Statistics
| Branch: | Revision:

root / hw / ppc / spapr_pci.c @ cba933b2

History | View | Annotate | Download (28.6 kB)

1
/*
2
 * QEMU sPAPR PCI host originated from Uninorth PCI host
3
 *
4
 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
5
 * Copyright (C) 2011 David Gibson, IBM Corporation.
6
 *
7
 * Permission is hereby granted, free of charge, to any person obtaining a copy
8
 * of this software and associated documentation files (the "Software"), to deal
9
 * in the Software without restriction, including without limitation the rights
10
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11
 * copies of the Software, and to permit persons to whom the Software is
12
 * furnished to do so, subject to the following conditions:
13
 *
14
 * The above copyright notice and this permission notice shall be included in
15
 * all copies or substantial portions of the Software.
16
 *
17
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23
 * THE SOFTWARE.
24
 */
25
#include "hw/hw.h"
26
#include "hw/pci/pci.h"
27
#include "hw/pci/msi.h"
28
#include "hw/pci/msix.h"
29
#include "hw/pci/pci_host.h"
30
#include "hw/ppc/spapr.h"
31
#include "hw/pci-host/spapr.h"
32
#include "exec/address-spaces.h"
33
#include <libfdt.h>
34
#include "trace.h"
35

    
36
#include "hw/pci/pci_bus.h"
37

    
38
/* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */
39
#define RTAS_QUERY_FN           0
40
#define RTAS_CHANGE_FN          1
41
#define RTAS_RESET_FN           2
42
#define RTAS_CHANGE_MSI_FN      3
43
#define RTAS_CHANGE_MSIX_FN     4
44

    
45
/* Interrupt types to return on RTAS_CHANGE_* */
46
#define RTAS_TYPE_MSI           1
47
#define RTAS_TYPE_MSIX          2
48

    
49
static sPAPRPHBState *find_phb(sPAPREnvironment *spapr, uint64_t buid)
50
{
51
    sPAPRPHBState *sphb;
52

    
53
    QLIST_FOREACH(sphb, &spapr->phbs, list) {
54
        if (sphb->buid != buid) {
55
            continue;
56
        }
57
        return sphb;
58
    }
59

    
60
    return NULL;
61
}
62

    
63
static PCIDevice *find_dev(sPAPREnvironment *spapr, uint64_t buid,
64
                           uint32_t config_addr)
65
{
66
    sPAPRPHBState *sphb = find_phb(spapr, buid);
67
    PCIHostState *phb = PCI_HOST_BRIDGE(sphb);
68
    int bus_num = (config_addr >> 16) & 0xFF;
69
    int devfn = (config_addr >> 8) & 0xFF;
70

    
71
    if (!phb) {
72
        return NULL;
73
    }
74

    
75
    return pci_find_device(phb->bus, bus_num, devfn);
76
}
77

    
78
static uint32_t rtas_pci_cfgaddr(uint32_t arg)
79
{
80
    /* This handles the encoding of extended config space addresses */
81
    return ((arg >> 20) & 0xf00) | (arg & 0xff);
82
}
83

    
84
static void finish_read_pci_config(sPAPREnvironment *spapr, uint64_t buid,
85
                                   uint32_t addr, uint32_t size,
86
                                   target_ulong rets)
87
{
88
    PCIDevice *pci_dev;
89
    uint32_t val;
90

    
91
    if ((size != 1) && (size != 2) && (size != 4)) {
92
        /* access must be 1, 2 or 4 bytes */
93
        rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
94
        return;
95
    }
96

    
97
    pci_dev = find_dev(spapr, buid, addr);
98
    addr = rtas_pci_cfgaddr(addr);
99

    
100
    if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
101
        /* Access must be to a valid device, within bounds and
102
         * naturally aligned */
103
        rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
104
        return;
105
    }
106

    
107
    val = pci_host_config_read_common(pci_dev, addr,
108
                                      pci_config_size(pci_dev), size);
109

    
110
    rtas_st(rets, 0, RTAS_OUT_SUCCESS);
111
    rtas_st(rets, 1, val);
112
}
113

    
114
static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr,
115
                                     uint32_t token, uint32_t nargs,
116
                                     target_ulong args,
117
                                     uint32_t nret, target_ulong rets)
118
{
119
    uint64_t buid;
120
    uint32_t size, addr;
121

