Statistics
| Branch: | Revision:

root / target-arm / helper.c @ cbf239b7

History | View | Annotate | Download (130.9 kB)

1
#include "cpu.h"
2
#include "exec/gdbstub.h"
3
#include "helper.h"
4
#include "qemu/host-utils.h"
5
#include "sysemu/arch_init.h"
6
#include "sysemu/sysemu.h"
7
#include "qemu/bitops.h"
8

    
9
#ifndef CONFIG_USER_ONLY
10
static inline int get_phys_addr(CPUARMState *env, uint32_t address,
11
                                int access_type, int is_user,
12
                                hwaddr *phys_ptr, int *prot,
13
                                target_ulong *page_size);
14
#endif
15

    
16
static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
17
{
18
    int nregs;
19

    
20
    /* VFP data registers are always little-endian.  */
21
    nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
22
    if (reg < nregs) {
23
        stfq_le_p(buf, env->vfp.regs[reg]);
24
        return 8;
25
    }
26
    if (arm_feature(env, ARM_FEATURE_NEON)) {
27
        /* Aliases for Q regs.  */
28
        nregs += 16;
29
        if (reg < nregs) {
30
            stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
31
            stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
32
            return 16;
33
        }
34
    }
35
    switch (reg - nregs) {
36
    case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
37
    case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
38
    case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
39
    }
40
    return 0;
41
}
42

    
43
static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
44
{
45
    int nregs;
46

    
47
    nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
48
    if (reg < nregs) {
49
        env->vfp.regs[reg] = ldfq_le_p(buf);
50
        return 8;
51
    }
52
    if (arm_feature(env, ARM_FEATURE_NEON)) {
53
        nregs += 16;
54
        if (reg < nregs) {
55
            env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
56
            env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
57
            return 16;
58
        }
59
    }
60
    switch (reg - nregs) {
61
    case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
62
    case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
63
    case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
64
    }
65
    return 0;
66
}
67

    
68
static int raw_read(CPUARMState *env, const ARMCPRegInfo *ri,
69
                    uint64_t *value)
70
{
71
    if (ri->type & ARM_CP_64BIT) {
72
        *value = CPREG_FIELD64(env, ri);
73
    } else {
74
        *value = CPREG_FIELD32(env, ri);
75
    }
76
    return 0;
77
}
78

    
79
static int raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
80
                     uint64_t value)
81
{
82
    if (ri->type & ARM_CP_64BIT) {
83
        CPREG_FIELD64(env, ri) = value;
84
    } else {
85
        CPREG_FIELD32(env, ri) = value;
86
    }
87
    return 0;
88
}
89

    
90
static bool read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
91
                            uint64_t *v)
92
{
93
    /* Raw read of a coprocessor register (as needed for migration, etc)
94
     * return true on success, false if the read is impossible for some reason.
95
     */
96
    if (ri->type & ARM_CP_CONST) {
97
        *v = ri->resetvalue;
98
    } else if (ri->raw_readfn) {
99
        return (ri->raw_readfn(env, ri, v) == 0);
100
    } else if (ri->readfn) {
101
        return (ri->readfn(env, ri, v) == 0);
102
    } else {
103
        if (ri->type & ARM_CP_64BIT) {
104
            *v = CPREG_FIELD64(env, ri);
105
        } else {
106
            *v = CPREG_FIELD32(env, ri);
107
        }
108
    }
109
    return true;
110
}
111

    
112
static bool write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
113
                             int64_t v)
114
{
115
    /* Raw write of a coprocessor register (as needed for migration, etc).
116
     * Return true on success, false if the write is impossible for some reason.
117
     * Note that constant registers are treated as write-ignored; the
118
     * caller should check for success by whether a readback gives the
119
     * value written.
120
     */
121
    if (ri->type & ARM_CP_CONST) {
122
        return true;
123
    } else if (ri->raw_writefn) {
124
        return (ri->raw_writefn(env, ri, v) == 0);
125
    } else if (ri->writefn) {
126
        return (ri->writefn(env, ri, v) == 0);
127
    } else {
128
        if (ri->type & ARM_CP_64BIT) {
129
            CPREG_FIELD64(env, ri) = v;
130
        } else {
131
            CPREG_FIELD32(env, ri) = v;
132
        }
133
    }
134
    return true;
135
}
136

    
137
bool write_cpustate_to_list(ARMCPU *cpu)
138
{
139
    /* Write the coprocessor state from cpu->env to the (index,value) list. */
140
    int i;
141
    bool ok = true;
142

    
143
    for (i = 0; i < cpu->cpreg_array_len; i++) {
144
        uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
145
        const ARMCPRegInfo *ri;
146
        uint64_t v;
147
        ri = get_arm_cp_reginfo(cpu, regidx);
148
        if (!ri) {
149
            ok = false;
150
            continue;
151
        }
152
        if (ri->type & ARM_CP_NO_MIGRATE) {
153
            continue;
154
        }
155
        if (!read_raw_cp_reg(&cpu->env, ri, &v)) {
156
            ok = false;
157
            continue;
158
        }
159
        cpu->cpreg_values[i] = v;
160
    }
161
    return ok;
162
}
163

    
164
bool write_list_to_cpustate(ARMCPU *cpu)
165
{
166
    int i;
167
    bool ok = true;
168

    
169
    for (i = 0; i < cpu->cpreg_array_len; i++) {
170
        uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
171
        uint64_t v = cpu->cpreg_values[i];
172
        uint64_t readback;
173
        const ARMCPRegInfo *ri;
174

    
175
        ri = get_arm_cp_reginfo(cpu, regidx);
176
        if (!ri) {
177
            ok = false;
178
            continue;
179
        }
180
        if (ri->type & ARM_CP_NO_MIGRATE) {
181
            continue;
182
        }
183
        /* Write value and confirm it reads back as written
184
         * (to catch read-only registers and partially read-only
185
         * registers where the incoming migration value doesn't match)
186
         */
187
        if (!write_raw_cp_reg(&cpu->env, ri, v) ||
188
            !read_raw_cp_reg(&cpu->env, ri, &readback) ||
189
            readback != v) {
190
            ok = false;
191
        }
192
    }
193
    return ok;
194
}
195

    
196
static void add_cpreg_to_list(gpointer key, gpointer opaque)
197
{
198
    ARMCPU *cpu = opaque;
199
    uint64_t regidx;
200
    const ARMCPRegInfo *ri;
201

    
202
    regidx = *(uint32_t *)key;
203
    ri = get_arm_cp_reginfo(cpu, regidx);
204

    
205
    if (!(ri->type & ARM_CP_NO_MIGRATE)) {
206
        cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
207
        /* The value array need not be initialized at this point */
208
        cpu->cpreg_array_len++;
209
    }
210
}
211

    
212
static void count_cpreg(gpointer key, gpointer opaque)
213
{
214
    ARMCPU *cpu = opaque;
215
    uint64_t regidx;
216
    const ARMCPRegInfo *ri;
217

    
218
    regidx = *(uint32_t *)key;
219
    ri = get_arm_cp_reginfo(cpu, regidx);
220

    
221
    if (!(ri->type & ARM_CP_NO_MIGRATE)) {
222
        cpu->cpreg_array_len++;
223
    }
224
}
225

    
226
static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
227
{
228
    uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
229
    uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
230

    
231
    if (aidx > bidx) {
232
        return 1;
233
    }
234
    if (aidx < bidx) {
235
        return -1;
236
    }
237
    return 0;
238
}
239

    
240
static void cpreg_make_keylist(gpointer key, gpointer value, gpointer udata)
241
{
242
    GList **plist = udata;
243

    
244
    *plist = g_list_prepend(*plist, key);
245
}
246

    
247
void init_cpreg_list(ARMCPU *cpu)
248
{
249
    /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
250
     * Note that we require cpreg_tuples[] to be sorted by key ID.
251
     */
252
    GList *keys = NULL;
253
    int arraylen;
254

    
255
    g_hash_table_foreach(cpu->cp_regs, cpreg_make_keylist, &keys);
256

    
257
    keys = g_list_sort(keys, cpreg_key_compare);
258

    
259
    cpu->cpreg_array_len = 0;
260

    
261
    g_list_foreach(keys, count_cpreg, cpu);
262

    
263
    arraylen = cpu->cpreg_array_len;
264
    cpu->cpreg_indexes = g_new(uint64_t, arraylen);
265
    cpu->cpreg_values = g_new(uint64_t, arraylen);
266
    cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
267
    cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
268
    cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
269
    cpu->cpreg_array_len = 0;
270

    
271
    g_list_foreach(keys, add_cpreg_to_list, cpu);
272

    
273
    assert(cpu->cpreg_array_len == arraylen);
274

    
275
    g_list_free(keys);
276
}
277

    
278
static int dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
279
{
280
    env->cp15.c3 = value;
281
    tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
282
    return 0;
283
}
284

    
285
static int fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
286
{
287
    if (env->cp15.c13_fcse != value) {
288
        /* Unlike real hardware the qemu TLB uses virtual addresses,
289
         * not modified virtual addresses, so this causes a TLB flush.
290
         */
291
        tlb_flush(env, 1);
292
        env->cp15.c13_fcse = value;
293
    }
294
    return 0;
295
}
296
static int contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
297
                            uint64_t value)
298
{
299
    if (env->cp15.c13_context != value && !arm_feature(env, ARM_FEATURE_MPU)) {
300
        /* For VMSA (when not using the LPAE long descriptor page table
301
         * format) this register includes the ASID, so do a TLB flush.
302
         * For PMSA it is purely a process ID and no action is needed.
303
         */
304
        tlb_flush(env, 1);
305
    }
306
    env->cp15.c13_context = value;
307
    return 0;
308
}
309

    
310
static int tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
311
                         uint64_t value)
312
{
313
    /* Invalidate all (TLBIALL) */
314
    tlb_flush(env, 1);
315
    return 0;
316
}
317

    
318
static int tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
319
                         uint64_t value)
320
{
321
    /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
322
    tlb_flush_page(env, value & TARGET_PAGE_MASK);
323
    return 0;
324
}
325

    
326
static int tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
327
                          uint64_t value)
328
{
329
    /* Invalidate by ASID (TLBIASID) */
330
    tlb_flush(env, value == 0);
331
    return 0;
332
}
333

    
334
static int tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
335
                          uint64_t value)
336
{
337
    /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
338
    tlb_flush_page(env, value & TARGET_PAGE_MASK);
339
    return 0;
340
}
341

    
342
static const ARMCPRegInfo cp_reginfo[] = {
343
    /* DBGDIDR: just RAZ. In particular this means the "debug architecture
344
     * version" bits will read as a reserved value, which should cause
345
     * Linux to not try to use the debug hardware.
346
     */
347
    { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
348
      .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
349
    /* MMU Domain access control / MPU write buffer control */
350
    { .name = "DACR", .cp = 15,
351
      .crn = 3, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
352
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3),
353
      .resetvalue = 0, .writefn = dacr_write, .raw_writefn = raw_write, },
354
    { .name = "FCSEIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 0,
355
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
356
      .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
357
    { .name = "CONTEXTIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 1,
358
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
359
      .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
360
    /* ??? This covers not just the impdef TLB lockdown registers but also
361
     * some v7VMSA registers relating to TEX remap, so it is overly broad.
362
     */
363
    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = CP_ANY,
364
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
365
    /* MMU TLB control. Note that the wildcarding means we cover not just
366
     * the unified TLB ops but also the dside/iside/inner-shareable variants.
367
     */
368
    { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
369
      .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
370
      .type = ARM_CP_NO_MIGRATE },
371
    { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
372
      .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
373
      .type = ARM_CP_NO_MIGRATE },
374
    { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
375
      .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
376
      .type = ARM_CP_NO_MIGRATE },
377
    { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
378
      .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
379
      .type = ARM_CP_NO_MIGRATE },
380
    /* Cache maintenance ops; some of this space may be overridden later. */
381
    { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
382
      .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
383
      .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
384
    REGINFO_SENTINEL
385
};
386

