

    
1400
On Linux, you can directly use the host device filename instead of a
1401
disk image filename provided you have enough privileges to access
1402
it. For example, use @file{/dev/cdrom} to access to the CDROM or
1403
@file{/dev/fd0} for the floppy.
1404

    
1405
@table @code
1406
@item CD
1407
You can specify a CDROM device even if no CDROM is loaded. QEMU has
1408
specific code to detect CDROM insertion or removal. CDROM ejection by
1409
the guest OS is supported. Currently only data CDs are supported.
1410
@item Floppy
1411
You can specify a floppy device even if no floppy is loaded. Floppy
1412
removal is currently not detected accurately (if you change floppy
1413
without doing floppy access while the floppy is not loaded, the guest
1414
OS will think that the same floppy is loaded).
1415
@item Hard disks
1416
Hard disks can be used. Normally you must specify the whole disk
1417
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1418
see it as a partitioned disk. WARNING: unless you know what you do, it
1419
is better to only make READ-ONLY accesses to the hard disk otherwise
1420
you may corrupt your host data (use the @option{-snapshot} command
1421
line option or modify the device permissions accordingly).
1422
@end table
1423

    
1424
@subsubsection Windows
1425

    
1426
@table @code
1427
@item CD
1428
The preferred syntax is the drive letter (e.g. @file{d:}). The
1429
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1430
supported as an alias to the first CDROM drive.
1431

    
1432
Currently there is no specific code to handle removable media, so it
1433
is better to use the @code{change} or @code{eject} monitor commands to
1434
change or eject media.
1435
@item Hard disks
1436
Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
1437
where @var{N} is the drive number (0 is the first hard disk).
1438

    
1439
WARNING: unless you know what you do, it is better to only make
1440
READ-ONLY accesses to the hard disk otherwise you may corrupt your
1441
host data (use the @option{-snapshot} command line so that the
1442
modifications are written in a temporary file).
1443
@end table
1444

    
1445

    
1446
@subsubsection Mac OS X
1447

    
1448
@file{/dev/cdrom} is an alias to the first CDROM.
1449

    
1450
Currently there is no specific code to handle removable media, so it
1451
is better to use the @code{change} or @code{eject} monitor commands to
1452
change or eject media.
1453

    
1454
@node disk_images_fat_images
1455
@subsection Virtual FAT disk images
1456

    
1457
QEMU can automatically create a virtual FAT disk image from a
1458
directory tree. In order to use it, just type:
1459

    
1460
@example
1461
qemu linux.img -hdb fat:/my_directory
1462
@end example
1463

    
1464
Then you access access to all the files in the @file{/my_directory}
1465
directory without having to copy them in a disk image or to export
1466
them via SAMBA or NFS. The default access is @emph{read-only}.
1467

    
1468
Floppies can be emulated with the @code{:floppy:} option:
1469

    
1470
@example
1471
qemu linux.img -fda fat:floppy:/my_directory
1472
@end example
1473

    
1474
A read/write support is available for testing (beta stage) with the
1475
@code{:rw:} option:
1476

    
1477
@example
1478
qemu linux.img -fda fat:floppy:rw:/my_directory
1479
@end example
1480

    
1481
What you should @emph{never} do:
1482
@itemize
1483
@item use non-ASCII filenames ;
1484
@item use "-snapshot" together with ":rw:" ;
1485
@item expect it to work when loadvm'ing ;
1486
@item write to the FAT directory on the host system while accessing it with the guest system.
1487
@end itemize
1488

    
1489
@node pcsys_network
1490
@section Network emulation
1491

    
1492
QEMU can simulate several network cards (PCI or ISA cards on the PC
1493
target) and can connect them to an arbitrary number of Virtual Local
1494
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1495
VLAN. VLAN can be connected between separate instances of QEMU to
1496
simulate large networks. For simpler usage, a non privileged user mode
1497
network stack can replace the TAP device to have a basic network
1498
connection.
1499

    
1500
@subsection VLANs
1501

    
1502
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1503
connection between several network devices. These devices can be for
1504
example QEMU virtual Ethernet cards or virtual Host ethernet devices
1505
(TAP devices).
1506

    
1507
@subsection Using TAP network interfaces
1508

    
1509
This is the standard way to connect QEMU to a real network. QEMU adds
1510
a virtual network device on your host (called @code{tapN}), and you
1511
can then configure it as if it was a real ethernet card.
1512

    
1513
@subsubsection Linux host
1514

    
1515
As an example, you can download the @file{linux-test-xxx.tar.gz}
1516
archive and copy the script @file{qemu-ifup} in @file{/etc} and
1517
configure properly @code{sudo} so that the command @code{ifconfig}
1518
contained in @file{qemu-ifup} can be executed as root. You must verify
1519
that your host kernel supports the TAP network interfaces: the
1520
device @file{/dev/net/tun} must be present.
1521

    
1522
See @ref{sec_invocation} to have examples of command lines using the
1523
TAP network interfaces.
1524

    
1525
@subsubsection Windows host
1526

    
1527
There is a virtual ethernet driver for Windows 2000/XP systems, called
1528
TAP-Win32. But it is not included in standard QEMU for Windows,
1529
so you will need to get it separately. It is part of OpenVPN package,
1530
so download OpenVPN from : @url{http://openvpn.net/}.
1531

    
1532
@subsection Using the user mode network stack
1533

    
1534
By using the option @option{-net user} (default configuration if no
1535
@option{-net} option is specified), QEMU uses a completely user mode
1536
network stack (you don't need root privilege to use the virtual
1537
network). The virtual network configuration is the following:
1538

    
1539
@example
1540

    
1541
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1542
                           |          (10.0.2.2)
1543
                           |
1544
                           ---->  DNS server (10.0.2.3)
1545
                           |
1546
                           ---->  SMB server (10.0.2.4)
1547
@end example
1548

    
1549
The QEMU VM behaves as if it was behind a firewall which blocks all
1550
incoming connections. You can use a DHCP client to automatically
1551
configure the network in the QEMU VM. The DHCP server assign addresses
1552
to the hosts starting from 10.0.2.15.
1553

    
1554
In order to check that the user mode network is working, you can ping
1555
the address 10.0.2.2 and verify that you got an address in the range
1556
10.0.2.x from the QEMU virtual DHCP server.
1557