    
122
    if ((nargs != 4) || (nret != 2)) {
123
        rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
124
        return;
125
    }
126

    
127
    buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
128
    size = rtas_ld(args, 3);
129
    addr = rtas_ld(args, 0);
130

    
131
    finish_read_pci_config(spapr, buid, addr, size, rets);
132
}
133

    
134
static void rtas_read_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr,
135
                                 uint32_t token, uint32_t nargs,
136
                                 target_ulong args,
137
                                 uint32_t nret, target_ulong rets)
138
{
139
    uint32_t size, addr;
140

    
141
    if ((nargs != 2) || (nret != 2)) {
142
        rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
143
        return;
144
    }
145

    
146
    size = rtas_ld(args, 1);
147
    addr = rtas_ld(args, 0);
148

    
149
    finish_read_pci_config(spapr, 0, addr, size, rets);
150
}
151

    
152
static void finish_write_pci_config(sPAPREnvironment *spapr, uint64_t buid,
153
                                    uint32_t addr, uint32_t size,
154
                                    uint32_t val, target_ulong rets)
155
{
156
    PCIDevice *pci_dev;
157

    
158
    if ((size != 1) && (size != 2) && (size != 4)) {
159
        /* access must be 1, 2 or 4 bytes */
160
        rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
161
        return;
162
    }
163

    
164
    pci_dev = find_dev(spapr, buid, addr);
165
    addr = rtas_pci_cfgaddr(addr);
166

    
167
    if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
168
        /* Access must be to a valid device, within bounds and
169
         * naturally aligned */
170
        rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
171
        return;
172
    }
173

    
174
    pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev),
175
                                 val, size);
176

    
177
    rtas_st(rets, 0, RTAS_OUT_SUCCESS);
178
}
179

    
180
static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr,
181
                                      uint32_t token, uint32_t nargs,
182
                                      target_ulong args,
183
                                      uint32_t nret, target_ulong rets)
184
{
185
    uint64_t buid;
186
    uint32_t val, size, addr;
187

    
188
    if ((nargs != 5) || (nret != 1)) {
189
        rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
190
        return;
191
    }
192

    
193
    buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
194
    val = rtas_ld(args, 4);
195
    size = rtas_ld(args, 3);
196
    addr = rtas_ld(args, 0);
197

    
198
    finish_write_pci_config(spapr, buid, addr, size, val, rets);
199
}
200

    
201
static void rtas_write_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr,
202
                                  uint32_t token, uint32_t nargs,
203
                                  target_ulong args,
204
                                  uint32_t nret, target_ulong rets)
205
{
206
    uint32_t val, size, addr;
207

    
208
    if ((nargs != 3) || (nret != 1)) {
209
        rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
210
        return;
211
    }
212

    
213

    
214
    val = rtas_ld(args, 2);
215
    size = rtas_ld(args, 1);
216
    addr = rtas_ld(args, 0);
217

    
218
    finish_write_pci_config(spapr, 0, addr, size, val, rets);
219
}
220

    
221
/*
222
 * Find an entry with config_addr or returns the empty one if not found AND
223
 * alloc_new is set.
224
 * At the moment the msi_table entries are never released so there is
225
 * no point to look till the end of the list if we need to find the free entry.
226
 */
227
static int spapr_msicfg_find(sPAPRPHBState *phb, uint32_t config_addr,
228
                             bool alloc_new)
229
{
230
    int i;
231

    
232
    for (i = 0; i < SPAPR_MSIX_MAX_DEVS; ++i) {
233
        if (!phb->msi_table[i].nvec) {
234
            break;
235
        }
236
        if (phb->msi_table[i].config_addr == config_addr) {
237
            return i;
238
        }
239
    }
240
    if ((i < SPAPR_MSIX_MAX_DEVS) && alloc_new) {
241
        trace_spapr_pci_msi("Allocating new MSI config", i, config_addr);
242
        return i;
243
    }
244

    
245
    return -1;
246
}
247

    
248
/*
249
 * Set MSI/MSIX message data.
250
 * This is required for msi_notify()/msix_notify() which
251
 * will write at the addresses via spapr_msi_write().
252
 */
253
static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr, bool msix,
254
                             unsigned first_irq, unsigned req_num)
255
{
256
    unsigned i;
257
    MSIMessage msg = { .address = addr, .data = first_irq };
258