    
387
static const ARMCPRegInfo not_v6_cp_reginfo[] = {
388
    /* Not all pre-v6 cores implemented this WFI, so this is slightly
389
     * over-broad.
390
     */
391
    { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
392
      .access = PL1_W, .type = ARM_CP_WFI },
393
    REGINFO_SENTINEL
394
};
395

    
396
static const ARMCPRegInfo not_v7_cp_reginfo[] = {
397
    /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
398
     * is UNPREDICTABLE; we choose to NOP as most implementations do).
399
     */
400
    { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
401
      .access = PL1_W, .type = ARM_CP_WFI },
402
    /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
403
     * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
404
     * OMAPCP will override this space.
405
     */
406
    { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
407
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
408
      .resetvalue = 0 },
409
    { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
410
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
411
      .resetvalue = 0 },
412
    /* v6 doesn't have the cache ID registers but Linux reads them anyway */
413
    { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
414
      .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
415
      .resetvalue = 0 },
416
    REGINFO_SENTINEL
417
};
418

    
419
static int cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
420
{
421
    if (env->cp15.c1_coproc != value) {
422
        env->cp15.c1_coproc = value;
423
        /* ??? Is this safe when called from within a TB?  */
424
        tb_flush(env);
425
    }
426
    return 0;
427
}
428

    
429
static const ARMCPRegInfo v6_cp_reginfo[] = {
430
    /* prefetch by MVA in v6, NOP in v7 */
431
    { .name = "MVA_prefetch",
432
      .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
433
      .access = PL1_W, .type = ARM_CP_NOP },
434
    { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
435
      .access = PL0_W, .type = ARM_CP_NOP },
436
    { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
437
      .access = PL0_W, .type = ARM_CP_NOP },
438
    { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
439
      .access = PL0_W, .type = ARM_CP_NOP },
440
    { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
441
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_insn),
442
      .resetvalue = 0, },
443
    /* Watchpoint Fault Address Register : should actually only be present
444
     * for 1136, 1176, 11MPCore.
445
     */
446
    { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
447
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
448
    { .name = "CPACR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2,
449
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_coproc),
450
      .resetvalue = 0, .writefn = cpacr_write },
451
    REGINFO_SENTINEL
452
};
453

    
454

    
455
static int pmreg_read(CPUARMState *env, const ARMCPRegInfo *ri,
456
                      uint64_t *value)
457
{
458
    /* Generic performance monitor register read function for where
459
     * user access may be allowed by PMUSERENR.
460
     */
461
    if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
462
        return EXCP_UDEF;
463
    }
464
    *value = CPREG_FIELD32(env, ri);
465
    return 0;
466
}
467

    
468
static int pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
469
                      uint64_t value)
470
{
471
    if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
472
        return EXCP_UDEF;
473
    }
474
    /* only the DP, X, D and E bits are writable */
475
    env->cp15.c9_pmcr &= ~0x39;
476
    env->cp15.c9_pmcr |= (value & 0x39);
477
    return 0;
478
}
479

    
480
static int pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
481
                            uint64_t value)
482
{
483
    if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
484
        return EXCP_UDEF;
485
    }
486
    value &= (1 << 31);
487
    env->cp15.c9_pmcnten |= value;
488
    return 0;
489
}
490

    
491
static int pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
492
                            uint64_t value)
493
{
494
    if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
495
        return EXCP_UDEF;
496
    }
497
    value &= (1 << 31);
498
    env->cp15.c9_pmcnten &= ~value;
499
    return 0;
500
}
501

    
502
static int pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
503
                        uint64_t value)
504
{
505
    if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
506
        return EXCP_UDEF;
507
    }
508
    env->cp15.c9_pmovsr &= ~value;
509
    return 0;
510
}
511

    
512
static int pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
513
                            uint64_t value)
514
{
515
    if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
516
        return EXCP_UDEF;
517
    }
518
    env->cp15.c9_pmxevtyper = value & 0xff;
519
    return 0;
520
}
521

    
522
static int pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
523
                            uint64_t value)
524
{
525
    env->cp15.c9_pmuserenr = value & 1;
526
    return 0;
527
}
528

    
529
static int pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
530
                            uint64_t value)
531
{
532
    /* We have no event counters so only the C bit can be changed */
533
    value &= (1 << 31);
534
    env->cp15.c9_pminten |= value;
535
    return 0;
536
}
537

    
538
static int pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
539
                            uint64_t value)
540
{
541
    value &= (1 << 31);
542
    env->cp15.c9_pminten &= ~value;
543
    return 0;
544
}
545

    
546
static int vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
547
                      uint64_t value)
548
{
549
    env->cp15.c12_vbar = value & ~0x1Ful;
550
    return 0;
551
}
552

    
553
static int ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri,
554
                       uint64_t *value)
555
{
556
    ARMCPU *cpu = arm_env_get_cpu(env);
557
    *value = cpu->ccsidr[env->cp15.c0_cssel];
558
    return 0;
559
}
560

    
561
static int csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
562
                        uint64_t value)
563
{
564
    env->cp15.c0_cssel = value & 0xf;
565
    return 0;
566
}
567

    
568
static const ARMCPRegInfo v7_cp_reginfo[] = {
569
    /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
570
     * debug components
571
     */
572
    { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
573
      .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
574
    { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
575
      .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
576
    /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
577
    { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
578
      .access = PL1_W, .type = ARM_CP_NOP },
579
    /* Performance monitors are implementation defined in v7,
580
     * but with an ARM recommended set of registers, which we
581
     * follow (although we don't actually implement any counters)
582
     *
583
     * Performance registers fall into three categories:
584
     *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
585
     *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
586
     *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
587
     * For the cases controlled by PMUSERENR we must set .access to PL0_RW
588
     * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
589
     */
590
    { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
591
      .access = PL0_RW, .resetvalue = 0,
592
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
593
      .readfn = pmreg_read, .writefn = pmcntenset_write,
594
      .raw_readfn = raw_read, .raw_writefn = raw_write },
595
    { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
596
      .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
597
      .readfn = pmreg_read, .writefn = pmcntenclr_write,
598
      .type = ARM_CP_NO_MIGRATE },
599
    { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
600
      .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
601
      .readfn = pmreg_read, .writefn = pmovsr_write,
602
      .raw_readfn = raw_read, .raw_writefn = raw_write },
603
    /* Unimplemented so WI. Strictly speaking write accesses in PL0 should
604
     * respect PMUSERENR.
605
     */
606
    { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
607
      .access = PL0_W, .type = ARM_CP_NOP },
608
    /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
609
     * We choose to RAZ/WI. XXX should respect PMUSERENR.
610
     */
611
    { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
612
      .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
613
    /* Unimplemented, RAZ/WI. XXX PMUSERENR */
614
    { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
615
      .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
616
    { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
617
      .access = PL0_RW,
618
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
619
      .readfn = pmreg_read, .writefn = pmxevtyper_write,
620
      .raw_readfn = raw_read, .raw_writefn = raw_write },
621
    /* Unimplemented, RAZ/WI. XXX PMUSERENR */
622
    { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
623
      .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
624
    { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
625
      .access = PL0_R | PL1_RW,
626
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
627
      .resetvalue = 0,
628
      .writefn = pmuserenr_write, .raw_writefn = raw_write },
629
    { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
630
      .access = PL1_RW,
631
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
632
      .resetvalue = 0,
633
      .writefn = pmintenset_write, .raw_writefn = raw_write },
634
    { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
635
      .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
636
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
637
      .resetvalue = 0, .writefn = pmintenclr_write, },
638
    { .name = "VBAR", .cp = 15, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
639
      .access = PL1_RW, .writefn = vbar_write,
640
      .fieldoffset = offsetof(CPUARMState, cp15.c12_vbar),
641
      .resetvalue = 0 },
642
    { .name = "SCR", .cp = 15, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0,
643
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_scr),
644
      .resetvalue = 0, },
645
    { .name = "CCSIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
646
      .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_MIGRATE },
647
    { .name = "CSSELR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
648
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c0_cssel),
649
      .writefn = csselr_write, .resetvalue = 0 },
650
    /* Auxiliary ID register: this actually has an IMPDEF value but for now
651
     * just RAZ for all cores:
652
     */
653
    { .name = "AIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 7,
654
      .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
655
    REGINFO_SENTINEL
656
};
657

    
658
static int teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
659
{
660
    value &= 1;
661
    env->teecr = value;
662
    return 0;
663
}
664

    
665
static int teehbr_read(CPUARMState *env, const ARMCPRegInfo *ri,
666
                       uint64_t *value)
667
{
668
    /* This is a helper function because the user access rights
669
     * depend on the value of the TEECR.
670
     */
671
    if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
672
        return EXCP_UDEF;
673
    }
674
    *value = env->teehbr;
675
    return 0;
676
}
677

    
678
static int teehbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
679
                        uint64_t value)
680
{
681
    if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
682
        return EXCP_UDEF;
683
    }
684
    env->teehbr = value;
685
    return 0;
686
}
687

    
688
static const ARMCPRegInfo t2ee_cp_reginfo[] = {
689
    { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
690
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
691
      .resetvalue = 0,
692
      .writefn = teecr_write },
693
    { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
694
      .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
695
      .resetvalue = 0, .raw_readfn = raw_read, .raw_writefn = raw_write,
696
      .readfn = teehbr_read, .writefn = teehbr_write },
697
    REGINFO_SENTINEL
698
};
699

    
700
static const ARMCPRegInfo v6k_cp_reginfo[] = {
701
    { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
702
      .access = PL0_RW,
703
      .fieldoffset = offsetof(CPUARMState, cp15.c13_tls1),
704
      .resetvalue = 0 },
705
    { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
706
      .access = PL0_R|PL1_W,
707
      .fieldoffset = offsetof(CPUARMState, cp15.c13_tls2),
708
      .resetvalue = 0 },
709
    { .name = "TPIDRPRW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 4,
710
      .access = PL1_RW,
711
      .fieldoffset = offsetof(CPUARMState, cp15.c13_tls3),
712
      .resetvalue = 0 },
713
    REGINFO_SENTINEL
714
};
715

    
716
#ifndef CONFIG_USER_ONLY
717

    
718
static uint64_t gt_get_countervalue(CPUARMState *env)
719
{
720
    return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
721
}
722

    
723
static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
724
{
725
    ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
726