    
1558
Note that @code{ping} is not supported reliably to the internet as it
1559
would require root privileges. It means you can only ping the local
1560
router (10.0.2.2).
1561

    
1562
When using the built-in TFTP server, the router is also the TFTP
1563
server.
1564

    
1565
When using the @option{-redir} option, TCP or UDP connections can be
1566
redirected from the host to the guest. It allows for example to
1567
redirect X11, telnet or SSH connections.
1568

    
1569
@subsection Connecting VLANs between QEMU instances
1570

    
1571
Using the @option{-net socket} option, it is possible to make VLANs
1572
that span several QEMU instances. See @ref{sec_invocation} to have a
1573
basic example.
1574

    
1575
@node direct_linux_boot
1576
@section Direct Linux Boot
1577

    
1578
This section explains how to launch a Linux kernel inside QEMU without
1579
having to make a full bootable image. It is very useful for fast Linux
1580
kernel testing.
1581

    
1582
The syntax is:
1583
@example
1584
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1585
@end example
1586

    
1587
Use @option{-kernel} to provide the Linux kernel image and
1588
@option{-append} to give the kernel command line arguments. The
1589
@option{-initrd} option can be used to provide an INITRD image.
1590

    
1591
When using the direct Linux boot, a disk image for the first hard disk
1592
@file{hda} is required because its boot sector is used to launch the
1593
Linux kernel.
1594

    
1595
If you do not need graphical output, you can disable it and redirect
1596
the virtual serial port and the QEMU monitor to the console with the
1597
@option{-nographic} option. The typical command line is:
1598
@example
1599
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1600
     -append "root=/dev/hda console=ttyS0" -nographic
1601
@end example
1602

    
1603
Use @key{Ctrl-a c} to switch between the serial console and the
1604
monitor (@pxref{pcsys_keys}).
1605

    
1606
@node pcsys_usb
1607
@section USB emulation
1608

    
1609
QEMU emulates a PCI UHCI USB controller. You can virtually plug
1610
virtual USB devices or real host USB devices (experimental, works only
1611
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1612
as necessary to connect multiple USB devices.
1613

    
1614
@menu
1615
* usb_devices::
1616
* host_usb_devices::
1617
@end menu
1618
@node usb_devices
1619
@subsection Connecting USB devices
1620

    
1621
USB devices can be connected with the @option{-usbdevice} commandline option
1622
or the @code{usb_add} monitor command.  Available devices are:
1623

    
1624
@table @code
1625
@item mouse
1626
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1627
@item tablet
1628
Pointer device that uses absolute coordinates (like a touchscreen).
1629
This means qemu is able to report the mouse position without having
1630
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1631
@item disk:@var{file}
1632
Mass storage device based on @var{file} (@pxref{disk_images})
1633
@item host:@var{bus.addr}
1634
Pass through the host device identified by @var{bus.addr}
1635
(Linux only)
1636
@item host:@var{vendor_id:product_id}
1637
Pass through the host device identified by @var{vendor_id:product_id}
1638
(Linux only)
1639
@item wacom-tablet
1640
Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
1641
above but it can be used with the tslib library because in addition to touch
1642
coordinates it reports touch pressure.
1643
@item keyboard
1644
Standard USB keyboard.  Will override the PS/2 keyboard (if present).
1645
@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1646
Serial converter. This emulates an FTDI FT232BM chip connected to host character
1647
device @var{dev}. The available character devices are the same as for the
1648
@code{-serial} option. The @code{vendorid} and @code{productid} options can be
1649
used to override the default 0403:6001. For instance, 
1650
@example
1651
usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1652
@end example
1653
will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1654
serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
1655
@item braille
1656
Braille device.  This will use BrlAPI to display the braille output on a real
1657
or fake device.
1658
@end table
1659

    
1660
@node host_usb_devices
1661
@subsection Using host USB devices on a Linux host
1662

    
1663
WARNING: this is an experimental feature. QEMU will slow down when
1664
using it. USB devices requiring real time streaming (i.e. USB Video
1665
Cameras) are not supported yet.
1666

    
1667
@enumerate
1668
@item If you use an early Linux 2.4 kernel, verify that no Linux driver
1669
is actually using the USB device. A simple way to do that is simply to
1670
disable the corresponding kernel module by renaming it from @file{mydriver.o}
1671
to @file{mydriver.o.disabled}.
1672

    
1673
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1674
@example
1675
ls /proc/bus/usb
1676
001  devices  drivers
1677
@end example
1678

    
1679
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1680
@example
1681
chown -R myuid /proc/bus/usb
1682
@end example
1683

    
1684
@item Launch QEMU and do in the monitor:
1685
@example
1686
info usbhost
1687
  Device 1.2, speed 480 Mb/s
1688
    Class 00: USB device 1234:5678, USB DISK
1689
@end example
1690
You should see the list of the devices you can use (Never try to use
1691
hubs, it won't work).
1692

    
1693
@item Add the device in QEMU by using:
1694
@example
1695
usb_add host:1234:5678
1696
@end example
1697

    
1698
Normally the guest OS should report that a new USB device is
1699
plugged. You can use the option @option{-usbdevice} to do the same.
1700

    
1701
@item Now you can try to use the host USB device in QEMU.
1702

    
1703
@end enumerate
1704

    
1705
When relaunching QEMU, you may have to unplug and plug again the USB
1706
device to make it work again (this is a bug).
1707

    
1708
@node vnc_security
1709
@section VNC security
1710

    
1711
The VNC server capability provides access to the graphical console
1712
of the guest VM across the network. This has a number of security
1713
considerations depending on the deployment scenarios.
1714

    
1715
@menu
1716
* vnc_sec_none::
1717
* vnc_sec_password::
1718
* vnc_sec_certificate::
1719
* vnc_sec_certificate_verify::
1720
* vnc_sec_certificate_pw::
1721
* vnc_generate_cert::
1722
@end menu
1723
@node vnc_sec_none
1724
@subsection Without passwords
1725

    
1726
The simplest VNC server setup does not include any form of authentication.
1727
For this setup it is recommended to restrict it to listen on a UNIX domain
1728
socket only. For example
1729

    
1730
@example
1731
qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1732
@end example
1733

    
1734
This ensures that only users on local box with read/write access to that
1735
path can access the VNC server. To securely access the VNC server from a
1736
remote machine, a combination of netcat+ssh can be used to provide a secure
1737
tunnel.
1738