    
259
    if (!msix) {
260
        msi_set_message(pdev, msg);
261
        trace_spapr_pci_msi_setup(pdev->name, 0, msg.address);
262
        return;
263
    }
264

    
265
    for (i = 0; i < req_num; ++i, ++msg.data) {
266
        msix_set_message(pdev, i, msg);
267
        trace_spapr_pci_msi_setup(pdev->name, i, msg.address);
268
    }
269
}
270

    
271
static void rtas_ibm_change_msi(PowerPCCPU *cpu, sPAPREnvironment *spapr,
272
                                uint32_t token, uint32_t nargs,
273
                                target_ulong args, uint32_t nret,
274
                                target_ulong rets)
275
{
276
    uint32_t config_addr = rtas_ld(args, 0);
277
    uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
278
    unsigned int func = rtas_ld(args, 3);
279
    unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */
280
    unsigned int seq_num = rtas_ld(args, 5);
281
    unsigned int ret_intr_type;
282
    int ndev, irq;
283
    sPAPRPHBState *phb = NULL;
284
    PCIDevice *pdev = NULL;
285

    
286
    switch (func) {
287
    case RTAS_CHANGE_MSI_FN:
288
    case RTAS_CHANGE_FN:
289
        ret_intr_type = RTAS_TYPE_MSI;
290
        break;
291
    case RTAS_CHANGE_MSIX_FN:
292
        ret_intr_type = RTAS_TYPE_MSIX;
293
        break;
294
    default:
295
        fprintf(stderr, "rtas_ibm_change_msi(%u) is not implemented\n", func);
296
        rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
297
        return;
298
    }
299

    
300
    /* Fins sPAPRPHBState */
301
    phb = find_phb(spapr, buid);
302
    if (phb) {
303
        pdev = find_dev(spapr, buid, config_addr);
304
    }
305
    if (!phb || !pdev) {
306
        rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
307
        return;
308
    }
309

    
310
    /* Releasing MSIs */
311
    if (!req_num) {
312
        ndev = spapr_msicfg_find(phb, config_addr, false);
313
        if (ndev < 0) {
314
            trace_spapr_pci_msi("MSI has not been enabled", -1, config_addr);
315
            rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
316
            return;
317
        }
318
        trace_spapr_pci_msi("Released MSIs", ndev, config_addr);
319
        rtas_st(rets, 0, RTAS_OUT_SUCCESS);
320
        rtas_st(rets, 1, 0);
321
        return;
322
    }
323

    
324
    /* Enabling MSI */
325

    
326
    /* Find a device number in the map to add or reuse the existing one */
327
    ndev = spapr_msicfg_find(phb, config_addr, true);
328
    if (ndev >= SPAPR_MSIX_MAX_DEVS || ndev < 0) {
329
        fprintf(stderr, "No free entry for a new MSI device\n");
330
        rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
331
        return;
332
    }
333
    trace_spapr_pci_msi("Configuring MSI", ndev, config_addr);
334

    
335
    /* Check if there is an old config and MSI number has not changed */
336
    if (phb->msi_table[ndev].nvec && (req_num != phb->msi_table[ndev].nvec)) {
337
        /* Unexpected behaviour */
338
        fprintf(stderr, "Cannot reuse MSI config for device#%d", ndev);
339
        rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
340
        return;
341
    }
342

    
343
    /* There is no cached config, allocate MSIs */
344
    if (!phb->msi_table[ndev].nvec) {
345
        irq = spapr_allocate_irq_block(req_num, false,
346
                                       ret_intr_type == RTAS_TYPE_MSI);
347
        if (irq < 0) {
348
            fprintf(stderr, "Cannot allocate MSIs for device#%d", ndev);
349
            rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
350
            return;
351
        }
352
        phb->msi_table[ndev].irq = irq;
353
        phb->msi_table[ndev].nvec = req_num;
354
        phb->msi_table[ndev].config_addr = config_addr;
355
    }
356