    
727
    if (gt->ctl & 1) {
728
        /* Timer enabled: calculate and set current ISTATUS, irq, and
729
         * reset timer to when ISTATUS next has to change
730
         */
731
        uint64_t count = gt_get_countervalue(&cpu->env);
732
        /* Note that this must be unsigned 64 bit arithmetic: */
733
        int istatus = count >= gt->cval;
734
        uint64_t nexttick;
735

    
736
        gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
737
        qemu_set_irq(cpu->gt_timer_outputs[timeridx],
738
                     (istatus && !(gt->ctl & 2)));
739
        if (istatus) {
740
            /* Next transition is when count rolls back over to zero */
741
            nexttick = UINT64_MAX;
742
        } else {
743
            /* Next transition is when we hit cval */
744
            nexttick = gt->cval;
745
        }
746
        /* Note that the desired next expiry time might be beyond the
747
         * signed-64-bit range of a QEMUTimer -- in this case we just
748
         * set the timer for as far in the future as possible. When the
749
         * timer expires we will reset the timer for any remaining period.
750
         */
751
        if (nexttick > INT64_MAX / GTIMER_SCALE) {
752
            nexttick = INT64_MAX / GTIMER_SCALE;
753
        }
754
        timer_mod(cpu->gt_timer[timeridx], nexttick);
755
    } else {
756
        /* Timer disabled: ISTATUS and timer output always clear */
757
        gt->ctl &= ~4;
758
        qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
759
        timer_del(cpu->gt_timer[timeridx]);
760
    }
761
}
762

    
763
static int gt_cntfrq_read(CPUARMState *env, const ARMCPRegInfo *ri,
764
                          uint64_t *value)
765
{
766
    /* Not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
767
    if (arm_current_pl(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) {
768
        return EXCP_UDEF;
769
    }
770
    *value = env->cp15.c14_cntfrq;
771
    return 0;
772
}
773

    
774
static void gt_cnt_reset(CPUARMState *env, const ARMCPRegInfo *ri)
775
{
776
    ARMCPU *cpu = arm_env_get_cpu(env);
777
    int timeridx = ri->opc1 & 1;
778

    
779
    timer_del(cpu->gt_timer[timeridx]);
780
}
781

    
782
static int gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri,
783
                       uint64_t *value)
784
{
785
    int timeridx = ri->opc1 & 1;
786

    
787
    if (arm_current_pl(env) == 0 &&
788
        !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
789
        return EXCP_UDEF;
790
    }
791
    *value = gt_get_countervalue(env);
792
    return 0;
793
}
794

    
795
static int gt_cval_read(CPUARMState *env, const ARMCPRegInfo *ri,
796
                        uint64_t *value)
797
{
798
    int timeridx = ri->opc1 & 1;
799

    
800
    if (arm_current_pl(env) == 0 &&
801
        !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
802
        return EXCP_UDEF;
803
    }
804
    *value = env->cp15.c14_timer[timeridx].cval;
805
    return 0;
806
}
807

    
808
static int gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
809
                         uint64_t value)
810
{
811
    int timeridx = ri->opc1 & 1;
812

    
813
    env->cp15.c14_timer[timeridx].cval = value;
814
    gt_recalc_timer(arm_env_get_cpu(env), timeridx);
815
    return 0;
816
}
817
static int gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
818
                        uint64_t *value)
819
{
820
    int timeridx = ri->crm & 1;
821

    
822
    if (arm_current_pl(env) == 0 &&
823
        !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
824
        return EXCP_UDEF;
825
    }
826
    *value = (uint32_t)(env->cp15.c14_timer[timeridx].cval -
827
                        gt_get_countervalue(env));
828
    return 0;
829
}
830

    
831
static int gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
832
                         uint64_t value)
833
{
834
    int timeridx = ri->crm & 1;
835

    
836
    env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) +
837
        + sextract64(value, 0, 32);
838
    gt_recalc_timer(arm_env_get_cpu(env), timeridx);
839
    return 0;
840
}
841

    
842
static int gt_ctl_read(CPUARMState *env, const ARMCPRegInfo *ri,
843
                       uint64_t *value)
844
{
845
    int timeridx = ri->crm & 1;
846

    
847
    if (arm_current_pl(env) == 0 &&
848
        !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
849
        return EXCP_UDEF;
850
    }
851
    *value = env->cp15.c14_timer[timeridx].ctl;
852
    return 0;
853
}
854

    
855
static int gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
856
                        uint64_t value)
857
{
858
    ARMCPU *cpu = arm_env_get_cpu(env);
859
    int timeridx = ri->crm & 1;
860
    uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
861

    
862
    env->cp15.c14_timer[timeridx].ctl = value & 3;
863
    if ((oldval ^ value) & 1) {
864
        /* Enable toggled */
865
        gt_recalc_timer(cpu, timeridx);
866
    } else if ((oldval & value) & 2) {
867
        /* IMASK toggled: don't need to recalculate,
868
         * just set the interrupt line based on ISTATUS
869
         */
870
        qemu_set_irq(cpu->gt_timer_outputs[timeridx],
871
                     (oldval & 4) && (value & 2));
872
    }
873
    return 0;
874
}
875

    
876
void arm_gt_ptimer_cb(void *opaque)
877
{
878
    ARMCPU *cpu = opaque;
879

    
880
    gt_recalc_timer(cpu, GTIMER_PHYS);
881
}
882

    
883
void arm_gt_vtimer_cb(void *opaque)
884
{
885
    ARMCPU *cpu = opaque;
886

    
887
    gt_recalc_timer(cpu, GTIMER_VIRT);
888
}
889

    
890
static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
891
    /* Note that CNTFRQ is purely reads-as-written for the benefit
892
     * of software; writing it doesn't actually change the timer frequency.
893
     * Our reset value matches the fixed frequency we implement the timer at.
894
     */
895
    { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
896
      .access = PL1_RW | PL0_R,
897
      .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
898
      .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
899
      .readfn = gt_cntfrq_read, .raw_readfn = raw_read,
900
    },
901
    /* overall control: mostly access permissions */
902
    { .name = "CNTKCTL", .cp = 15, .crn = 14, .crm = 1, .opc1 = 0, .opc2 = 0,
903
      .access = PL1_RW,
904
      .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
905
      .resetvalue = 0,
906
    },
907
    /* per-timer control */
908
    { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
909
      .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
910
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
911
      .resetvalue = 0,
912
      .readfn = gt_ctl_read, .writefn = gt_ctl_write,
913
      .raw_readfn = raw_read, .raw_writefn = raw_write,
914
    },
915
    { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
916
      .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
917
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
918
      .resetvalue = 0,
919
      .readfn = gt_ctl_read, .writefn = gt_ctl_write,
920
      .raw_readfn = raw_read, .raw_writefn = raw_write,
921
    },
922
    /* TimerValue views: a 32 bit downcounting view of the underlying state */
923
    { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
924
      .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
925
      .readfn = gt_tval_read, .writefn = gt_tval_write,
926
    },
927
    { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
928
      .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
929
      .readfn = gt_tval_read, .writefn = gt_tval_write,
930
    },
931
    /* The counter itself */
932
    { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
933
      .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO,
934
      .readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
935
    },
936
    { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
937
      .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO,
938
      .readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
939
    },
940
    /* Comparison value, indicating when the timer goes off */
941
    { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
942
      .access = PL1_RW | PL0_R,
943
      .type = ARM_CP_64BIT | ARM_CP_IO,
944
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
945
      .resetvalue = 0,
946
      .readfn = gt_cval_read, .writefn = gt_cval_write,
947
      .raw_readfn = raw_read, .raw_writefn = raw_write,
948
    },
949
    { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
950
      .access = PL1_RW | PL0_R,
951
      .type = ARM_CP_64BIT | ARM_CP_IO,
952
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
953
      .resetvalue = 0,
954
      .readfn = gt_cval_read, .writefn = gt_cval_write,
955
      .raw_readfn = raw_read, .raw_writefn = raw_write,
956
    },
957
    REGINFO_SENTINEL
958
};
959

    
960
#else
961
/* In user-mode none of the generic timer registers are accessible,
962
 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
963
 * so instead just don't register any of them.
964
 */
965
static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
966
    REGINFO_SENTINEL
967
};
968

    
969
#endif
970

    
971
static int par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
972
{
973
    if (arm_feature(env, ARM_FEATURE_LPAE)) {
974
        env->cp15.c7_par = value;
975
    } else if (arm_feature(env, ARM_FEATURE_V7)) {
976
        env->cp15.c7_par = value & 0xfffff6ff;
977
    } else {
978
        env->cp15.c7_par = value & 0xfffff1ff;
979
    }
980
    return 0;
981
}
982

    
983
#ifndef CONFIG_USER_ONLY
984
/* get_phys_addr() isn't present for user-mode-only targets */
985

    
986
/* Return true if extended addresses are enabled, ie this is an
987
 * LPAE implementation and we are using the long-descriptor translation
988
 * table format because the TTBCR EAE bit is set.
989
 */
990
static inline bool extended_addresses_enabled(CPUARMState *env)
991
{
992
    return arm_feature(env, ARM_FEATURE_LPAE)
993
        && (env->cp15.c2_control & (1U << 31));
994
}
995

    
996
static int ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
997
{
998
    hwaddr phys_addr;
999
    target_ulong page_size;
1000
    int prot;
1001
    int ret, is_user = ri->opc2 & 2;
1002
    int access_type = ri->opc2 & 1;
1003

    
1004
    if (ri->opc2 & 4) {
1005
        /* Other states are only available with TrustZone */
1006
        return EXCP_UDEF;
1007
    }
1008
    ret = get_phys_addr(env, value, access_type, is_user,
1009
                        &phys_addr, &prot, &page_size);
1010
    if (extended_addresses_enabled(env)) {
1011
        /* ret is a DFSR/IFSR value for the long descriptor
1012
         * translation table format, but with WnR always clear.
1013
         * Convert it to a 64-bit PAR.
1014
         */
1015
        uint64_t par64 = (1 << 11); /* LPAE bit always set */
1016
        if (ret == 0) {
1017
            par64 |= phys_addr & ~0xfffULL;
1018
            /* We don't set the ATTR or SH fields in the PAR. */
1019
        } else {
1020
            par64 |= 1; /* F */
1021
            par64 |= (ret & 0x3f) << 1; /* FS */
1022
            /* Note that S2WLK and FSTAGE are always zero, because we don't
1023
             * implement virtualization and therefore there can't be a stage 2
1024
             * fault.
1025
             */
1026
        }
1027
        env->cp15.c7_par = par64;
1028
        env->cp15.c7_par_hi = par64 >> 32;
1029
    } else {
1030
        /* ret is a DFSR/IFSR value for the short descriptor
1031
         * translation table format (with WnR always clear).
1032
         * Convert it to a 32-bit PAR.
1033
         */
1034
        if (ret == 0) {
1035
            /* We do not set any attribute bits in the PAR */
1036
            if (page_size == (1 << 24)
1037
                && arm_feature(env, ARM_FEATURE_V7)) {
1038
                env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1;
1039
            } else {
1040
                env->cp15.c7_par = phys_addr & 0xfffff000;
1041
            }
1042
        } else {
1043
            env->cp15.c7_par = ((ret & (10 << 1)) >> 5) |
1044
                ((ret & (12 << 1)) >> 6) |
1045
                ((ret & 0xf) << 1) | 1;
1046
        }
1047
        env->cp15.c7_par_hi = 0;
1048
    }
1049
    return 0;
1050
}
1051
#endif
1052

