Statistics
| Branch: | Revision:

root / target-i386 / exec.h @ cb63669a

History | View | Annotate | Download (10.9 kB)

1
/*
2
 *  i386 execution defines
3
 *
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "config.h"
21
#include "dyngen-exec.h"
22

    
23
/* XXX: factorize this mess */
24
#ifdef TARGET_X86_64
25
#define TARGET_LONG_BITS 64
26
#else
27
#define TARGET_LONG_BITS 32
28
#endif
29

    
30
#include "cpu-defs.h"
31

    
32
/* at least 4 register variables are defined */
33
register struct CPUX86State *env asm(AREG0);
34

    
35
#ifndef CPU_NO_GLOBAL_REGS
36

    
37
#if TARGET_LONG_BITS > HOST_LONG_BITS
38

    
39
/* no registers can be used */
40
#define T0 (env->t0)
41
#define T1 (env->t1)
42
#define T2 (env->t2)
43

    
44
#else
45

    
46
/* XXX: use unsigned long instead of target_ulong - better code will
47
   be generated for 64 bit CPUs */
48
register target_ulong T0 asm(AREG1);
49
register target_ulong T1 asm(AREG2);
50
register target_ulong T2 asm(AREG3);
51

    
52
#endif /* ! (TARGET_LONG_BITS > HOST_LONG_BITS) */
53

    
54
#endif /* ! CPU_NO_GLOBAL_REGS */
55

    
56
#define A0 T2
57

    
58
extern FILE *logfile;
59
extern int loglevel;
60

    
61
#ifndef reg_EAX
62
#define EAX (env->regs[R_EAX])
63
#endif
64
#ifndef reg_ECX
65
#define ECX (env->regs[R_ECX])
66
#endif
67
#ifndef reg_EDX
68
#define EDX (env->regs[R_EDX])
69
#endif
70
#ifndef reg_EBX
71
#define EBX (env->regs[R_EBX])
72
#endif
73
#ifndef reg_ESP
74
#define ESP (env->regs[R_ESP])
75
#endif
76
#ifndef reg_EBP
77
#define EBP (env->regs[R_EBP])
78
#endif
79
#ifndef reg_ESI
80
#define ESI (env->regs[R_ESI])
81
#endif
82
#ifndef reg_EDI
83
#define EDI (env->regs[R_EDI])
84
#endif
85
#define EIP  (env->eip)
86
#define DF  (env->df)
87

    
88
#define CC_SRC (env->cc_src)
89
#define CC_DST (env->cc_dst)
90
#define CC_OP  (env->cc_op)
91

    
92
/* float macros */
93
#define FT0    (env->ft0)
94
#define ST0    (env->fpregs[env->fpstt].d)
95
#define ST(n)  (env->fpregs[(env->fpstt + (n)) & 7].d)
96
#define ST1    ST(1)
97

    
98
#include "cpu.h"
99
#include "exec-all.h"
100

    
101
void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
102
void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
103
void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
104
void cpu_x86_flush_tlb(CPUX86State *env, target_ulong addr);
105
int cpu_x86_handle_mmu_fault(CPUX86State *env, target_ulong addr,
106
                             int is_write, int mmu_idx, int is_softmmu);
107
void tlb_fill(target_ulong addr, int is_write, int mmu_idx,
108
              void *retaddr);
109
void __hidden cpu_lock(void);
110
void __hidden cpu_unlock(void);
111
void do_interrupt(int intno, int is_int, int error_code,
112
                  target_ulong next_eip, int is_hw);
113
void do_interrupt_user(int intno, int is_int, int error_code,
114
                       target_ulong next_eip);
115
void raise_interrupt(int intno, int is_int, int error_code,
116
                     int next_eip_addend);
117
void raise_exception_err(int exception_index, int error_code);
118
void raise_exception(int exception_index);
119
void do_smm_enter(void);
120
void __hidden cpu_loop_exit(void);
121