    
357
    /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */
358
    spapr_msi_setmsg(pdev, spapr->msi_win_addr, ret_intr_type == RTAS_TYPE_MSIX,
359
                     phb->msi_table[ndev].irq, req_num);
360

    
361
    rtas_st(rets, 0, RTAS_OUT_SUCCESS);
362
    rtas_st(rets, 1, req_num);
363
    rtas_st(rets, 2, ++seq_num);
364
    rtas_st(rets, 3, ret_intr_type);
365

    
366
    trace_spapr_pci_rtas_ibm_change_msi(func, req_num);
367
}
368

    
369
static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu,
370
                                                   sPAPREnvironment *spapr,
371
                                                   uint32_t token,
372
                                                   uint32_t nargs,
373
                                                   target_ulong args,
374
                                                   uint32_t nret,
375
                                                   target_ulong rets)
376
{
377
    uint32_t config_addr = rtas_ld(args, 0);
378
    uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
379
    unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3);
380
    int ndev;
381
    sPAPRPHBState *phb = NULL;
382

    
383
    /* Fins sPAPRPHBState */
384
    phb = find_phb(spapr, buid);
385
    if (!phb) {
386
        rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
387
        return;
388
    }
389

    
390
    /* Find device descriptor and start IRQ */
391
    ndev = spapr_msicfg_find(phb, config_addr, false);
392
    if (ndev < 0) {
393
        trace_spapr_pci_msi("MSI has not been enabled", -1, config_addr);
394
        rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
395
        return;
396
    }
397

    
398
    intr_src_num = phb->msi_table[ndev].irq + ioa_intr_num;
399
    trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num,
400
                                                           intr_src_num);
401

    
402
    rtas_st(rets, 0, RTAS_OUT_SUCCESS);
403
    rtas_st(rets, 1, intr_src_num);
404
    rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */
405
}
406

    
407
static int pci_spapr_swizzle(int slot, int pin)
408
{
409
    return (slot + pin) % PCI_NUM_PINS;
410
}
411

    
412
static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num)
413
{
414
    /*
415
     * Here we need to convert pci_dev + irq_num to some unique value
416
     * which is less than number of IRQs on the specific bus (4).  We
417
     * use standard PCI swizzling, that is (slot number + pin number)
418
     * % 4.
419
     */
420
    return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num);
421
}
422

    
423
static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
424
{
425
    /*
426
     * Here we use the number returned by pci_spapr_map_irq to find a
427
     * corresponding qemu_irq.
428
     */
429
    sPAPRPHBState *phb = opaque;
430

    
431
    trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq);
432
    qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level);
433
}
434

    
435
static PCIINTxRoute spapr_route_intx_pin_to_irq(void *opaque, int pin)
436
{
437
    sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(opaque);
438
    PCIINTxRoute route;
439

    
440
    route.mode = PCI_INTX_ENABLED;
441
    route.irq = sphb->lsi_table[pin].irq;
442

    
443
    return route;
444
}
445

    
446
/*
447
 * MSI/MSIX memory region implementation.
448
 * The handler handles both MSI and MSIX.
449
 * For MSI-X, the vector number is encoded as a part of the address,
450
 * data is set to 0.
451
 * For MSI, the vector number is encoded in least bits in data.
452
 */
453
static void spapr_msi_write(void *opaque, hwaddr addr,
454
                            uint64_t data, unsigned size)
455
{
456
    uint32_t irq = data;
457

    
458
    trace_spapr_pci_msi_write(addr, data, irq);
459

    
460
    qemu_irq_pulse(xics_get_qirq(spapr->icp, irq));
461
}
462

    
463
static const MemoryRegionOps spapr_msi_ops = {
464
    /* There is no .read as the read result is undefined by PCI spec */
465
    .read = NULL,
466
    .write = spapr_msi_write,
467
    .endianness = DEVICE_LITTLE_ENDIAN
468
};
469

    
470
void spapr_pci_msi_init(sPAPREnvironment *spapr, hwaddr addr)
471
{
472
    /*
473
     * As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors,
474
     * we need to allocate some memory to catch those writes coming
475
     * from msi_notify()/msix_notify().
476
     * As MSIMessage:addr is going to be the same and MSIMessage:data
477
     * is going to be a VIRQ number, 4 bytes of the MSI MR will only
478
     * be used.
479
     */
480
    spapr->msi_win_addr = addr;
481
    memory_region_init_io(&spapr->msiwindow, NULL, &spapr_msi_ops, spapr,
482
                          "msi", getpagesize());
483
    memory_region_add_subregion(get_system_memory(), spapr->msi_win_addr,
484
                                &spapr->msiwindow);
485
}
486