    
1739
@node vnc_sec_password
1740
@subsection With passwords
1741

    
1742
The VNC protocol has limited support for password based authentication. Since
1743
the protocol limits passwords to 8 characters it should not be considered
1744
to provide high security. The password can be fairly easily brute-forced by
1745
a client making repeat connections. For this reason, a VNC server using password
1746
authentication should be restricted to only listen on the loopback interface
1747
or UNIX domain sockets. Password ayuthentication is requested with the @code{password}
1748
option, and then once QEMU is running the password is set with the monitor. Until
1749
the monitor is used to set the password all clients will be rejected.
1750

    
1751
@example
1752
qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1753
(qemu) change vnc password
1754
Password: ********
1755
(qemu)
1756
@end example
1757

    
1758
@node vnc_sec_certificate
1759
@subsection With x509 certificates
1760

    
1761
The QEMU VNC server also implements the VeNCrypt extension allowing use of
1762
TLS for encryption of the session, and x509 certificates for authentication.
1763
The use of x509 certificates is strongly recommended, because TLS on its
1764
own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1765
support provides a secure session, but no authentication. This allows any
1766
client to connect, and provides an encrypted session.
1767

    
1768
@example
1769
qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1770
@end example
1771

    
1772
In the above example @code{/etc/pki/qemu} should contain at least three files,
1773
@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1774
users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1775
NB the @code{server-key.pem} file should be protected with file mode 0600 to
1776
only be readable by the user owning it.
1777

    
1778
@node vnc_sec_certificate_verify
1779
@subsection With x509 certificates and client verification
1780

    
1781
Certificates can also provide a means to authenticate the client connecting.
1782
The server will request that the client provide a certificate, which it will
1783
then validate against the CA certificate. This is a good choice if deploying
1784
in an environment with a private internal certificate authority.
1785

    
1786
@example
1787
qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1788
@end example
1789

    
1790

    
1791
@node vnc_sec_certificate_pw
1792
@subsection With x509 certificates, client verification and passwords
1793

    
1794
Finally, the previous method can be combined with VNC password authentication
1795
to provide two layers of authentication for clients.
1796

    
1797
@example
1798
qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1799
(qemu) change vnc password
1800
Password: ********
1801
(qemu)
1802
@end example
1803

    
1804
@node vnc_generate_cert
1805
@subsection Generating certificates for VNC
1806

    
1807
The GNU TLS packages provides a command called @code{certtool} which can
1808
be used to generate certificates and keys in PEM format. At a minimum it
1809
is neccessary to setup a certificate authority, and issue certificates to
1810
each server. If using certificates for authentication, then each client
1811
will also need to be issued a certificate. The recommendation is for the
1812
server to keep its certificates in either @code{/etc/pki/qemu} or for
1813
unprivileged users in @code{$HOME/.pki/qemu}.
1814

    
1815
@menu
1816
* vnc_generate_ca::
1817
* vnc_generate_server::
1818
* vnc_generate_client::
1819
@end menu
1820
@node vnc_generate_ca
1821
@subsubsection Setup the Certificate Authority
1822

    
1823
This step only needs to be performed once per organization / organizational
1824
unit. First the CA needs a private key. This key must be kept VERY secret
1825
and secure. If this key is compromised the entire trust chain of the certificates
1826
issued with it is lost.
1827

    
1828
@example
1829
# certtool --generate-privkey > ca-key.pem
1830
@end example
1831

    
1832
A CA needs to have a public certificate. For simplicity it can be a self-signed
1833
certificate, or one issue by a commercial certificate issuing authority. To
1834
generate a self-signed certificate requires one core piece of information, the
1835
name of the organization.
1836

    
1837
@example
1838
# cat > ca.info <<EOF
1839
cn = Name of your organization
1840
ca
1841
cert_signing_key
1842
EOF
1843
# certtool --generate-self-signed \
1844
           --load-privkey ca-key.pem
1845
           --template ca.info \
1846
           --outfile ca-cert.pem
1847
@end example
1848

    
1849
The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1850
TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1851

    
1852
@node vnc_generate_server
1853
@subsubsection Issuing server certificates
1854

    
1855
Each server (or host) needs to be issued with a key and certificate. When connecting
1856
the certificate is sent to the client which validates it against the CA certificate.
1857
The core piece of information for a server certificate is the hostname. This should
1858
be the fully qualified hostname that the client will connect with, since the client
1859
will typically also verify the hostname in the certificate. On the host holding the
1860
secure CA private key:
1861

    
1862
@example
1863
# cat > server.info <<EOF
1864
organization = Name  of your organization
1865
cn = server.foo.example.com
1866
tls_www_server
1867
encryption_key
1868
signing_key
1869
EOF
1870
# certtool --generate-privkey > server-key.pem
1871
# certtool --generate-certificate \
1872
           --load-ca-certificate ca-cert.pem \
1873
           --load-ca-privkey ca-key.pem \
1874
           --load-privkey server server-key.pem \
1875
           --template server.info \
1876
           --outfile server-cert.pem
1877
@end example
1878

    
1879
The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1880
to the server for which they were generated. The @code{server-key.pem} is security
1881
sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1882

    
1883
@node vnc_generate_client
1884
@subsubsection Issuing client certificates
1885

    
1886
If the QEMU VNC server is to use the @code{x509verify} option to validate client
1887
certificates as its authentication mechanism, each client also needs to be issued
1888
a certificate. The client certificate contains enough metadata to uniquely identify
1889
the client, typically organization, state, city, building, etc. On the host holding
1890
the secure CA private key:
1891

    
1892
@example
1893
# cat > client.info <<EOF
1894
country = GB
1895
state = London
1896
locality = London
1897
organiazation = Name of your organization
1898
cn = client.foo.example.com
1899
tls_www_client
1900
encryption_key
1901
signing_key
1902
EOF
1903
# certtool --generate-privkey > client-key.pem
1904
# certtool --generate-certificate \
1905
           --load-ca-certificate ca-cert.pem \
1906
           --load-ca-privkey ca-key.pem \
1907
           --load-privkey client-key.pem \
1908
           --template client.info \
1909
           --outfile client-cert.pem
1910
@end example
1911

    
1912
The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1913
copied to the client for which they were generated.
1914