    
1053
static const ARMCPRegInfo vapa_cp_reginfo[] = {
1054
    { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
1055
      .access = PL1_RW, .resetvalue = 0,
1056
      .fieldoffset = offsetof(CPUARMState, cp15.c7_par),
1057
      .writefn = par_write },
1058
#ifndef CONFIG_USER_ONLY
1059
    { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
1060
      .access = PL1_W, .writefn = ats_write, .type = ARM_CP_NO_MIGRATE },
1061
#endif
1062
    REGINFO_SENTINEL
1063
};
1064

    
1065
/* Return basic MPU access permission bits.  */
1066
static uint32_t simple_mpu_ap_bits(uint32_t val)
1067
{
1068
    uint32_t ret;
1069
    uint32_t mask;
1070
    int i;
1071
    ret = 0;
1072
    mask = 3;
1073
    for (i = 0; i < 16; i += 2) {
1074
        ret |= (val >> i) & mask;
1075
        mask <<= 2;
1076
    }
1077
    return ret;
1078
}
1079

    
1080
/* Pad basic MPU access permission bits to extended format.  */
1081
static uint32_t extended_mpu_ap_bits(uint32_t val)
1082
{
1083
    uint32_t ret;
1084
    uint32_t mask;
1085
    int i;
1086
    ret = 0;
1087
    mask = 3;
1088
    for (i = 0; i < 16; i += 2) {
1089
        ret |= (val & mask) << i;
1090
        mask <<= 2;
1091
    }
1092
    return ret;
1093
}
1094

    
1095
static int pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1096
                                uint64_t value)
1097
{
1098
    env->cp15.c5_data = extended_mpu_ap_bits(value);
1099
    return 0;
1100
}
1101

    
1102
static int pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri,
1103
                               uint64_t *value)
1104
{
1105
    *value = simple_mpu_ap_bits(env->cp15.c5_data);
1106
    return 0;
1107
}
1108

    
1109
static int pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1110
                                uint64_t value)
1111
{
1112
    env->cp15.c5_insn = extended_mpu_ap_bits(value);
1113
    return 0;
1114
}
1115

    
1116
static int pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri,
1117
                               uint64_t *value)
1118
{
1119
    *value = simple_mpu_ap_bits(env->cp15.c5_insn);
1120
    return 0;
1121
}
1122

    
1123
static int arm946_prbs_read(CPUARMState *env, const ARMCPRegInfo *ri,
1124
                            uint64_t *value)
1125
{
1126
    if (ri->crm >= 8) {
1127
        return EXCP_UDEF;
1128
    }
1129
    *value = env->cp15.c6_region[ri->crm];
1130
    return 0;
1131
}
1132

    
1133
static int arm946_prbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
1134
                             uint64_t value)
1135
{
1136
    if (ri->crm >= 8) {
1137
        return EXCP_UDEF;
1138
    }
1139
    env->cp15.c6_region[ri->crm] = value;
1140
    return 0;
1141
}
1142

    
1143
static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
1144
    { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
1145
      .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
1146
      .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0,
1147
      .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
1148
    { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
1149
      .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
1150
      .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0,
1151
      .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
1152
    { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
1153
      .access = PL1_RW,
1154
      .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
1155
    { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
1156
      .access = PL1_RW,
1157
      .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
1158
    { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
1159
      .access = PL1_RW,
1160
      .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
1161
    { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
1162
      .access = PL1_RW,
1163
      .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
1164
    /* Protection region base and size registers */
1165
    { .name = "946_PRBS", .cp = 15, .crn = 6, .crm = CP_ANY, .opc1 = 0,
1166
      .opc2 = CP_ANY, .access = PL1_RW,
1167
      .readfn = arm946_prbs_read, .writefn = arm946_prbs_write, },
1168
    REGINFO_SENTINEL
1169
};
1170

    
1171
static int vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
1172
                                uint64_t value)
1173
{
1174
    int maskshift = extract32(value, 0, 3);
1175

    
1176
    if (arm_feature(env, ARM_FEATURE_LPAE)) {
1177
        value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
1178
    } else {
1179
        value &= 7;
1180
    }
1181
    /* Note that we always calculate c2_mask and c2_base_mask, but
1182
     * they are only used for short-descriptor tables (ie if EAE is 0);
1183
     * for long-descriptor tables the TTBCR fields are used differently
1184
     * and the c2_mask and c2_base_mask values are meaningless.
1185
     */
1186
    env->cp15.c2_control = value;
1187
    env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> maskshift);
1188
    env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> maskshift);
1189
    return 0;
1190
}
1191

    
1192
static int vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1193
                            uint64_t value)
1194
{
1195
    if (arm_feature(env, ARM_FEATURE_LPAE)) {
1196
        /* With LPAE the TTBCR could result in a change of ASID
1197
         * via the TTBCR.A1 bit, so do a TLB flush.
1198
         */
1199
        tlb_flush(env, 1);
1200
    }
1201
    return vmsa_ttbcr_raw_write(env, ri, value);
1202
}
1203

    
1204
static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1205
{
1206
    env->cp15.c2_base_mask = 0xffffc000u;
1207
    env->cp15.c2_control = 0;
1208
    env->cp15.c2_mask = 0;
1209
}
1210

    
1211
static const ARMCPRegInfo vmsa_cp_reginfo[] = {
1212
    { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
1213
      .access = PL1_RW,
1214
      .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
1215
    { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
1216
      .access = PL1_RW,
1217
      .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
1218
    { .name = "TTBR0", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
1219
      .access = PL1_RW,
1220
      .fieldoffset = offsetof(CPUARMState, cp15.c2_base0), .resetvalue = 0, },
1221
    { .name = "TTBR1", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
1222
      .access = PL1_RW,
1223
      .fieldoffset = offsetof(CPUARMState, cp15.c2_base1), .resetvalue = 0, },
1224
    { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
1225
      .access = PL1_RW, .writefn = vmsa_ttbcr_write,
1226
      .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
1227
      .fieldoffset = offsetof(CPUARMState, cp15.c2_control) },
1228
    { .name = "DFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
1229
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_data),
1230
      .resetvalue = 0, },
1231
    REGINFO_SENTINEL
1232
};
1233

    
1234
static int omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
1235
                               uint64_t value)
1236
{
1237
    env->cp15.c15_ticonfig = value & 0xe7;
1238
    /* The OS_TYPE bit in this register changes the reported CPUID! */
1239
    env->cp15.c0_cpuid = (value & (1 << 5)) ?
1240
        ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1241
    return 0;
1242
}
1243

    
1244
static int omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
1245
                               uint64_t value)
1246
{
1247
    env->cp15.c15_threadid = value & 0xffff;
1248
    return 0;
1249
}
1250

    
1251
static int omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
1252
                          uint64_t value)
1253
{
1254
    /* Wait-for-interrupt (deprecated) */
1255
    cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
1256
    return 0;
1257
}
1258

    
1259
static int omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
1260
                                 uint64_t value)
1261
{
1262
    /* On OMAP there are registers indicating the max/min index of dcache lines
1263
     * containing a dirty line; cache flush operations have to reset these.
1264
     */
1265
    env->cp15.c15_i_max = 0x000;
1266
    env->cp15.c15_i_min = 0xff0;
1267
    return 0;
1268
}
1269

    
1270
static const ARMCPRegInfo omap_cp_reginfo[] = {
1271
    { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
1272
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
1273
      .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
1274
    { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1275
      .access = PL1_RW, .type = ARM_CP_NOP },
1276
    { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1277
      .access = PL1_RW,
1278
      .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
1279
      .writefn = omap_ticonfig_write },
1280
    { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
1281
      .access = PL1_RW,
1282
      .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
1283
    { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
1284
      .access = PL1_RW, .resetvalue = 0xff0,
1285
      .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
1286
    { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
1287
      .access = PL1_RW,
1288
      .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
1289
      .writefn = omap_threadid_write },
1290
    { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
1291
      .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
1292
      .type = ARM_CP_NO_MIGRATE,
1293
      .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
1294
    /* TODO: Peripheral port remap register:
1295
     * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
1296
     * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
1297
     * when MMU is off.
1298
     */
1299
    { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
1300
      .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
1301
      .type = ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE,
1302
      .writefn = omap_cachemaint_write },
1303
    { .name = "C9", .cp = 15, .crn = 9,
1304
      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
1305
      .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
1306
    REGINFO_SENTINEL
1307
};
1308

    
1309
static int xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1310
                             uint64_t value)
1311
{
1312
    value &= 0x3fff;
1313
    if (env->cp15.c15_cpar != value) {
1314
        /* Changes cp0 to cp13 behavior, so needs a TB flush.  */
1315
        tb_flush(env);
1316
        env->cp15.c15_cpar = value;
1317
    }
1318
    return 0;
1319
}
1320

    
1321
static const ARMCPRegInfo xscale_cp_reginfo[] = {
1322
    { .name = "XSCALE_CPAR",
1323
      .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
1324
      .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
1325
      .writefn = xscale_cpar_write, },
1326
    { .name = "XSCALE_AUXCR",
1327
      .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
1328
      .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
1329
      .resetvalue = 0, },
1330
    REGINFO_SENTINEL
1331
};
1332

    
1333
static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
1334
    /* RAZ/WI the whole crn=15 space, when we don't have a more specific
1335
     * implementation of this implementation-defined space.
1336
     * Ideally this should eventually disappear in favour of actually
1337
     * implementing the correct behaviour for all cores.
1338
     */
1339
    { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
1340
      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
1341
      .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1342
      .resetvalue = 0 },
1343
    REGINFO_SENTINEL
1344
};
1345

    
1346
static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
1347
    /* Cache status: RAZ because we have no cache so it's always clean */
1348
    { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
1349
      .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1350
      .resetvalue = 0 },
1351
    REGINFO_SENTINEL
1352
};
1353

    
1354
static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
1355
    /* We never have a a block transfer operation in progress */
1356
    { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
1357
      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1358
      .resetvalue = 0 },
1359
    /* The cache ops themselves: these all NOP for QEMU */
1360
    { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
1361
      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1362
    { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
1363
      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1364
    { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
1365
      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1366
    { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
1367
      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1368
    { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
1369
      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1370
    { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
1371
      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1372
    REGINFO_SENTINEL
1373
};
1374

    
1375
static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
1376
    /* The cache test-and-clean instructions always return (1 << 30)
1377
     * to indicate that there are no dirty cache lines.
1378
     */
1379
    { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
1380
      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1381
      .resetvalue = (1 << 30) },
1382
    { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
1383
      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1384
      .resetvalue = (1 << 30) },
1385
    REGINFO_SENTINEL
1386
};
1387

    
1388
static const ARMCPRegInfo strongarm_cp_reginfo[] = {
1389
    /* Ignore ReadBuffer accesses */
1390
    { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
1391
      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
1392
      .access = PL1_RW, .resetvalue = 0,
1393
      .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE },
1394
    REGINFO_SENTINEL
1395
};
1396