    
487
/*
488
 * PHB PCI device
489
 */
490
static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn)
491
{
492
    sPAPRPHBState *phb = opaque;
493

    
494
    return &phb->iommu_as;
495
}
496

    
497
static int spapr_phb_init(SysBusDevice *s)
498
{
499
    DeviceState *dev = DEVICE(s);
500
    sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s);
501
    PCIHostState *phb = PCI_HOST_BRIDGE(s);
502
    const char *busname;
503
    char *namebuf;
504
    int i;
505
    PCIBus *bus;
506

    
507
    if (sphb->index != -1) {
508
        hwaddr windows_base;
509

    
510
        if ((sphb->buid != -1) || (sphb->dma_liobn != -1)
511
            || (sphb->mem_win_addr != -1)
512
            || (sphb->io_win_addr != -1)) {
513
            fprintf(stderr, "Either \"index\" or other parameters must"
514
                    " be specified for PAPR PHB, not both\n");
515
            return -1;
516
        }
517

    
518
        sphb->buid = SPAPR_PCI_BASE_BUID + sphb->index;
519
        sphb->dma_liobn = SPAPR_PCI_BASE_LIOBN + sphb->index;
520

    
521
        windows_base = SPAPR_PCI_WINDOW_BASE
522
            + sphb->index * SPAPR_PCI_WINDOW_SPACING;
523
        sphb->mem_win_addr = windows_base + SPAPR_PCI_MMIO_WIN_OFF;
524
        sphb->io_win_addr = windows_base + SPAPR_PCI_IO_WIN_OFF;
525
    }
526

    
527
    if (sphb->buid == -1) {
528
        fprintf(stderr, "BUID not specified for PHB\n");
529
        return -1;
530
    }
531

    
532
    if (sphb->dma_liobn == -1) {
533
        fprintf(stderr, "LIOBN not specified for PHB\n");
534
        return -1;
535
    }
536

    
537
    if (sphb->mem_win_addr == -1) {
538
        fprintf(stderr, "Memory window address not specified for PHB\n");
539
        return -1;
540
    }
541

    
542
    if (sphb->io_win_addr == -1) {
543
        fprintf(stderr, "IO window address not specified for PHB\n");
544
        return -1;
545
    }
546

    
547
    if (find_phb(spapr, sphb->buid)) {
548
        fprintf(stderr, "PCI host bridges must have unique BUIDs\n");
549
        return -1;
550
    }
551

    
552
    sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid);
553

    
554
    namebuf = alloca(strlen(sphb->dtbusname) + 32);
555

    
556
    /* Initialize memory regions */
557
    sprintf(namebuf, "%s.mmio", sphb->dtbusname);
558
    memory_region_init(&sphb->memspace, OBJECT(sphb), namebuf, UINT64_MAX);
559

    
560
    sprintf(namebuf, "%s.mmio-alias", sphb->dtbusname);
561
    memory_region_init_alias(&sphb->memwindow, OBJECT(sphb),
562
                             namebuf, &sphb->memspace,
563
                             SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size);
564
    memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr,
565
                                &sphb->memwindow);
566

    
567
    /* On ppc, we only have MMIO no specific IO space from the CPU
568
     * perspective.  In theory we ought to be able to embed the PCI IO
569
     * memory region direction in the system memory space.  However,
570
     * if any of the IO BAR subregions use the old_portio mechanism,
571
     * that won't be processed properly unless accessed from the
572
     * system io address space.  This hack to bounce things via
573
     * system_io works around the problem until all the users of
574
     * old_portion are updated */
575
    sprintf(namebuf, "%s.io", sphb->dtbusname);
576
    memory_region_init(&sphb->iospace, OBJECT(sphb),
577
                       namebuf, SPAPR_PCI_IO_WIN_SIZE);
578
    /* FIXME: fix to support multiple PHBs */
579
    memory_region_add_subregion(get_system_io(), 0, &sphb->iospace);
580