    
1915
@node gdb_usage
1916
@section GDB usage
1917

    
1918
QEMU has a primitive support to work with gdb, so that you can do
1919
'Ctrl-C' while the virtual machine is running and inspect its state.
1920

    
1921
In order to use gdb, launch qemu with the '-s' option. It will wait for a
1922
gdb connection:
1923
@example
1924
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1925
       -append "root=/dev/hda"
1926
Connected to host network interface: tun0
1927
Waiting gdb connection on port 1234
1928
@end example
1929

    
1930
Then launch gdb on the 'vmlinux' executable:
1931
@example
1932
> gdb vmlinux
1933
@end example
1934

    
1935
In gdb, connect to QEMU:
1936
@example
1937
(gdb) target remote localhost:1234
1938
@end example
1939

    
1940
Then you can use gdb normally. For example, type 'c' to launch the kernel:
1941
@example
1942
(gdb) c
1943
@end example
1944

    
1945
Here are some useful tips in order to use gdb on system code:
1946

    
1947
@enumerate
1948
@item
1949
Use @code{info reg} to display all the CPU registers.
1950
@item
1951
Use @code{x/10i $eip} to display the code at the PC position.
1952
@item
1953
Use @code{set architecture i8086} to dump 16 bit code. Then use
1954
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1955
@end enumerate
1956

    
1957
Advanced debugging options:
1958

    
1959
The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
1960
@table @code
1961
@item maintenance packet qqemu.sstepbits
1962

    
1963
This will display the MASK bits used to control the single stepping IE:
1964
@example
1965
(gdb) maintenance packet qqemu.sstepbits
1966
sending: "qqemu.sstepbits"
1967
received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1968
@end example
1969
@item maintenance packet qqemu.sstep
1970

    
1971
This will display the current value of the mask used when single stepping IE:
1972
@example
1973
(gdb) maintenance packet qqemu.sstep
1974
sending: "qqemu.sstep"
1975
received: "0x7"
1976
@end example
1977
@item maintenance packet Qqemu.sstep=HEX_VALUE
1978

    
1979
This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1980
@example
1981
(gdb) maintenance packet Qqemu.sstep=0x5
1982
sending: "qemu.sstep=0x5"
1983
received: "OK"
1984
@end example
1985
@end table
1986

    
1987
@node pcsys_os_specific
1988
@section Target OS specific information
1989

    
1990
@subsection Linux
1991

    
1992
To have access to SVGA graphic modes under X11, use the @code{vesa} or
1993
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1994
color depth in the guest and the host OS.
1995

    
1996
When using a 2.6 guest Linux kernel, you should add the option
1997
@code{clock=pit} on the kernel command line because the 2.6 Linux
1998
kernels make very strict real time clock checks by default that QEMU
1999
cannot simulate exactly.
2000

    
2001
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
2002
not activated because QEMU is slower with this patch. The QEMU
2003
Accelerator Module is also much slower in this case. Earlier Fedora
2004
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
2005
patch by default. Newer kernels don't have it.
2006

    
2007
@subsection Windows
2008

    
2009
If you have a slow host, using Windows 95 is better as it gives the
2010
best speed. Windows 2000 is also a good choice.
2011

    
2012
@subsubsection SVGA graphic modes support
2013

    
2014
QEMU emulates a Cirrus Logic GD5446 Video
2015
card. All Windows versions starting from Windows 95 should recognize
2016
and use this graphic card. For optimal performances, use 16 bit color
2017
depth in the guest and the host OS.
2018

    
2019
If you are using Windows XP as guest OS and if you want to use high
2020
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
2021
1280x1024x16), then you should use the VESA VBE virtual graphic card
2022
(option @option{-std-vga}).
2023

    
2024
@subsubsection CPU usage reduction
2025

    
2026
Windows 9x does not correctly use the CPU HLT
2027
instruction. The result is that it takes host CPU cycles even when
2028
idle. You can install the utility from
2029
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
2030
problem. Note that no such tool is needed for NT, 2000 or XP.
2031

    
2032
@subsubsection Windows 2000 disk full problem
2033

    
2034
Windows 2000 has a bug which gives a disk full problem during its
2035
installation. When installing it, use the @option{-win2k-hack} QEMU
2036
option to enable a specific workaround. After Windows 2000 is
2037
installed, you no longer need this option (this option slows down the
2038
IDE transfers).
2039

    
2040
@subsubsection Windows 2000 shutdown
2041

    
2042
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
2043
can. It comes from the fact that Windows 2000 does not automatically
2044
use the APM driver provided by the BIOS.
2045

    
2046
In order to correct that, do the following (thanks to Struan
2047
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
2048
Add/Troubleshoot a device => Add a new device & Next => No, select the
2049
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
2050
(again) a few times. Now the driver is installed and Windows 2000 now
2051
correctly instructs QEMU to shutdown at the appropriate moment.
2052

    
2053
@subsubsection Share a directory between Unix and Windows
2054

    
2055
See @ref{sec_invocation} about the help of the option @option{-smb}.
2056

    
2057
@subsubsection Windows XP security problem
2058

    
2059
Some releases of Windows XP install correctly but give a security
2060
error when booting:
2061
@example
2062
A problem is preventing Windows from accurately checking the
2063
license for this computer. Error code: 0x800703e6.
2064
@end example
2065

    
2066
The workaround is to install a service pack for XP after a boot in safe
2067
mode. Then reboot, and the problem should go away. Since there is no
2068
network while in safe mode, its recommended to download the full
2069
installation of SP1 or SP2 and transfer that via an ISO or using the
2070
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
2071

    
2072
@subsection MS-DOS and FreeDOS
2073

    
2074
@subsubsection CPU usage reduction
2075

    
2076
DOS does not correctly use the CPU HLT instruction. The result is that
2077
it takes host CPU cycles even when idle. You can install the utility
2078
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
2079
problem.
2080

    
2081
@node QEMU System emulator for non PC targets
2082
@chapter QEMU System emulator for non PC targets
2083

    
2084
QEMU is a generic emulator and it emulates many non PC
2085
machines. Most of the options are similar to the PC emulator. The
2086
differences are mentioned in the following sections.
2087