    
122
void OPPROTO op_movl_eflags_T0(void);
123
void OPPROTO op_movl_T0_eflags(void);
124

    
125
/* n must be a constant to be efficient */
126
static inline target_long lshift(target_long x, int n)
127
{
128
    if (n >= 0)
129
        return x << n;
130
    else
131
        return x >> (-n);
132
}
133

    
134
#include "helper.h"
135

    
136
static inline void svm_check_intercept(uint32_t type)
137
{
138
    helper_svm_check_intercept_param(type, 0);
139
}
140

    
141
#if !defined(CONFIG_USER_ONLY)
142

    
143
#include "softmmu_exec.h"
144

    
145
#endif /* !defined(CONFIG_USER_ONLY) */
146

    
147
#ifdef USE_X86LDOUBLE
148
/* use long double functions */
149
#define floatx_to_int32 floatx80_to_int32
150
#define floatx_to_int64 floatx80_to_int64
151
#define floatx_to_int32_round_to_zero floatx80_to_int32_round_to_zero
152
#define floatx_to_int64_round_to_zero floatx80_to_int64_round_to_zero
153
#define int32_to_floatx int32_to_floatx80
154
#define int64_to_floatx int64_to_floatx80
155
#define float32_to_floatx float32_to_floatx80
156
#define float64_to_floatx float64_to_floatx80
157
#define floatx_to_float32 floatx80_to_float32
158
#define floatx_to_float64 floatx80_to_float64
159
#define floatx_abs floatx80_abs
160
#define floatx_chs floatx80_chs
161
#define floatx_round_to_int floatx80_round_to_int
162
#define floatx_compare floatx80_compare
163
#define floatx_compare_quiet floatx80_compare_quiet
164
#define sin sinl
165
#define cos cosl
166
#define sqrt sqrtl
167
#define pow powl
168
#define log logl
169
#define tan tanl
170
#define atan2 atan2l
171
#define floor floorl
172
#define ceil ceill
173
#define ldexp ldexpl
174
#else
175
#define floatx_to_int32 float64_to_int32
176
#define floatx_to_int64 float64_to_int64
177
#define floatx_to_int32_round_to_zero float64_to_int32_round_to_zero
178
#define floatx_to_int64_round_to_zero float64_to_int64_round_to_zero
179
#define int32_to_floatx int32_to_float64
180
#define int64_to_floatx int64_to_float64
181
#define float32_to_floatx float32_to_float64
182
#define float64_to_floatx(x, e) (x)
183
#define floatx_to_float32 float64_to_float32
184
#define floatx_to_float64(x, e) (x)
185
#define floatx_abs float64_abs
186
#define floatx_chs float64_chs
187
#define floatx_round_to_int float64_round_to_int
188
#define floatx_compare float64_compare
189
#define floatx_compare_quiet float64_compare_quiet
190
#endif
191

    
192
extern CPU86_LDouble sin(CPU86_LDouble x);
193
extern CPU86_LDouble cos(CPU86_LDouble x);
194
extern CPU86_LDouble sqrt(CPU86_LDouble x);
195
extern CPU86_LDouble pow(CPU86_LDouble, CPU86_LDouble);
196
extern CPU86_LDouble log(CPU86_LDouble x);
197
extern CPU86_LDouble tan(CPU86_LDouble x);
198
extern CPU86_LDouble atan2(CPU86_LDouble, CPU86_LDouble);
199
extern CPU86_LDouble floor(CPU86_LDouble x);
200
extern CPU86_LDouble ceil(CPU86_LDouble x);
201

    
202
#define RC_MASK         0xc00
203
#define RC_NEAR                0x000
204
#define RC_DOWN                0x400
205
#define RC_UP                0x800
206
#define RC_CHOP                0xc00
207