    
581
    sprintf(namebuf, "%s.io-alias", sphb->dtbusname);
582
    memory_region_init_alias(&sphb->iowindow, OBJECT(sphb), namebuf,
583
                             get_system_io(), 0, SPAPR_PCI_IO_WIN_SIZE);
584
    memory_region_add_subregion(get_system_memory(), sphb->io_win_addr,
585
                                &sphb->iowindow);
586
    /*
587
     * Selecting a busname is more complex than you'd think, due to
588
     * interacting constraints.  If the user has specified an id
589
     * explicitly for the phb , then we want to use the qdev default
590
     * of naming the bus based on the bridge device (so the user can
591
     * then assign devices to it in the way they expect).  For the
592
     * first / default PCI bus (index=0) we want to use just "pci"
593
     * because libvirt expects there to be a bus called, simply,
594
     * "pci".  Otherwise, we use the same name as in the device tree,
595
     * since it's unique by construction, and makes the guest visible
596
     * BUID clear.
597
     */
598
    if (dev->id) {
599
        busname = NULL;
600
    } else if (sphb->index == 0) {
601
        busname = "pci";
602
    } else {
603
        busname = sphb->dtbusname;
604
    }
605
    bus = pci_register_bus(dev, busname,
606
                           pci_spapr_set_irq, pci_spapr_map_irq, sphb,
607
                           &sphb->memspace, &sphb->iospace,
608
                           PCI_DEVFN(0, 0), PCI_NUM_PINS, TYPE_PCI_BUS);
609
    phb->bus = bus;
610

    
611
    sphb->dma_window_start = 0;
612
    sphb->dma_window_size = 0x40000000;
613
    sphb->tcet = spapr_tce_new_table(dev, sphb->dma_liobn,
614
                                     sphb->dma_window_size);
615
    if (!sphb->tcet) {
616
        fprintf(stderr, "Unable to create TCE table for %s\n", sphb->dtbusname);
617
        return -1;
618
    }
619
    address_space_init(&sphb->iommu_as, spapr_tce_get_iommu(sphb->tcet),
620
                       sphb->dtbusname);
621

    
622
    pci_setup_iommu(bus, spapr_pci_dma_iommu, sphb);
623

    
624
    pci_bus_set_route_irq_fn(bus, spapr_route_intx_pin_to_irq);
625

    
626
    QLIST_INSERT_HEAD(&spapr->phbs, sphb, list);
627

    
628
    /* Initialize the LSI table */
629
    for (i = 0; i < PCI_NUM_PINS; i++) {
630
        uint32_t irq;
631

    
632
        irq = spapr_allocate_lsi(0);
633
        if (!irq) {
634
            return -1;
635
        }
636

    
637
        sphb->lsi_table[i].irq = irq;
638
    }
639

    
640
    return 0;
641
}
642

    
643
static void spapr_phb_reset(DeviceState *qdev)
644
{
645
    SysBusDevice *s = SYS_BUS_DEVICE(qdev);
646
    sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s);
647

    
648
    /* Reset the IOMMU state */
649
    device_reset(DEVICE(sphb->tcet));
650
}
651

    
652
static Property spapr_phb_properties[] = {
653
    DEFINE_PROP_INT32("index", sPAPRPHBState, index, -1),
654
    DEFINE_PROP_UINT64("buid", sPAPRPHBState, buid, -1),
655
    DEFINE_PROP_UINT32("liobn", sPAPRPHBState, dma_liobn, -1),
656
    DEFINE_PROP_UINT64("mem_win_addr", sPAPRPHBState, mem_win_addr, -1),
657
    DEFINE_PROP_UINT64("mem_win_size", sPAPRPHBState, mem_win_size,
658
                       SPAPR_PCI_MMIO_WIN_SIZE),
659
    DEFINE_PROP_UINT64("io_win_addr", sPAPRPHBState, io_win_addr, -1),
660
    DEFINE_PROP_UINT64("io_win_size", sPAPRPHBState, io_win_size,
661
                       SPAPR_PCI_IO_WIN_SIZE),
662
    DEFINE_PROP_END_OF_LIST(),
663
};
664