    
2088
@menu
2089
* QEMU PowerPC System emulator::
2090
* Sparc32 System emulator::
2091
* Sparc64 System emulator::
2092
* MIPS System emulator::
2093
* ARM System emulator::
2094
* ColdFire System emulator::
2095
@end menu
2096

    
2097
@node QEMU PowerPC System emulator
2098
@section QEMU PowerPC System emulator
2099

    
2100
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
2101
or PowerMac PowerPC system.
2102

    
2103
QEMU emulates the following PowerMac peripherals:
2104

    
2105
@itemize @minus
2106
@item
2107
UniNorth PCI Bridge
2108
@item
2109
PCI VGA compatible card with VESA Bochs Extensions
2110
@item
2111
2 PMAC IDE interfaces with hard disk and CD-ROM support
2112
@item
2113
NE2000 PCI adapters
2114
@item
2115
Non Volatile RAM
2116
@item
2117
VIA-CUDA with ADB keyboard and mouse.
2118
@end itemize
2119

    
2120
QEMU emulates the following PREP peripherals:
2121

    
2122
@itemize @minus
2123
@item
2124
PCI Bridge
2125
@item
2126
PCI VGA compatible card with VESA Bochs Extensions
2127
@item
2128
2 IDE interfaces with hard disk and CD-ROM support
2129
@item
2130
Floppy disk
2131
@item
2132
NE2000 network adapters
2133
@item
2134
Serial port
2135
@item
2136
PREP Non Volatile RAM
2137
@item
2138
PC compatible keyboard and mouse.
2139
@end itemize
2140

    
2141
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
2142
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
2143

    
2144
@c man begin OPTIONS
2145

    
2146
The following options are specific to the PowerPC emulation:
2147

    
2148
@table @option
2149

    
2150
@item -g WxH[xDEPTH]
2151

    
2152
Set the initial VGA graphic mode. The default is 800x600x15.
2153

    
2154
@end table
2155

    
2156
@c man end
2157

    
2158

    
2159
More information is available at
2160
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
2161

    
2162
@node Sparc32 System emulator
2163
@section Sparc32 System emulator
2164

    
2165
Use the executable @file{qemu-system-sparc} to simulate a SPARCstation
2166
5, SPARCstation 10, SPARCstation 20, SPARCserver 600MP (sun4m
2167
architecture), SPARCstation 2 (sun4c architecture), SPARCserver 1000,
2168
or SPARCcenter 2000 (sun4d architecture). The emulation is somewhat
2169
complete.  SMP up to 16 CPUs is supported, but Linux limits the number
2170
of usable CPUs to 4.
2171

    
2172
QEMU emulates the following sun4m/sun4d peripherals:
2173

    
2174
@itemize @minus
2175
@item
2176
IOMMU or IO-UNITs
2177
@item
2178
TCX Frame buffer
2179
@item
2180
Lance (Am7990) Ethernet
2181
@item
2182
Non Volatile RAM M48T08
2183
@item
2184
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2185
and power/reset logic
2186
@item
2187
ESP SCSI controller with hard disk and CD-ROM support
2188
@item
2189
Floppy drive (not on SS-600MP)
2190
@item
2191
CS4231 sound device (only on SS-5, not working yet)
2192
@end itemize
2193

    
2194
The number of peripherals is fixed in the architecture.  Maximum
2195
memory size depends on the machine type, for SS-5 it is 256MB and for
2196
others 2047MB.
2197

    
2198
Since version 0.8.2, QEMU uses OpenBIOS
2199
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2200
firmware implementation. The goal is to implement a 100% IEEE
2201
1275-1994 (referred to as Open Firmware) compliant firmware.
2202

    
2203
A sample Linux 2.6 series kernel and ram disk image are available on
2204
the QEMU web site. Please note that currently NetBSD, OpenBSD or
2205
Solaris kernels don't work.
2206

    
2207
@c man begin OPTIONS
2208

    
2209
The following options are specific to the Sparc32 emulation:
2210

    
2211
@table @option
2212

    
2213
@item -g WxHx[xDEPTH]
2214

    
2215
Set the initial TCX graphic mode. The default is 1024x768x8, currently
2216
the only other possible mode is 1024x768x24.
2217

    
2218
@item -prom-env string
2219

    
2220
Set OpenBIOS variables in NVRAM, for example:
2221

    
2222
@example
2223
qemu-system-sparc -prom-env 'auto-boot?=false' \
2224
 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2225
@end example
2226

    
2227
@item -M [SS-5|SS-10|SS-20|SS-600MP|SS-2|SS-1000|SS-2000]
2228

    
2229
Set the emulated machine type. Default is SS-5.
2230

    
2231
@end table
2232

    
2233
@c man end
2234

    
2235
@node Sparc64 System emulator
2236
@section Sparc64 System emulator
2237

    
2238
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u machine.
2239
The emulator is not usable for anything yet.
2240

    
2241
QEMU emulates the following sun4u peripherals:
2242

    
2243
@itemize @minus
2244
@item
2245
UltraSparc IIi APB PCI Bridge
2246
@item
2247
PCI VGA compatible card with VESA Bochs Extensions
2248
@item
2249
Non Volatile RAM M48T59
2250
@item
2251
PC-compatible serial ports
2252
@end itemize
2253

    
2254
@node MIPS System emulator
2255
@section MIPS System emulator
2256

    
2257
Four executables cover simulation of 32 and 64-bit MIPS systems in
2258
both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2259
@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
2260
Five different machine types are emulated:
2261

    
2262
@itemize @minus
2263
@item
2264
A generic ISA PC-like machine "mips"
2265
@item
2266
The MIPS Malta prototype board "malta"
2267
@item
2268
An ACER Pica "pica61". This machine needs the 64-bit emulator.
2269
@item
2270
MIPS emulator pseudo board "mipssim"
2271
@item
2272
A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
2273
@end itemize
2274

    
2275
The generic emulation is supported by Debian 'Etch' and is able to
2276
install Debian into a virtual disk image. The following devices are
2277
emulated:
2278

    
2279
@itemize @minus
2280
@item
2281
A range of MIPS CPUs, default is the 24Kf
2282
@item
2283
PC style serial port
2284
@item
2285
PC style IDE disk
2286
@item
2287
NE2000 network card
2288
@end itemize
2289