    
1397
static int mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1398
                      uint64_t *value)
1399
{
1400
    CPUState *cs = CPU(arm_env_get_cpu(env));
1401
    uint32_t mpidr = cs->cpu_index;
1402
    /* We don't support setting cluster ID ([8..11])
1403
     * so these bits always RAZ.
1404
     */
1405
    if (arm_feature(env, ARM_FEATURE_V7MP)) {
1406
        mpidr |= (1U << 31);
1407
        /* Cores which are uniprocessor (non-coherent)
1408
         * but still implement the MP extensions set
1409
         * bit 30. (For instance, A9UP.) However we do
1410
         * not currently model any of those cores.
1411
         */
1412
    }
1413
    *value = mpidr;
1414
    return 0;
1415
}
1416

    
1417
static const ARMCPRegInfo mpidr_cp_reginfo[] = {
1418
    { .name = "MPIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
1419
      .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_MIGRATE },
1420
    REGINFO_SENTINEL
1421
};
1422

    
1423
static int par64_read(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value)
1424
{
1425
    *value = ((uint64_t)env->cp15.c7_par_hi << 32) | env->cp15.c7_par;
1426
    return 0;
1427
}
1428

    
1429
static int par64_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1430
{
1431
    env->cp15.c7_par_hi = value >> 32;
1432
    env->cp15.c7_par = value;
1433
    return 0;
1434
}
1435

    
1436
static void par64_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1437
{
1438
    env->cp15.c7_par_hi = 0;
1439
    env->cp15.c7_par = 0;
1440
}
1441

    
1442
static int ttbr064_read(CPUARMState *env, const ARMCPRegInfo *ri,
1443
                        uint64_t *value)
1444
{
1445
    *value = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0;
1446
    return 0;
1447
}
1448

    
1449
static int ttbr064_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
1450
                             uint64_t value)
1451
{
1452
    env->cp15.c2_base0_hi = value >> 32;
1453
    env->cp15.c2_base0 = value;
1454
    return 0;
1455
}
1456

    
1457
static int ttbr064_write(CPUARMState *env, const ARMCPRegInfo *ri,
1458
                         uint64_t value)
1459
{
1460
    /* Writes to the 64 bit format TTBRs may change the ASID */
1461
    tlb_flush(env, 1);
1462
    return ttbr064_raw_write(env, ri, value);
1463
}
1464

    
1465
static void ttbr064_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1466
{
1467
    env->cp15.c2_base0_hi = 0;
1468
    env->cp15.c2_base0 = 0;
1469
}
1470

    
1471
static int ttbr164_read(CPUARMState *env, const ARMCPRegInfo *ri,
1472
                        uint64_t *value)
1473
{
1474
    *value = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1;
1475
    return 0;
1476
}
1477

    
1478
static int ttbr164_write(CPUARMState *env, const ARMCPRegInfo *ri,
1479
                         uint64_t value)
1480
{
1481
    env->cp15.c2_base1_hi = value >> 32;
1482
    env->cp15.c2_base1 = value;
1483
    return 0;
1484
}
1485

    
1486
static void ttbr164_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1487
{
1488
    env->cp15.c2_base1_hi = 0;
1489
    env->cp15.c2_base1 = 0;
1490
}
1491

    
1492
static const ARMCPRegInfo lpae_cp_reginfo[] = {
1493
    /* NOP AMAIR0/1: the override is because these clash with the rather
1494
     * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo.
1495
     */
1496
    { .name = "AMAIR0", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
1497
      .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
1498
      .resetvalue = 0 },
1499
    { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
1500
      .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
1501
      .resetvalue = 0 },
1502
    /* 64 bit access versions of the (dummy) debug registers */
1503
    { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
1504
      .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
1505
    { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
1506
      .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
1507
    { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
1508
      .access = PL1_RW, .type = ARM_CP_64BIT,
1509
      .readfn = par64_read, .writefn = par64_write, .resetfn = par64_reset },
1510
    { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
1511
      .access = PL1_RW, .type = ARM_CP_64BIT, .readfn = ttbr064_read,
1512
      .writefn = ttbr064_write, .raw_writefn = ttbr064_raw_write,
1513
      .resetfn = ttbr064_reset },
1514
    { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
1515
      .access = PL1_RW, .type = ARM_CP_64BIT, .readfn = ttbr164_read,
1516
      .writefn = ttbr164_write, .resetfn = ttbr164_reset },
1517
    REGINFO_SENTINEL
1518
};
1519

    
1520
static int sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1521
{
1522
    env->cp15.c1_sys = value;
1523
    /* ??? Lots of these bits are not implemented.  */
1524
    /* This may enable/disable the MMU, so do a TLB flush.  */
1525
    tlb_flush(env, 1);
1526
    return 0;
1527
}
1528

    
1529
void register_cp_regs_for_features(ARMCPU *cpu)
1530
{
1531
    /* Register all the coprocessor registers based on feature bits */
1532
    CPUARMState *env = &cpu->env;
1533
    if (arm_feature(env, ARM_FEATURE_M)) {
1534
        /* M profile has no coprocessor registers */
1535
        return;
1536
    }
1537

    
1538
    define_arm_cp_regs(cpu, cp_reginfo);
1539
    if (arm_feature(env, ARM_FEATURE_V6)) {
1540
        /* The ID registers all have impdef reset values */
1541
        ARMCPRegInfo v6_idregs[] = {
1542
            { .name = "ID_PFR0", .cp = 15, .crn = 0, .crm = 1,
1543
              .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
1544
              .resetvalue = cpu->id_pfr0 },
1545
            { .name = "ID_PFR1", .cp = 15, .crn = 0, .crm = 1,
1546
              .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
1547
              .resetvalue = cpu->id_pfr1 },
1548
            { .name = "ID_DFR0", .cp = 15, .crn = 0, .crm = 1,
1549
              .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
1550
              .resetvalue = cpu->id_dfr0 },
1551
            { .name = "ID_AFR0", .cp = 15, .crn = 0, .crm = 1,
1552
              .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
1553
              .resetvalue = cpu->id_afr0 },
1554
            { .name = "ID_MMFR0", .cp = 15, .crn = 0, .crm = 1,
1555
              .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
1556
              .resetvalue = cpu->id_mmfr0 },
1557
            { .name = "ID_MMFR1", .cp = 15, .crn = 0, .crm = 1,
1558
              .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
1559
              .resetvalue = cpu->id_mmfr1 },
1560
            { .name = "ID_MMFR2", .cp = 15, .crn = 0, .crm = 1,
1561
              .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
1562
              .resetvalue = cpu->id_mmfr2 },
1563
            { .name = "ID_MMFR3", .cp = 15, .crn = 0, .crm = 1,
1564
              .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
1565
              .resetvalue = cpu->id_mmfr3 },
1566
            { .name = "ID_ISAR0", .cp = 15, .crn = 0, .crm = 2,
1567
              .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
1568
              .resetvalue = cpu->id_isar0 },
1569
            { .name = "ID_ISAR1", .cp = 15, .crn = 0, .crm = 2,
1570
              .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
1571
              .resetvalue = cpu->id_isar1 },
1572
            { .name = "ID_ISAR2", .cp = 15, .crn = 0, .crm = 2,
1573
              .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
1574
              .resetvalue = cpu->id_isar2 },
1575
            { .name = "ID_ISAR3", .cp = 15, .crn = 0, .crm = 2,
1576
              .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
1577
              .resetvalue = cpu->id_isar3 },
1578
            { .name = "ID_ISAR4", .cp = 15, .crn = 0, .crm = 2,
1579
              .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
1580
              .resetvalue = cpu->id_isar4 },
1581
            { .name = "ID_ISAR5", .cp = 15, .crn = 0, .crm = 2,
1582
              .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
1583
              .resetvalue = cpu->id_isar5 },
1584
            /* 6..7 are as yet unallocated and must RAZ */
1585
            { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
1586
              .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
1587
              .resetvalue = 0 },
1588
            { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
1589
              .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
1590
              .resetvalue = 0 },
1591
            REGINFO_SENTINEL
1592
        };
1593
        define_arm_cp_regs(cpu, v6_idregs);
1594
        define_arm_cp_regs(cpu, v6_cp_reginfo);
1595
    } else {
1596
        define_arm_cp_regs(cpu, not_v6_cp_reginfo);
1597
    }
1598
    if (arm_feature(env, ARM_FEATURE_V6K)) {
1599
        define_arm_cp_regs(cpu, v6k_cp_reginfo);
1600
    }
1601
    if (arm_feature(env, ARM_FEATURE_V7)) {
1602
        /* v7 performance monitor control register: same implementor
1603
         * field as main ID register, and we implement no event counters.
1604
         */
1605
        ARMCPRegInfo pmcr = {
1606
            .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
1607
            .access = PL0_RW, .resetvalue = cpu->midr & 0xff000000,
1608
            .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
1609
            .readfn = pmreg_read, .writefn = pmcr_write,
1610
            .raw_readfn = raw_read, .raw_writefn = raw_write,
1611
        };
1612
        ARMCPRegInfo clidr = {
1613
            .name = "CLIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
1614
            .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
1615
        };
1616
        define_one_arm_cp_reg(cpu, &pmcr);
1617
        define_one_arm_cp_reg(cpu, &clidr);
1618
        define_arm_cp_regs(cpu, v7_cp_reginfo);
1619
    } else {
1620
        define_arm_cp_regs(cpu, not_v7_cp_reginfo);
1621
    }
1622
    if (arm_feature(env, ARM_FEATURE_MPU)) {
1623
        /* These are the MPU registers prior to PMSAv6. Any new
1624
         * PMSA core later than the ARM946 will require that we
1625
         * implement the PMSAv6 or PMSAv7 registers, which are
1626
         * completely different.
1627
         */
1628
        assert(!arm_feature(env, ARM_FEATURE_V6));
1629
        define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
1630
    } else {
1631
        define_arm_cp_regs(cpu, vmsa_cp_reginfo);
1632
    }
1633
    if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
1634
        define_arm_cp_regs(cpu, t2ee_cp_reginfo);
1635
    }
1636
    if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1637
        define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
1638
    }
1639
    if (arm_feature(env, ARM_FEATURE_VAPA)) {
1640
        define_arm_cp_regs(cpu, vapa_cp_reginfo);
1641
    }
1642
    if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
1643
        define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
1644
    }
1645
    if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
1646
        define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
1647
    }
1648
    if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
1649
        define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
1650
    }
1651
    if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1652
        define_arm_cp_regs(cpu, omap_cp_reginfo);
1653
    }
1654
    if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
1655
        define_arm_cp_regs(cpu, strongarm_cp_reginfo);
1656
    }
1657
    if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1658
        define_arm_cp_regs(cpu, xscale_cp_reginfo);
1659
    }
1660
    if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
1661
        define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
1662
    }
1663
    if (arm_feature(env, ARM_FEATURE_LPAE)) {
1664
        define_arm_cp_regs(cpu, lpae_cp_reginfo);
1665
    }
1666
    /* Slightly awkwardly, the OMAP and StrongARM cores need all of
1667
     * cp15 crn=0 to be writes-ignored, whereas for other cores they should
1668
     * be read-only (ie write causes UNDEF exception).
1669
     */
1670
    {
1671
        ARMCPRegInfo id_cp_reginfo[] = {
1672
            /* Note that the MIDR isn't a simple constant register because
1673
             * of the TI925 behaviour where writes to another register can
1674
             * cause the MIDR value to change.
1675
             *
1676
             * Unimplemented registers in the c15 0 0 0 space default to
1677
             * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
1678
             * and friends override accordingly.
1679
             */
1680
            { .name = "MIDR",
1681
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
1682
              .access = PL1_R, .resetvalue = cpu->midr,
1683
              .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
1684
              .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
1685
              .type = ARM_CP_OVERRIDE },
1686
            { .name = "CTR",
1687
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
1688
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
1689
            { .name = "TCMTR",
1690
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
1691
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1692
            { .name = "TLBTR",
1693
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
1694
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1695
            /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
1696
            { .name = "DUMMY",
1697
              .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
1698
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1699
            { .name = "DUMMY",
1700
              .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
1701
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1702
            { .name = "DUMMY",
1703
              .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
1704
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1705
            { .name = "DUMMY",
1706
              .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
1707
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1708
            { .name = "DUMMY",
1709
              .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
1710
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1711
            REGINFO_SENTINEL
1712
        };
1713
        ARMCPRegInfo crn0_wi_reginfo = {
1714
            .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
1715
            .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
1716
            .type = ARM_CP_NOP | ARM_CP_OVERRIDE
1717
        };
1718
        if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
1719
            arm_feature(env, ARM_FEATURE_STRONGARM)) {
1720
            ARMCPRegInfo *r;
1721
            /* Register the blanket "writes ignored" value first to cover the
1722
             * whole space. Then update the specific ID registers to allow write
1723
             * access, so that they ignore writes rather than causing them to
1724
             * UNDEF.
1725
             */
1726
            define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
1727
            for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
1728
                r->access = PL1_RW;
1729
            }
1730
        }
1731
        define_arm_cp_regs(cpu, id_cp_reginfo);
1732
    }
1733