    
665
static const VMStateDescription vmstate_spapr_pci_lsi = {
666
    .name = "spapr_pci/lsi",
667
    .version_id = 1,
668
    .minimum_version_id = 1,
669
    .minimum_version_id_old = 1,
670
    .fields      = (VMStateField []) {
671
        VMSTATE_UINT32_EQUAL(irq, struct spapr_pci_lsi),
672

    
673
        VMSTATE_END_OF_LIST()
674
    },
675
};
676

    
677
static const VMStateDescription vmstate_spapr_pci_msi = {
678
    .name = "spapr_pci/lsi",
679
    .version_id = 1,
680
    .minimum_version_id = 1,
681
    .minimum_version_id_old = 1,
682
    .fields      = (VMStateField []) {
683
        VMSTATE_UINT32(config_addr, struct spapr_pci_msi),
684
        VMSTATE_UINT32(irq, struct spapr_pci_msi),
685
        VMSTATE_UINT32(nvec, struct spapr_pci_msi),
686

    
687
        VMSTATE_END_OF_LIST()
688
    },
689
};
690

    
691
static const VMStateDescription vmstate_spapr_pci = {
692
    .name = "spapr_pci",
693
    .version_id = 1,
694
    .minimum_version_id = 1,
695
    .minimum_version_id_old = 1,
696
    .fields      = (VMStateField []) {
697
        VMSTATE_UINT64_EQUAL(buid, sPAPRPHBState),
698
        VMSTATE_UINT32_EQUAL(dma_liobn, sPAPRPHBState),
699
        VMSTATE_UINT64_EQUAL(mem_win_addr, sPAPRPHBState),
700
        VMSTATE_UINT64_EQUAL(mem_win_size, sPAPRPHBState),
701
        VMSTATE_UINT64_EQUAL(io_win_addr, sPAPRPHBState),
702
        VMSTATE_UINT64_EQUAL(io_win_size, sPAPRPHBState),
703
        VMSTATE_STRUCT_ARRAY(lsi_table, sPAPRPHBState, PCI_NUM_PINS, 0,
704
                             vmstate_spapr_pci_lsi, struct spapr_pci_lsi),
705
        VMSTATE_STRUCT_ARRAY(msi_table, sPAPRPHBState, SPAPR_MSIX_MAX_DEVS, 0,
706
                             vmstate_spapr_pci_msi, struct spapr_pci_msi),
707

    
708
        VMSTATE_END_OF_LIST()
709
    },
710
};
711

    
712
static const char *spapr_phb_root_bus_path(PCIHostState *host_bridge,
713
                                           PCIBus *rootbus)
714
{
715
    sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(host_bridge);
716

    
717
    return sphb->dtbusname;
718
}
719

    
720
static void spapr_phb_class_init(ObjectClass *klass, void *data)
721
{
722
    PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass);
723
    SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
724
    DeviceClass *dc = DEVICE_CLASS(klass);
725

    
726
    hc->root_bus_path = spapr_phb_root_bus_path;
727
    sdc->init = spapr_phb_init;
728
    dc->props = spapr_phb_properties;
729
    dc->reset = spapr_phb_reset;
730
    dc->vmsd = &vmstate_spapr_pci;
731
}
732

    
733
static const TypeInfo spapr_phb_info = {
734
    .name          = TYPE_SPAPR_PCI_HOST_BRIDGE,
735
    .parent        = TYPE_PCI_HOST_BRIDGE,
736
    .instance_size = sizeof(sPAPRPHBState),
737
    .class_init    = spapr_phb_class_init,
738
};
739

    
740
PCIHostState *spapr_create_phb(sPAPREnvironment *spapr, int index)
741
{
742
    DeviceState *dev;
743

    
744
    dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
745
    qdev_prop_set_uint32(dev, "index", index);
746
    qdev_init_nofail(dev);
747

    
748
    return PCI_HOST_BRIDGE(dev);
749
}
750

    
751
/* Macros to operate with address in OF binding to PCI */
752
#define b_x(x, p, l)    (((x) & ((1<<(l))-1)) << (p))
753
#define b_n(x)          b_x((x), 31, 1) /* 0 if relocatable */
754
#define b_p(x)          b_x((x), 30, 1) /* 1 if prefetchable */
755
#define b_t(x)          b_x((x), 29, 1) /* 1 if the address is aliased */
756
#define b_ss(x)         b_x((x), 24, 2) /* the space code */
757
#define b_bbbbbbbb(x)   b_x((x), 16, 8) /* bus number */
758
#define b_ddddd(x)      b_x((x), 11, 5) /* device number */
759
#define b_fff(x)        b_x((x), 8, 3)  /* function number */
760
#define b_rrrrrrrr(x)   b_x((x), 0, 8)  /* register number */
761