    
2290
The Malta emulation supports the following devices:
2291

    
2292
@itemize @minus
2293
@item
2294
Core board with MIPS 24Kf CPU and Galileo system controller
2295
@item
2296
PIIX4 PCI/USB/SMbus controller
2297
@item
2298
The Multi-I/O chip's serial device
2299
@item
2300
PCnet32 PCI network card
2301
@item
2302
Malta FPGA serial device
2303
@item
2304
Cirrus VGA graphics card
2305
@end itemize
2306

    
2307
The ACER Pica emulation supports:
2308

    
2309
@itemize @minus
2310
@item
2311
MIPS R4000 CPU
2312
@item
2313
PC-style IRQ and DMA controllers
2314
@item
2315
PC Keyboard
2316
@item
2317
IDE controller
2318
@end itemize
2319

    
2320
The mipssim pseudo board emulation provides an environment similiar
2321
to what the proprietary MIPS emulator uses for running Linux.
2322
It supports:
2323

    
2324
@itemize @minus
2325
@item
2326
A range of MIPS CPUs, default is the 24Kf
2327
@item
2328
PC style serial port
2329
@item
2330
MIPSnet network emulation
2331
@end itemize
2332

    
2333
The MIPS Magnum R4000 emulation supports:
2334

    
2335
@itemize @minus
2336
@item
2337
MIPS R4000 CPU
2338
@item
2339
PC-style IRQ controller
2340
@item
2341
PC Keyboard
2342
@item
2343
SCSI controller
2344
@item
2345
G364 framebuffer
2346
@end itemize
2347

    
2348

    
2349
@node ARM System emulator
2350
@section ARM System emulator
2351

    
2352
Use the executable @file{qemu-system-arm} to simulate a ARM
2353
machine. The ARM Integrator/CP board is emulated with the following
2354
devices:
2355

    
2356
@itemize @minus
2357
@item
2358
ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2359
@item
2360
Two PL011 UARTs
2361
@item
2362
SMC 91c111 Ethernet adapter
2363
@item
2364
PL110 LCD controller
2365
@item
2366
PL050 KMI with PS/2 keyboard and mouse.
2367
@item
2368
PL181 MultiMedia Card Interface with SD card.
2369
@end itemize
2370

    
2371
The ARM Versatile baseboard is emulated with the following devices:
2372

    
2373
@itemize @minus
2374
@item
2375
ARM926E, ARM1136 or Cortex-A8 CPU
2376
@item
2377
PL190 Vectored Interrupt Controller
2378
@item
2379
Four PL011 UARTs
2380
@item
2381
SMC 91c111 Ethernet adapter
2382
@item
2383
PL110 LCD controller
2384
@item
2385
PL050 KMI with PS/2 keyboard and mouse.
2386
@item
2387
PCI host bridge.  Note the emulated PCI bridge only provides access to
2388
PCI memory space.  It does not provide access to PCI IO space.
2389
This means some devices (eg. ne2k_pci NIC) are not usable, and others
2390
(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2391
mapped control registers.
2392
@item
2393
PCI OHCI USB controller.
2394
@item
2395
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2396
@item
2397
PL181 MultiMedia Card Interface with SD card.
2398
@end itemize
2399

    
2400
The ARM RealView Emulation baseboard is emulated with the following devices:
2401

    
2402
@itemize @minus
2403
@item
2404
ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU
2405
@item
2406
ARM AMBA Generic/Distributed Interrupt Controller
2407
@item
2408
Four PL011 UARTs
2409
@item
2410
SMC 91c111 Ethernet adapter
2411
@item
2412
PL110 LCD controller
2413
@item
2414
PL050 KMI with PS/2 keyboard and mouse
2415
@item
2416
PCI host bridge
2417
@item
2418
PCI OHCI USB controller
2419
@item
2420
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2421
@item
2422
PL181 MultiMedia Card Interface with SD card.
2423
@end itemize
2424

    
2425
The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2426
and "Terrier") emulation includes the following peripherals:
2427

    
2428
@itemize @minus
2429
@item
2430
Intel PXA270 System-on-chip (ARM V5TE core)
2431
@item
2432
NAND Flash memory
2433
@item
2434
IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2435
@item
2436
On-chip OHCI USB controller
2437
@item
2438
On-chip LCD controller
2439
@item
2440
On-chip Real Time Clock
2441
@item
2442
TI ADS7846 touchscreen controller on SSP bus
2443
@item
2444
Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2445
@item
2446
GPIO-connected keyboard controller and LEDs
2447
@item
2448
Secure Digital card connected to PXA MMC/SD host
2449
@item
2450
Three on-chip UARTs
2451
@item
2452
WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2453
@end itemize
2454

    
2455
The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2456
following elements:
2457

    
2458
@itemize @minus
2459
@item
2460
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2461
@item
2462
ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2463
@item
2464
On-chip LCD controller
2465
@item
2466
On-chip Real Time Clock
2467
@item
2468
TI TSC2102i touchscreen controller / analog-digital converter / Audio
2469
CODEC, connected through MicroWire and I@math{^2}S busses
2470
@item
2471
GPIO-connected matrix keypad
2472
@item
2473
Secure Digital card connected to OMAP MMC/SD host
2474
@item
2475
Three on-chip UARTs
2476
@end itemize
2477

    
2478
Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2479
emulation supports the following elements:
2480

    
2481
@itemize @minus
2482
@item
2483
Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2484
@item
2485
RAM and non-volatile OneNAND Flash memories
2486
@item
2487
Display connected to EPSON remote framebuffer chip and OMAP on-chip
2488
display controller and a LS041y3 MIPI DBI-C controller
2489
@item
2490
TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2491
driven through SPI bus
2492
@item
2493
National Semiconductor LM8323-controlled qwerty keyboard driven
2494
through I@math{^2}C bus
2495
@item
2496
Secure Digital card connected to OMAP MMC/SD host
2497
@item
2498
Three OMAP on-chip UARTs and on-chip STI debugging console
2499
@item
2500
Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2501
TUSB6010 chip - only USB host mode is supported
2502
@item
2503
TI TMP105 temperature sensor driven through I@math{^2}C bus
2504
@item
2505
TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2506
@item
2507
Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2508
through CBUS
2509
@end itemize
2510

    
2511
The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2512
devices:
2513

    
2514
@itemize @minus
2515
@item
2516
Cortex-M3 CPU core.
2517
@item
2518
64k Flash and 8k SRAM.
2519
@item
2520
Timers, UARTs, ADC and I@math{^2}C interface.
2521
@item
2522
OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2523
@end itemize
2524