    
1734
    if (arm_feature(env, ARM_FEATURE_MPIDR)) {
1735
        define_arm_cp_regs(cpu, mpidr_cp_reginfo);
1736
    }
1737

    
1738
    if (arm_feature(env, ARM_FEATURE_AUXCR)) {
1739
        ARMCPRegInfo auxcr = {
1740
            .name = "AUXCR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1,
1741
            .access = PL1_RW, .type = ARM_CP_CONST,
1742
            .resetvalue = cpu->reset_auxcr
1743
        };
1744
        define_one_arm_cp_reg(cpu, &auxcr);
1745
    }
1746

    
1747
    /* Generic registers whose values depend on the implementation */
1748
    {
1749
        ARMCPRegInfo sctlr = {
1750
            .name = "SCTLR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
1751
            .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_sys),
1752
            .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
1753
            .raw_writefn = raw_write,
1754
        };
1755
        if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1756
            /* Normally we would always end the TB on an SCTLR write, but Linux
1757
             * arch/arm/mach-pxa/sleep.S expects two instructions following
1758
             * an MMU enable to execute from cache.  Imitate this behaviour.
1759
             */
1760
            sctlr.type |= ARM_CP_SUPPRESS_TB_END;
1761
        }
1762
        define_one_arm_cp_reg(cpu, &sctlr);
1763
    }
1764
}
1765

    
1766
ARMCPU *cpu_arm_init(const char *cpu_model)
1767
{
1768
    ARMCPU *cpu;
1769
    ObjectClass *oc;
1770

    
1771
    oc = cpu_class_by_name(TYPE_ARM_CPU, cpu_model);
1772
    if (!oc) {
1773
        return NULL;
1774
    }
1775
    cpu = ARM_CPU(object_new(object_class_get_name(oc)));
1776

    
1777
    /* TODO this should be set centrally, once possible */
1778
    object_property_set_bool(OBJECT(cpu), true, "realized", NULL);
1779

    
1780
    return cpu;
1781
}
1782

    
1783
void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
1784
{
1785
    CPUState *cs = CPU(cpu);
1786
    CPUARMState *env = &cpu->env;
1787

    
1788
    if (arm_feature(env, ARM_FEATURE_NEON)) {
1789
        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
1790
                                 51, "arm-neon.xml", 0);
1791
    } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
1792
        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
1793
                                 35, "arm-vfp3.xml", 0);
1794
    } else if (arm_feature(env, ARM_FEATURE_VFP)) {
1795
        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
1796
                                 19, "arm-vfp.xml", 0);
1797
    }
1798
}
1799

    
1800
/* Sort alphabetically by type name, except for "any". */
1801
static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
1802
{
1803
    ObjectClass *class_a = (ObjectClass *)a;
1804
    ObjectClass *class_b = (ObjectClass *)b;
1805
    const char *name_a, *name_b;
1806

    
1807
    name_a = object_class_get_name(class_a);
1808
    name_b = object_class_get_name(class_b);
1809
    if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
1810
        return 1;
1811
    } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
1812
        return -1;
1813
    } else {
1814
        return strcmp(name_a, name_b);
1815
    }
1816
}
1817

    
1818
static void arm_cpu_list_entry(gpointer data, gpointer user_data)
1819
{
1820
    ObjectClass *oc = data;
1821
    CPUListState *s = user_data;
1822
    const char *typename;
1823
    char *name;
1824

    
1825
    typename = object_class_get_name(oc);
1826
    name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
1827
    (*s->cpu_fprintf)(s->file, "  %s\n",
1828
                      name);
1829
    g_free(name);
1830
}
1831

    
1832
void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
1833
{
1834
    CPUListState s = {
1835
        .file = f,
1836
        .cpu_fprintf = cpu_fprintf,
1837
    };
1838
    GSList *list;
1839

    
1840
    list = object_class_get_list(TYPE_ARM_CPU, false);
1841
    list = g_slist_sort(list, arm_cpu_list_compare);
1842
    (*cpu_fprintf)(f, "Available CPUs:\n");
1843
    g_slist_foreach(list, arm_cpu_list_entry, &s);
1844
    g_slist_free(list);
1845
}
1846

    
1847
static void arm_cpu_add_definition(gpointer data, gpointer user_data)
1848
{
1849
    ObjectClass *oc = data;
1850
    CpuDefinitionInfoList **cpu_list = user_data;
1851
    CpuDefinitionInfoList *entry;
1852
    CpuDefinitionInfo *info;
1853
    const char *typename;
1854

    
1855
    typename = object_class_get_name(oc);
1856
    info = g_malloc0(sizeof(*info));
1857
    info->name = g_strndup(typename,
1858
                           strlen(typename) - strlen("-" TYPE_ARM_CPU));
1859

    
1860
    entry = g_malloc0(sizeof(*entry));
1861
    entry->value = info;
1862
    entry->next = *cpu_list;
1863
    *cpu_list = entry;
1864
}
1865

    
1866
CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
1867
{
1868
    CpuDefinitionInfoList *cpu_list = NULL;
1869
    GSList *list;
1870

    
1871
    list = object_class_get_list(TYPE_ARM_CPU, false);
1872
    g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
1873
    g_slist_free(list);
1874

    
1875
    return cpu_list;
1876
}
1877

    
1878
void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
1879
                                       const ARMCPRegInfo *r, void *opaque)
1880
{
1881
    /* Define implementations of coprocessor registers.
1882
     * We store these in a hashtable because typically
1883
     * there are less than 150 registers in a space which
1884
     * is 16*16*16*8*8 = 262144 in size.
1885
     * Wildcarding is supported for the crm, opc1 and opc2 fields.
1886
     * If a register is defined twice then the second definition is
1887
     * used, so this can be used to define some generic registers and
1888
     * then override them with implementation specific variations.
1889
     * At least one of the original and the second definition should
1890
     * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
1891
     * against accidental use.
1892
     */
1893
    int crm, opc1, opc2;
1894
    int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
1895
    int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
1896
    int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
1897
    int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
1898
    int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
1899
    int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
1900
    /* 64 bit registers have only CRm and Opc1 fields */
1901
    assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
1902
    /* Check that the register definition has enough info to handle
1903
     * reads and writes if they are permitted.
1904
     */
1905
    if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
1906
        if (r->access & PL3_R) {
1907
            assert(r->fieldoffset || r->readfn);
1908
        }
1909
        if (r->access & PL3_W) {
1910
            assert(r->fieldoffset || r->writefn);
1911
        }
1912
    }
1913
    /* Bad type field probably means missing sentinel at end of reg list */
1914
    assert(cptype_valid(r->type));
1915
    for (crm = crmmin; crm <= crmmax; crm++) {
1916
        for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
1917
            for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
1918
                uint32_t *key = g_new(uint32_t, 1);
1919
                ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
1920
                int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
1921
                *key = ENCODE_CP_REG(r->cp, is64, r->crn, crm, opc1, opc2);
1922
                if (opaque) {
1923
                    r2->opaque = opaque;
1924
                }
1925
                /* Make sure reginfo passed to helpers for wildcarded regs
1926
                 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
1927
                 */
1928
                r2->crm = crm;
1929
                r2->opc1 = opc1;
1930
                r2->opc2 = opc2;
1931
                /* By convention, for wildcarded registers only the first
1932
                 * entry is used for migration; the others are marked as
1933
                 * NO_MIGRATE so we don't try to transfer the register
1934
                 * multiple times. Special registers (ie NOP/WFI) are
1935
                 * never migratable.
1936
                 */
1937
                if ((r->type & ARM_CP_SPECIAL) ||
1938
                    ((r->crm == CP_ANY) && crm != 0) ||
1939
                    ((r->opc1 == CP_ANY) && opc1 != 0) ||
1940
                    ((r->opc2 == CP_ANY) && opc2 != 0)) {
1941
                    r2->type |= ARM_CP_NO_MIGRATE;
1942
                }
1943

    
1944
                /* Overriding of an existing definition must be explicitly
1945
                 * requested.
1946
                 */
1947
                if (!(r->type & ARM_CP_OVERRIDE)) {
1948
                    ARMCPRegInfo *oldreg;
1949
                    oldreg = g_hash_table_lookup(cpu->cp_regs, key);
1950
                    if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
1951
                        fprintf(stderr, "Register redefined: cp=%d %d bit "
1952
                                "crn=%d crm=%d opc1=%d opc2=%d, "
1953
                                "was %s, now %s\n", r2->cp, 32 + 32 * is64,
1954
                                r2->crn, r2->crm, r2->opc1, r2->opc2,
1955
                                oldreg->name, r2->name);
1956
                        g_assert_not_reached();
1957
                    }
1958
                }
1959
                g_hash_table_insert(cpu->cp_regs, key, r2);
1960
            }
1961
        }
1962
    }
1963
}
1964

    
1965
void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
1966
                                    const ARMCPRegInfo *regs, void *opaque)
1967
{
1968
    /* Define a whole list of registers */
1969
    const ARMCPRegInfo *r;
1970
    for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
1971
        define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
1972
    }
1973
}
1974

    
1975
const ARMCPRegInfo *get_arm_cp_reginfo(ARMCPU *cpu, uint32_t encoded_cp)
1976
{
1977
    return g_hash_table_lookup(cpu->cp_regs, &encoded_cp);
1978
}
1979

    
1980
int arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1981
                        uint64_t value)
1982
{
1983
    /* Helper coprocessor write function for write-ignore registers */
1984
    return 0;
1985
}
1986

    
1987
int arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value)
1988
{
1989
    /* Helper coprocessor write function for read-as-zero registers */
1990
    *value = 0;
1991
    return 0;
1992
}
1993