    
762
int spapr_populate_pci_dt(sPAPRPHBState *phb,
763
                          uint32_t xics_phandle,
764
                          void *fdt)
765
{
766
    int bus_off, i, j;
767
    char nodename[256];
768
    uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
769
    struct {
770
        uint32_t hi;
771
        uint64_t child;
772
        uint64_t parent;
773
        uint64_t size;
774
    } QEMU_PACKED ranges[] = {
775
        {
776
            cpu_to_be32(b_ss(1)), cpu_to_be64(0),
777
            cpu_to_be64(phb->io_win_addr),
778
            cpu_to_be64(memory_region_size(&phb->iospace)),
779
        },
780
        {
781
            cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
782
            cpu_to_be64(phb->mem_win_addr),
783
            cpu_to_be64(memory_region_size(&phb->memwindow)),
784
        },
785
    };
786
    uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
787
    uint32_t interrupt_map_mask[] = {
788
        cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
789
    uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7];
790

    
791
    /* Start populating the FDT */
792
    sprintf(nodename, "pci@%" PRIx64, phb->buid);
793
    bus_off = fdt_add_subnode(fdt, 0, nodename);
794
    if (bus_off < 0) {
795
        return bus_off;
796
    }
797

    
798
#define _FDT(exp) \
799
    do { \
800
        int ret = (exp);                                           \
801
        if (ret < 0) {                                             \
802
            return ret;                                            \
803
        }                                                          \
804
    } while (0)
805

    
806
    /* Write PHB properties */
807
    _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
808
    _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
809
    _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3));
810
    _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2));
811
    _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
812
    _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
813
    _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
814
    _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof(ranges)));
815
    _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
816
    _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
817

    
818
    /* Build the interrupt-map, this must matches what is done
819
     * in pci_spapr_map_irq
820
     */
821
    _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
822
                     &interrupt_map_mask, sizeof(interrupt_map_mask)));
823
    for (i = 0; i < PCI_SLOT_MAX; i++) {
824
        for (j = 0; j < PCI_NUM_PINS; j++) {
825
            uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j];
826
            int lsi_num = pci_spapr_swizzle(i, j);
827

    
828
            irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
829
            irqmap[1] = 0;
830
            irqmap[2] = 0;
831
            irqmap[3] = cpu_to_be32(j+1);
832
            irqmap[4] = cpu_to_be32(xics_phandle);
833
            irqmap[5] = cpu_to_be32(phb->lsi_table[lsi_num].irq);
834
            irqmap[6] = cpu_to_be32(0x8);
835
        }
836
    }
837
    /* Write interrupt map */
838
    _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
839
                     sizeof(interrupt_map)));
840

    
841
    spapr_dma_dt(fdt, bus_off, "ibm,dma-window",
842
                 phb->dma_liobn, phb->dma_window_start,
843
                 phb->dma_window_size);
844

    
845
    return 0;
846
}
847

    
848
void spapr_pci_rtas_init(void)
849
{
850
    spapr_rtas_register("read-pci-config", rtas_read_pci_config);
851
    spapr_rtas_register("write-pci-config", rtas_write_pci_config);
852
    spapr_rtas_register("ibm,read-pci-config", rtas_ibm_read_pci_config);
853
    spapr_rtas_register("ibm,write-pci-config", rtas_ibm_write_pci_config);
854
    if (msi_supported) {
855
        spapr_rtas_register("ibm,query-interrupt-source-number",
856
                            rtas_ibm_query_interrupt_source_number);
857
        spapr_rtas_register("ibm,change-msi", rtas_ibm_change_msi);
858
    }
859
}
860

    
861
static void spapr_pci_register_types(void)
862
{
863
    type_register_static(&spapr_phb_info);
864
}
865

    
866
type_init(spapr_pci_register_types)