    
208
#define MAXTAN 9223372036854775808.0
209

    
210
#ifdef USE_X86LDOUBLE
211

    
212
/* only for x86 */
213
typedef union {
214
    long double d;
215
    struct {
216
        unsigned long long lower;
217
        unsigned short upper;
218
    } l;
219
} CPU86_LDoubleU;
220

    
221
/* the following deal with x86 long double-precision numbers */
222
#define MAXEXPD 0x7fff
223
#define EXPBIAS 16383
224
#define EXPD(fp)        (fp.l.upper & 0x7fff)
225
#define SIGND(fp)        ((fp.l.upper) & 0x8000)
226
#define MANTD(fp)       (fp.l.lower)
227
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
228

    
229
#else
230

    
231
/* NOTE: arm is horrible as double 32 bit words are stored in big endian ! */
232
typedef union {
233
    double d;
234
#if !defined(WORDS_BIGENDIAN) && !defined(__arm__)
235
    struct {
236
        uint32_t lower;
237
        int32_t upper;
238
    } l;
239
#else
240
    struct {
241
        int32_t upper;
242
        uint32_t lower;
243
    } l;
244
#endif
245
#ifndef __arm__
246
    int64_t ll;
247
#endif
248
} CPU86_LDoubleU;
249

    
250
/* the following deal with IEEE double-precision numbers */
251
#define MAXEXPD 0x7ff
252
#define EXPBIAS 1023
253
#define EXPD(fp)        (((fp.l.upper) >> 20) & 0x7FF)
254
#define SIGND(fp)        ((fp.l.upper) & 0x80000000)
255
#ifdef __arm__
256
#define MANTD(fp)        (fp.l.lower | ((uint64_t)(fp.l.upper & ((1 << 20) - 1)) << 32))
257
#else
258
#define MANTD(fp)        (fp.ll & ((1LL << 52) - 1))
259
#endif
260
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7ff << 20)) | (EXPBIAS << 20)
261
#endif
262

    
263
static inline void fpush(void)
264
{
265
    env->fpstt = (env->fpstt - 1) & 7;
266
    env->fptags[env->fpstt] = 0; /* validate stack entry */
267
}
268

    
269
static inline void fpop(void)
270
{
271
    env->fptags[env->fpstt] = 1; /* invvalidate stack entry */
272
    env->fpstt = (env->fpstt + 1) & 7;
273
}
274

    
275
#ifndef USE_X86LDOUBLE
276
static inline CPU86_LDouble helper_fldt(target_ulong ptr)
277
{
278
    CPU86_LDoubleU temp;
279
    int upper, e;
280
    uint64_t ll;
281

    
282
    /* mantissa */
283
    upper = lduw(ptr + 8);
284
    /* XXX: handle overflow ? */
285
    e = (upper & 0x7fff) - 16383 + EXPBIAS; /* exponent */
286
    e |= (upper >> 4) & 0x800; /* sign */
287
    ll = (ldq(ptr) >> 11) & ((1LL << 52) - 1);
288
#ifdef __arm__
289
    temp.l.upper = (e << 20) | (ll >> 32);
290
    temp.l.lower = ll;
291
#else
292
    temp.ll = ll | ((uint64_t)e << 52);
293
#endif
294
    return temp.d;
295
}
296

    
297
static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
298
{
299
    CPU86_LDoubleU temp;
300
    int e;
301

    
302
    temp.d = f;
303
    /* mantissa */
304
    stq(ptr, (MANTD(temp) << 11) | (1LL << 63));
305
    /* exponent + sign */
306
    e = EXPD(temp) - EXPBIAS + 16383;
307
    e |= SIGND(temp) >> 16;
308
    stw(ptr + 8, e);
309
}
310
#else
311

    
312
/* we use memory access macros */
313

    
314
static inline CPU86_LDouble helper_fldt(target_ulong ptr)
315
{
316
    CPU86_LDoubleU temp;
317

    
318
    temp.l.lower = ldq(ptr);
319
    temp.l.upper = lduw(ptr + 8);
320
    return temp.d;
321
}
322