    
2525
The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2526
devices:
2527

    
2528
@itemize @minus
2529
@item
2530
Cortex-M3 CPU core.
2531
@item
2532
256k Flash and 64k SRAM.
2533
@item
2534
Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2535
@item
2536
OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2537
@end itemize
2538

    
2539
The Freecom MusicPal internet radio emulation includes the following
2540
elements:
2541

    
2542
@itemize @minus
2543
@item
2544
Marvell MV88W8618 ARM core.
2545
@item
2546
32 MB RAM, 256 KB SRAM, 8 MB flash.
2547
@item
2548
Up to 2 16550 UARTs
2549
@item
2550
MV88W8xx8 Ethernet controller
2551
@item
2552
MV88W8618 audio controller, WM8750 CODEC and mixer
2553
@item
2554
128?64 display with brightness control
2555
@item
2556
2 buttons, 2 navigation wheels with button function
2557
@end itemize
2558

    
2559
A Linux 2.6 test image is available on the QEMU web site. More
2560
information is available in the QEMU mailing-list archive.
2561

    
2562
@node ColdFire System emulator
2563
@section ColdFire System emulator
2564

    
2565
Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2566
The emulator is able to boot a uClinux kernel.
2567

    
2568
The M5208EVB emulation includes the following devices:
2569

    
2570
@itemize @minus
2571
@item
2572
MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2573
@item
2574
Three Two on-chip UARTs.
2575
@item
2576
Fast Ethernet Controller (FEC)
2577
@end itemize
2578

    
2579
The AN5206 emulation includes the following devices:
2580

    
2581
@itemize @minus
2582
@item
2583
MCF5206 ColdFire V2 Microprocessor.
2584
@item
2585
Two on-chip UARTs.
2586
@end itemize
2587

    
2588
@node QEMU User space emulator
2589
@chapter QEMU User space emulator
2590

    
2591
@menu
2592
* Supported Operating Systems ::
2593
* Linux User space emulator::
2594
* Mac OS X/Darwin User space emulator ::
2595
@end menu
2596

    
2597
@node Supported Operating Systems
2598
@section Supported Operating Systems
2599

    
2600
The following OS are supported in user space emulation:
2601

    
2602
@itemize @minus
2603
@item
2604
Linux (referred as qemu-linux-user)
2605
@item
2606
Mac OS X/Darwin (referred as qemu-darwin-user)
2607
@end itemize
2608

    
2609
@node Linux User space emulator
2610
@section Linux User space emulator
2611

    
2612
@menu
2613
* Quick Start::
2614
* Wine launch::
2615
* Command line options::
2616
* Other binaries::
2617
@end menu
2618

    
2619
@node Quick Start
2620
@subsection Quick Start
2621

    
2622
In order to launch a Linux process, QEMU needs the process executable
2623
itself and all the target (x86) dynamic libraries used by it.
2624

    
2625
@itemize
2626

    
2627
@item On x86, you can just try to launch any process by using the native
2628
libraries:
2629

    
2630
@example
2631
qemu-i386 -L / /bin/ls
2632
@end example
2633

    
2634
@code{-L /} tells that the x86 dynamic linker must be searched with a
2635
@file{/} prefix.
2636

    
2637
@item Since QEMU is also a linux process, you can launch qemu with
2638
qemu (NOTE: you can only do that if you compiled QEMU from the sources):
2639

    
2640
@example
2641
qemu-i386 -L / qemu-i386 -L / /bin/ls
2642
@end example
2643

    
2644
@item On non x86 CPUs, you need first to download at least an x86 glibc
2645
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2646
@code{LD_LIBRARY_PATH} is not set:
2647

    
2648
@example
2649
unset LD_LIBRARY_PATH
2650
@end example
2651

    
2652
Then you can launch the precompiled @file{ls} x86 executable:
2653

    
2654
@example
2655
qemu-i386 tests/i386/ls
2656
@end example
2657
You can look at @file{qemu-binfmt-conf.sh} so that
2658
QEMU is automatically launched by the Linux kernel when you try to
2659
launch x86 executables. It requires the @code{binfmt_misc} module in the
2660
Linux kernel.
2661

    
2662
@item The x86 version of QEMU is also included. You can try weird things such as:
2663
@example
2664
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2665
          /usr/local/qemu-i386/bin/ls-i386
2666
@end example
2667

    
2668
@end itemize
2669

    
2670
@node Wine launch
2671
@subsection Wine launch
2672

    
2673
@itemize
2674

    
2675
@item Ensure that you have a working QEMU with the x86 glibc
2676
distribution (see previous section). In order to verify it, you must be
2677
able to do:
2678

    
2679
@example
2680
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2681
@end example
2682

    
2683
@item Download the binary x86 Wine install
2684
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2685

    
2686
@item Configure Wine on your account. Look at the provided script
2687
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2688
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2689

    
2690
@item Then you can try the example @file{putty.exe}:
2691

    
2692
@example
2693
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2694
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2695
@end example
2696

    
2697
@end itemize
2698

    
2699
@node Command line options
2700
@subsection Command line options
2701

    
2702
@example
2703
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2704
@end example
2705

    
2706
@table @option
2707
@item -h
2708
Print the help
2709
@item -L path
2710
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2711
@item -s size
2712
Set the x86 stack size in bytes (default=524288)
2713
@end table
2714

    
2715
Debug options:
2716

    
2717
@table @option
2718
@item -d
2719
Activate log (logfile=/tmp/qemu.log)
2720
@item -p pagesize
2721
Act as if the host page size was 'pagesize' bytes
2722
@end table
2723

    
2724
Environment variables:
2725

    
2726
@table @env
2727
@item QEMU_STRACE
2728
Print system calls and arguments similar to the 'strace' program
2729
(NOTE: the actual 'strace' program will not work because the user
2730
space emulator hasn't implemented ptrace).  At the moment this is
2731
incomplete.  All system calls that don't have a specific argument
2732
format are printed with information for six arguments.  Many
2733
flag-style arguments don't have decoders and will show up as numbers.
2734
@end table
2735

    
2736
@node Other binaries
2737
@subsection Other binaries
2738

    
2739
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2740
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2741
configurations), and arm-uclinux bFLT format binaries.
2742