    
1994
static int bad_mode_switch(CPUARMState *env, int mode)
1995
{
1996
    /* Return true if it is not valid for us to switch to
1997
     * this CPU mode (ie all the UNPREDICTABLE cases in
1998
     * the ARM ARM CPSRWriteByInstr pseudocode).
1999
     */
2000
    switch (mode) {
2001
    case ARM_CPU_MODE_USR:
2002
    case ARM_CPU_MODE_SYS:
2003
    case ARM_CPU_MODE_SVC:
2004
    case ARM_CPU_MODE_ABT:
2005
    case ARM_CPU_MODE_UND:
2006
    case ARM_CPU_MODE_IRQ:
2007
    case ARM_CPU_MODE_FIQ:
2008
        return 0;
2009
    default:
2010
        return 1;
2011
    }
2012
}
2013

    
2014
uint32_t cpsr_read(CPUARMState *env)
2015
{
2016
    int ZF;
2017
    ZF = (env->ZF == 0);
2018
    return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
2019
        (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
2020
        | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
2021
        | ((env->condexec_bits & 0xfc) << 8)
2022
        | (env->GE << 16);
2023
}
2024

    
2025
void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
2026
{
2027
    if (mask & CPSR_NZCV) {
2028
        env->ZF = (~val) & CPSR_Z;
2029
        env->NF = val;
2030
        env->CF = (val >> 29) & 1;
2031
        env->VF = (val << 3) & 0x80000000;
2032
    }
2033
    if (mask & CPSR_Q)
2034
        env->QF = ((val & CPSR_Q) != 0);
2035
    if (mask & CPSR_T)
2036
        env->thumb = ((val & CPSR_T) != 0);
2037
    if (mask & CPSR_IT_0_1) {
2038
        env->condexec_bits &= ~3;
2039
        env->condexec_bits |= (val >> 25) & 3;
2040
    }
2041
    if (mask & CPSR_IT_2_7) {
2042
        env->condexec_bits &= 3;
2043
        env->condexec_bits |= (val >> 8) & 0xfc;
2044
    }
2045
    if (mask & CPSR_GE) {
2046
        env->GE = (val >> 16) & 0xf;
2047
    }
2048

    
2049
    if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
2050
        if (bad_mode_switch(env, val & CPSR_M)) {
2051
            /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
2052
             * We choose to ignore the attempt and leave the CPSR M field
2053
             * untouched.
2054
             */
2055
            mask &= ~CPSR_M;
2056
        } else {
2057
            switch_mode(env, val & CPSR_M);
2058
        }
2059
    }
2060
    mask &= ~CACHED_CPSR_BITS;
2061
    env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
2062
}
2063

    
2064
/* Sign/zero extend */
2065
uint32_t HELPER(sxtb16)(uint32_t x)
2066
{
2067
    uint32_t res;
2068
    res = (uint16_t)(int8_t)x;
2069
    res |= (uint32_t)(int8_t)(x >> 16) << 16;
2070
    return res;
2071
}
2072

    
2073
uint32_t HELPER(uxtb16)(uint32_t x)
2074
{
2075
    uint32_t res;
2076
    res = (uint16_t)(uint8_t)x;
2077
    res |= (uint32_t)(uint8_t)(x >> 16) << 16;
2078
    return res;
2079
}
2080

    
2081
uint32_t HELPER(clz)(uint32_t x)
2082
{
2083
    return clz32(x);
2084
}
2085

    
2086
int32_t HELPER(sdiv)(int32_t num, int32_t den)
2087
{
2088
    if (den == 0)
2089
      return 0;
2090
    if (num == INT_MIN && den == -1)
2091
      return INT_MIN;
2092
    return num / den;
2093
}
2094

    
2095
uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
2096
{
2097
    if (den == 0)
2098
      return 0;
2099
    return num / den;
2100
}
2101

    
2102
uint32_t HELPER(rbit)(uint32_t x)
2103
{
2104
    x =  ((x & 0xff000000) >> 24)
2105
       | ((x & 0x00ff0000) >> 8)
2106
       | ((x & 0x0000ff00) << 8)
2107
       | ((x & 0x000000ff) << 24);
2108
    x =  ((x & 0xf0f0f0f0) >> 4)
2109
       | ((x & 0x0f0f0f0f) << 4);
2110
    x =  ((x & 0x88888888) >> 3)
2111
       | ((x & 0x44444444) >> 1)
2112
       | ((x & 0x22222222) << 1)
2113
       | ((x & 0x11111111) << 3);
2114
    return x;
2115
}
2116

    
2117
#if defined(CONFIG_USER_ONLY)
2118

    
2119
void arm_cpu_do_interrupt(CPUState *cs)
2120
{
2121
    ARMCPU *cpu = ARM_CPU(cs);
2122
    CPUARMState *env = &cpu->env;
2123

    
2124
    env->exception_index = -1;
2125
}
2126

    
2127
int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
2128
                              int mmu_idx)
2129
{
2130
    if (rw == 2) {
2131
        env->exception_index = EXCP_PREFETCH_ABORT;
2132
        env->cp15.c6_insn = address;
2133
    } else {
2134
        env->exception_index = EXCP_DATA_ABORT;
2135
        env->cp15.c6_data = address;
2136
    }
2137
    return 1;
2138
}
2139

    
2140
/* These should probably raise undefined insn exceptions.  */
2141
void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
2142
{
2143
    cpu_abort(env, "v7m_mrs %d\n", reg);
2144
}
2145

    
2146
uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
2147
{
2148
    cpu_abort(env, "v7m_mrs %d\n", reg);
2149
    return 0;
2150
}
2151

    
2152
void switch_mode(CPUARMState *env, int mode)
2153
{
2154
    if (mode != ARM_CPU_MODE_USR)
2155
        cpu_abort(env, "Tried to switch out of user mode\n");
2156
}
2157

    
2158
void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
2159
{
2160
    cpu_abort(env, "banked r13 write\n");
2161
}
2162

    
2163
uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
2164
{
2165
    cpu_abort(env, "banked r13 read\n");
2166
    return 0;
2167
}
2168

    
2169
#else
2170

    
2171
/* Map CPU modes onto saved register banks.  */
2172
int bank_number(int mode)
2173
{
2174
    switch (mode) {
2175
    case ARM_CPU_MODE_USR:
2176
    case ARM_CPU_MODE_SYS:
2177
        return 0;
2178
    case ARM_CPU_MODE_SVC:
2179
        return 1;
2180
    case ARM_CPU_MODE_ABT:
2181
        return 2;
2182
    case ARM_CPU_MODE_UND:
2183
        return 3;
2184
    case ARM_CPU_MODE_IRQ:
2185
        return 4;
2186
    case ARM_CPU_MODE_FIQ:
2187
        return 5;
2188
    }
2189
    hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode);
2190
}
2191

    
2192
void switch_mode(CPUARMState *env, int mode)
2193
{
2194
    int old_mode;
2195
    int i;
2196

    
2197
    old_mode = env->uncached_cpsr & CPSR_M;
2198
    if (mode == old_mode)
2199
        return;
2200

    
2201
    if (old_mode == ARM_CPU_MODE_FIQ) {
2202
        memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
2203
        memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
2204
    } else if (mode == ARM_CPU_MODE_FIQ) {
2205
        memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
2206
        memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
2207
    }
2208

    
2209
    i = bank_number(old_mode);
2210
    env->banked_r13[i] = env->regs[13];
2211
    env->banked_r14[i] = env->regs[14];
2212
    env->banked_spsr[i] = env->spsr;
2213

    
2214
    i = bank_number(mode);
2215
    env->regs[13] = env->banked_r13[i];
2216
    env->regs[14] = env->banked_r14[i];
2217
    env->spsr = env->banked_spsr[i];
2218
}
2219

    
2220
static void v7m_push(CPUARMState *env, uint32_t val)
2221
{
2222
    env->regs[13] -= 4;
2223
    stl_phys(env->regs[13], val);
2224
}
2225

    
2226
static uint32_t v7m_pop(CPUARMState *env)
2227
{
2228
    uint32_t val;
2229
    val = ldl_phys(env->regs[13]);
2230
    env->regs[13] += 4;
2231
    return val;
2232
}
2233

    
2234
/* Switch to V7M main or process stack pointer.  */
2235
static void switch_v7m_sp(CPUARMState *env, int process)
2236
{
2237
    uint32_t tmp;
2238
    if (env->v7m.current_sp != process) {
2239
        tmp = env->v7m.other_sp;
2240
        env->v7m.other_sp = env->regs[13];
2241
        env->regs[13] = tmp;
2242
        env->v7m.current_sp = process;
2243
    }
2244
}
2245

    
2246
static void do_v7m_exception_exit(CPUARMState *env)
2247
{
2248
    uint32_t type;
2249
    uint32_t xpsr;
2250

    
2251
    type = env->regs[15];
2252
    if (env->v7m.exception != 0)
2253
        armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
2254

    
2255
    /* Switch to the target stack.  */
2256
    switch_v7m_sp(env, (type & 4) != 0);
2257
    /* Pop registers.  */
2258
    env->regs[0] = v7m_pop(env);
2259
    env->regs[1] = v7m_pop(env);
2260
    env->regs[2] = v7m_pop(env);
2261
    env->regs[3] = v7m_pop(env);
2262
    env->regs[12] = v7m_pop(env);
2263
    env->regs[14] = v7m_pop(env);
2264
    env->regs[15] = v7m_pop(env);
2265
    xpsr = v7m_pop(env);
2266
    xpsr_write(env, xpsr, 0xfffffdff);
2267
    /* Undo stack alignment.  */
2268
    if (xpsr & 0x200)
2269
        env->regs[13] |= 4;
2270
    /* ??? The exception return type specifies Thread/Handler mode.  However
2271
       this is also implied by the xPSR value. Not sure what to do
2272
       if there is a mismatch.  */
2273
    /* ??? Likewise for mismatches between the CONTROL register and the stack
2274
       pointer.  */
2275
}
2276

    
2277
/* Exception names for debug logging; note that not all of these
2278
 * precisely correspond to architectural exceptions.
2279
 */
2280
static const char * const excnames[] = {
2281
    [EXCP_UDEF] = "Undefined Instruction",
2282
    [EXCP_SWI] = "SVC",
2283
    [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
2284
    [EXCP_DATA_ABORT] = "Data Abort",
2285
    [EXCP_IRQ] = "IRQ",
2286
    [EXCP_FIQ] = "FIQ",
2287
    [EXCP_BKPT] = "Breakpoint",
2288
    [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
2289
    [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
2290
    [EXCP_STREX] = "QEMU intercept of STREX",
2291
};
2292

    
2293
static inline void arm_log_exception(int idx)
2294
{
2295
    if (qemu_loglevel_mask(CPU_LOG_INT)) {
2296
        const char *exc = NULL;
2297

    
2298
        if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
2299
            exc = excnames[idx];
2300
        }
2301
        if (!exc) {
2302
            exc = "unknown";
2303
        }
2304
        qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
2305
    }
2306
}
2307