    
323
static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
324
{
325
    CPU86_LDoubleU temp;
326

    
327
    temp.d = f;
328
    stq(ptr, temp.l.lower);
329
    stw(ptr + 8, temp.l.upper);
330
}
331

    
332
#endif /* USE_X86LDOUBLE */
333

    
334
#define FPUS_IE (1 << 0)
335
#define FPUS_DE (1 << 1)
336
#define FPUS_ZE (1 << 2)
337
#define FPUS_OE (1 << 3)
338
#define FPUS_UE (1 << 4)
339
#define FPUS_PE (1 << 5)
340
#define FPUS_SF (1 << 6)
341
#define FPUS_SE (1 << 7)
342
#define FPUS_B  (1 << 15)
343

    
344
#define FPUC_EM 0x3f
345

    
346
extern const CPU86_LDouble f15rk[7];
347

    
348
void fpu_raise_exception(void);
349
void restore_native_fp_state(CPUState *env);
350
void save_native_fp_state(CPUState *env);
351

    
352
extern const uint8_t parity_table[256];
353
extern const uint8_t rclw_table[32];
354
extern const uint8_t rclb_table[32];
355

    
356
static inline uint32_t compute_eflags(void)
357
{
358
    return env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
359
}
360

    
361
/* NOTE: CC_OP must be modified manually to CC_OP_EFLAGS */
362
static inline void load_eflags(int eflags, int update_mask)
363
{
364
    CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
365
    DF = 1 - (2 * ((eflags >> 10) & 1));
366
    env->eflags = (env->eflags & ~update_mask) |
367
        (eflags & update_mask);
368
}
369

    
370
static inline void env_to_regs(void)
371
{
372
#ifdef reg_EAX
373
    EAX = env->regs[R_EAX];
374
#endif
375
#ifdef reg_ECX
376
    ECX = env->regs[R_ECX];
377
#endif
378
#ifdef reg_EDX
379
    EDX = env->regs[R_EDX];
380
#endif
381
#ifdef reg_EBX
382
    EBX = env->regs[R_EBX];
383
#endif
384
#ifdef reg_ESP
385
    ESP = env->regs[R_ESP];
386
#endif
387
#ifdef reg_EBP
388
    EBP = env->regs[R_EBP];
389
#endif
390
#ifdef reg_ESI
391
    ESI = env->regs[R_ESI];
392
#endif
393
#ifdef reg_EDI
394
    EDI = env->regs[R_EDI];
395
#endif
396
}
397

    
398
static inline void regs_to_env(void)
399
{
400
#ifdef reg_EAX
401
    env->regs[R_EAX] = EAX;
402
#endif
403
#ifdef reg_ECX
404
    env->regs[R_ECX] = ECX;
405
#endif
406
#ifdef reg_EDX
407
    env->regs[R_EDX] = EDX;
408
#endif
409
#ifdef reg_EBX
410
    env->regs[R_EBX] = EBX;
411
#endif
412
#ifdef reg_ESP
413
    env->regs[R_ESP] = ESP;
414
#endif
415
#ifdef reg_EBP
416
    env->regs[R_EBP] = EBP;
417
#endif
418
#ifdef reg_ESI
419
    env->regs[R_ESI] = ESI;
420
#endif
421
#ifdef reg_EDI
422
    env->regs[R_EDI] = EDI;
423
#endif
424
}
425

    
426
static inline int cpu_halted(CPUState *env) {
427
    /* handle exit of HALTED state */
428
    if (!(env->hflags & HF_HALTED_MASK))
429
        return 0;
430
    /* disable halt condition */
431
    if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
432
         (env->eflags & IF_MASK)) ||
433
        (env->interrupt_request & CPU_INTERRUPT_NMI)) {
434
        env->hflags &= ~HF_HALTED_MASK;
435
        return 0;
436
    }
437
    return EXCP_HALTED;
438
}
439