    
2743
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2744
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2745
coldfire uClinux bFLT format binaries.
2746

    
2747
The binary format is detected automatically.
2748

    
2749
@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2750
(Sparc64 CPU, 32 bit ABI).
2751

    
2752
@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2753
SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2754

    
2755
@node Mac OS X/Darwin User space emulator
2756
@section Mac OS X/Darwin User space emulator
2757

    
2758
@menu
2759
* Mac OS X/Darwin Status::
2760
* Mac OS X/Darwin Quick Start::
2761
* Mac OS X/Darwin Command line options::
2762
@end menu
2763

    
2764
@node Mac OS X/Darwin Status
2765
@subsection Mac OS X/Darwin Status
2766

    
2767
@itemize @minus
2768
@item
2769
target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2770
@item
2771
target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2772
@item
2773
target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2774
@item
2775
target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2776
@end itemize
2777

    
2778
[1] If you're host commpage can be executed by qemu.
2779

    
2780
@node Mac OS X/Darwin Quick Start
2781
@subsection Quick Start
2782

    
2783
In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2784
itself and all the target dynamic libraries used by it. If you don't have the FAT
2785
libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2786
CD or compile them by hand.
2787

    
2788
@itemize
2789

    
2790
@item On x86, you can just try to launch any process by using the native
2791
libraries:
2792

    
2793
@example
2794
qemu-i386 /bin/ls
2795
@end example
2796

    
2797
or to run the ppc version of the executable:
2798

    
2799
@example
2800
qemu-ppc /bin/ls
2801
@end example
2802

    
2803
@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2804
are installed:
2805

    
2806
@example
2807
qemu-i386 -L /opt/x86_root/ /bin/ls
2808
@end example
2809

    
2810
@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2811
@file{/opt/x86_root/usr/bin/dyld}.
2812

    
2813
@end itemize
2814

    
2815
@node Mac OS X/Darwin Command line options
2816
@subsection Command line options
2817

    
2818
@example
2819
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2820
@end example
2821

    
2822
@table @option
2823
@item -h
2824
Print the help
2825
@item -L path
2826
Set the library root path (default=/)
2827
@item -s size
2828
Set the stack size in bytes (default=524288)
2829
@end table
2830

    
2831
Debug options:
2832

    
2833
@table @option
2834
@item -d
2835
Activate log (logfile=/tmp/qemu.log)
2836
@item -p pagesize
2837
Act as if the host page size was 'pagesize' bytes
2838
@end table
2839

    
2840
@node compilation
2841
@chapter Compilation from the sources
2842

    
2843
@menu
2844
* Linux/Unix::
2845
* Windows::
2846
* Cross compilation for Windows with Linux::
2847
* Mac OS X::
2848
@end menu
2849

    
2850
@node Linux/Unix
2851
@section Linux/Unix
2852

    
2853
@subsection Compilation
2854

    
2855
First you must decompress the sources:
2856
@example
2857
cd /tmp
2858
tar zxvf qemu-x.y.z.tar.gz
2859
cd qemu-x.y.z
2860
@end example
2861

    
2862
Then you configure QEMU and build it (usually no options are needed):
2863
@example
2864
./configure
2865
make
2866
@end example
2867

    
2868
Then type as root user:
2869
@example
2870
make install
2871
@end example
2872
to install QEMU in @file{/usr/local}.
2873

    
2874
@subsection GCC version
2875

    
2876
In order to compile QEMU successfully, it is very important that you
2877
have the right tools. The most important one is gcc. On most hosts and
2878
in particular on x86 ones, @emph{gcc 4.x is not supported}. If your
2879
Linux distribution includes a gcc 4.x compiler, you can usually
2880
install an older version (it is invoked by @code{gcc32} or
2881
@code{gcc34}). The QEMU configure script automatically probes for
2882
these older versions so that usually you don't have to do anything.
2883

    
2884
@node Windows
2885
@section Windows
2886

    
2887
@itemize
2888
@item Install the current versions of MSYS and MinGW from
2889
@url{http://www.mingw.org/}. You can find detailed installation
2890
instructions in the download section and the FAQ.
2891

    
2892
@item Download
2893
the MinGW development library of SDL 1.2.x
2894
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2895
@url{http://www.libsdl.org}. Unpack it in a temporary place, and
2896
unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
2897
directory. Edit the @file{sdl-config} script so that it gives the
2898
correct SDL directory when invoked.
2899

    
2900
@item Extract the current version of QEMU.
2901

    
2902
@item Start the MSYS shell (file @file{msys.bat}).
2903

    
2904
@item Change to the QEMU directory. Launch @file{./configure} and
2905
@file{make}.  If you have problems using SDL, verify that
2906
@file{sdl-config} can be launched from the MSYS command line.
2907

    
2908
@item You can install QEMU in @file{Program Files/Qemu} by typing
2909
@file{make install}. Don't forget to copy @file{SDL.dll} in
2910
@file{Program Files/Qemu}.
2911

    
2912
@end itemize
2913

    
2914
@node Cross compilation for Windows with Linux
2915
@section Cross compilation for Windows with Linux
2916

    
2917
@itemize
2918
@item
2919
Install the MinGW cross compilation tools available at
2920
@url{http://www.mingw.org/}.
2921

    
2922
@item
2923
Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
2924
unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
2925
variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
2926
the QEMU configuration script.
2927

    
2928
@item
2929
Configure QEMU for Windows cross compilation:
2930
@example
2931
./configure --enable-mingw32
2932
@end example
2933
If necessary, you can change the cross-prefix according to the prefix
2934
chosen for the MinGW tools with --cross-prefix. You can also use
2935
--prefix to set the Win32 install path.
2936

    
2937
@item You can install QEMU in the installation directory by typing
2938
@file{make install}. Don't forget to copy @file{SDL.dll} in the
2939
installation directory.
2940

    
2941
@end itemize
2942

    
2943
Note: Currently, Wine does not seem able to launch
2944
QEMU for Win32.
2945

    
2946
@node Mac OS X
2947
@section Mac OS X
2948

    
2949
The Mac OS X patches are not fully merged in QEMU, so you should look
2950
at the QEMU mailing list archive to have all the necessary
2951
information.
2952

    
2953
@node Index
2954
@chapter Index
2955
@printindex cp
2956

    
2957
@bye