    
2308
void arm_v7m_cpu_do_interrupt(CPUState *cs)
2309
{
2310
    ARMCPU *cpu = ARM_CPU(cs);
2311
    CPUARMState *env = &cpu->env;
2312
    uint32_t xpsr = xpsr_read(env);
2313
    uint32_t lr;
2314
    uint32_t addr;
2315

    
2316
    arm_log_exception(env->exception_index);
2317

    
2318
    lr = 0xfffffff1;
2319
    if (env->v7m.current_sp)
2320
        lr |= 4;
2321
    if (env->v7m.exception == 0)
2322
        lr |= 8;
2323

    
2324
    /* For exceptions we just mark as pending on the NVIC, and let that
2325
       handle it.  */
2326
    /* TODO: Need to escalate if the current priority is higher than the
2327
       one we're raising.  */
2328
    switch (env->exception_index) {
2329
    case EXCP_UDEF:
2330
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
2331
        return;
2332
    case EXCP_SWI:
2333
        /* The PC already points to the next instruction.  */
2334
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
2335
        return;
2336
    case EXCP_PREFETCH_ABORT:
2337
    case EXCP_DATA_ABORT:
2338
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
2339
        return;
2340
    case EXCP_BKPT:
2341
        if (semihosting_enabled) {
2342
            int nr;
2343
            nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
2344
            if (nr == 0xab) {
2345
                env->regs[15] += 2;
2346
                env->regs[0] = do_arm_semihosting(env);
2347
                qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
2348
                return;
2349
            }
2350
        }
2351
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
2352
        return;
2353
    case EXCP_IRQ:
2354
        env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
2355
        break;
2356
    case EXCP_EXCEPTION_EXIT:
2357
        do_v7m_exception_exit(env);
2358
        return;
2359
    default:
2360
        cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
2361
        return; /* Never happens.  Keep compiler happy.  */
2362
    }
2363

    
2364
    /* Align stack pointer.  */
2365
    /* ??? Should only do this if Configuration Control Register
2366
       STACKALIGN bit is set.  */
2367
    if (env->regs[13] & 4) {
2368
        env->regs[13] -= 4;
2369
        xpsr |= 0x200;
2370
    }
2371
    /* Switch to the handler mode.  */
2372
    v7m_push(env, xpsr);
2373
    v7m_push(env, env->regs[15]);
2374
    v7m_push(env, env->regs[14]);
2375
    v7m_push(env, env->regs[12]);
2376
    v7m_push(env, env->regs[3]);
2377
    v7m_push(env, env->regs[2]);
2378
    v7m_push(env, env->regs[1]);
2379
    v7m_push(env, env->regs[0]);
2380
    switch_v7m_sp(env, 0);
2381
    /* Clear IT bits */
2382
    env->condexec_bits = 0;
2383
    env->regs[14] = lr;
2384
    addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
2385
    env->regs[15] = addr & 0xfffffffe;
2386
    env->thumb = addr & 1;
2387
}
2388

    
2389
/* Handle a CPU exception.  */
2390
void arm_cpu_do_interrupt(CPUState *cs)
2391
{
2392
    ARMCPU *cpu = ARM_CPU(cs);
2393
    CPUARMState *env = &cpu->env;
2394
    uint32_t addr;
2395
    uint32_t mask;
2396
    int new_mode;
2397
    uint32_t offset;
2398

    
2399
    assert(!IS_M(env));
2400

    
2401
    arm_log_exception(env->exception_index);
2402

    
2403
    /* TODO: Vectored interrupt controller.  */
2404
    switch (env->exception_index) {
2405
    case EXCP_UDEF:
2406
        new_mode = ARM_CPU_MODE_UND;
2407
        addr = 0x04;
2408
        mask = CPSR_I;
2409
        if (env->thumb)
2410
            offset = 2;
2411
        else
2412
            offset = 4;
2413
        break;
2414
    case EXCP_SWI:
2415
        if (semihosting_enabled) {
2416
            /* Check for semihosting interrupt.  */
2417
            if (env->thumb) {
2418
                mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code)
2419
                    & 0xff;
2420
            } else {
2421
                mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code)
2422
                    & 0xffffff;
2423
            }
2424
            /* Only intercept calls from privileged modes, to provide some
2425
               semblance of security.  */
2426
            if (((mask == 0x123456 && !env->thumb)
2427
                    || (mask == 0xab && env->thumb))
2428
                  && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
2429
                env->regs[0] = do_arm_semihosting(env);
2430
                qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
2431
                return;
2432
            }
2433
        }
2434
        new_mode = ARM_CPU_MODE_SVC;
2435
        addr = 0x08;
2436
        mask = CPSR_I;
2437
        /* The PC already points to the next instruction.  */
2438
        offset = 0;
2439
        break;
2440
    case EXCP_BKPT:
2441
        /* See if this is a semihosting syscall.  */
2442
        if (env->thumb && semihosting_enabled) {
2443
            mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
2444
            if (mask == 0xab
2445
                  && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
2446
                env->regs[15] += 2;
2447
                env->regs[0] = do_arm_semihosting(env);
2448
                qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
2449
                return;
2450
            }
2451
        }
2452
        env->cp15.c5_insn = 2;
2453
        /* Fall through to prefetch abort.  */
2454
    case EXCP_PREFETCH_ABORT:
2455
        qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
2456
                      env->cp15.c5_insn, env->cp15.c6_insn);
2457
        new_mode = ARM_CPU_MODE_ABT;
2458
        addr = 0x0c;
2459
        mask = CPSR_A | CPSR_I;
2460
        offset = 4;
2461
        break;
2462
    case EXCP_DATA_ABORT:
2463
        qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
2464
                      env->cp15.c5_data, env->cp15.c6_data);
2465
        new_mode = ARM_CPU_MODE_ABT;
2466
        addr = 0x10;
2467
        mask = CPSR_A | CPSR_I;
2468
        offset = 8;
2469
        break;
2470
    case EXCP_IRQ:
2471
        new_mode = ARM_CPU_MODE_IRQ;
2472
        addr = 0x18;
2473
        /* Disable IRQ and imprecise data aborts.  */
2474
        mask = CPSR_A | CPSR_I;
2475
        offset = 4;
2476
        break;
2477
    case EXCP_FIQ:
2478
        new_mode = ARM_CPU_MODE_FIQ;
2479
        addr = 0x1c;
2480
        /* Disable FIQ, IRQ and imprecise data aborts.  */
2481
        mask = CPSR_A | CPSR_I | CPSR_F;
2482
        offset = 4;
2483
        break;
2484
    default:
2485
        cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
2486
        return; /* Never happens.  Keep compiler happy.  */
2487
    }
2488
    /* High vectors.  */
2489
    if (env->cp15.c1_sys & (1 << 13)) {
2490
        /* when enabled, base address cannot be remapped.  */
2491
        addr += 0xffff0000;
2492
    } else {
2493
        /* ARM v7 architectures provide a vector base address register to remap
2494
         * the interrupt vector table.
2495
         * This register is only followed in non-monitor mode, and has a secure
2496
         * and un-secure copy. Since the cpu is always in a un-secure operation
2497
         * and is never in monitor mode this feature is always active.
2498
         * Note: only bits 31:5 are valid.
2499
         */
2500
        addr += env->cp15.c12_vbar;
2501
    }
2502
    switch_mode (env, new_mode);
2503
    env->spsr = cpsr_read(env);
2504
    /* Clear IT bits.  */
2505
    env->condexec_bits = 0;
2506
    /* Switch to the new mode, and to the correct instruction set.  */
2507
    env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
2508
    env->uncached_cpsr |= mask;
2509
    /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
2510
     * and we should just guard the thumb mode on V4 */
2511
    if (arm_feature(env, ARM_FEATURE_V4T)) {
2512
        env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0;
2513
    }
2514
    env->regs[14] = env->regs[15] + offset;
2515
    env->regs[15] = addr;
2516
    cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
2517
}
2518

    
2519
/* Check section/page access permissions.
2520
   Returns the page protection flags, or zero if the access is not
2521
   permitted.  */
2522
static inline int check_ap(CPUARMState *env, int ap, int domain_prot,
2523
                           int access_type, int is_user)
2524
{
2525
  int prot_ro;
2526

    
2527
  if (domain_prot == 3) {
2528
    return PAGE_READ | PAGE_WRITE;
2529
  }
2530

    
2531
  if (access_type == 1)
2532
      prot_ro = 0;
2533
  else
2534
      prot_ro = PAGE_READ;
2535

    
2536
  switch (ap) {
2537
  case 0:
2538
      if (access_type == 1)
2539
          return 0;
2540
      switch ((env->cp15.c1_sys >> 8) & 3) {
2541
      case 1:
2542
          return is_user ? 0 : PAGE_READ;
2543
      case 2:
2544
          return PAGE_READ;
2545
      default:
2546
          return 0;
2547
      }
2548
  case 1:
2549
      return is_user ? 0 : PAGE_READ | PAGE_WRITE;
2550
  case 2:
2551
      if (is_user)
2552
          return prot_ro;
2553
      else
2554
          return PAGE_READ | PAGE_WRITE;
2555
  case 3:
2556
      return PAGE_READ | PAGE_WRITE;
2557
  case 4: /* Reserved.  */
2558
      return 0;
2559
  case 5:
2560
      return is_user ? 0 : prot_ro;
2561
  case 6:
2562
      return prot_ro;
2563
  case 7:
2564
      if (!arm_feature (env, ARM_FEATURE_V6K))
2565
          return 0;
2566
      return prot_ro;
2567
  default:
2568
      abort();
2569
  }
2570
}
2571

    
2572
static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address)
2573
{
2574
    uint32_t table;
2575

    
2576
    if (address & env->cp15.c2_mask)
2577
        table = env->cp15.c2_base1 & 0xffffc000;
2578
    else
2579
        table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
2580

    
2581
    table |= (address >> 18) & 0x3ffc;
2582
    return table;
2583
}
2584

    
2585
static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type,
2586
                            int is_user, hwaddr *phys_ptr,
2587
                            int *prot, target_ulong *page_size)
2588
{
2589
    int code;
2590
    uint32_t table;
2591
    uint32_t desc;
2592
    int type;
2593
    int ap;
2594
    int domain;
2595
    int domain_prot;
2596
    hwaddr phys_addr;
2597

    
2598
    /* Pagetable walk.  */
2599
    /* Lookup l1 descriptor.  */
2600
    table = get_level1_table_address(env, address);
2601
    desc = ldl_phys(table);
2602
    type = (desc & 3);
2603
    domain = (desc >> 5) & 0x0f;
2604
    domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
2605
    if (type == 0) {
2606
        /* Section translation fault.  */
2607
        code = 5;
2608
        goto do_fault;
2609
    }
2610
    if (domain_prot == 0 || domain_prot == 2) {
2611
        if (type == 2)
2612
            code = 9; /* Section domain fault.  */
2613
        else
2614
            code = 11; /* Page domain fault.  */
2615
        goto do_fault;
2616
    }
2617
    if (type == 2) {
2618
        /* 1Mb section.  */
2619
        phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
2620
        ap = (desc >> 10) & 3;
2621
        code = 13;
2622
        *page_size = 1024 * 1024;
2623
    } else {
2624
        /* Lookup l2 entry.  */
2625
        if (type == 1) {
2626
            /* Coarse pagetable.  */
2627
            table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
2628
        } else {
2629
            /* Fine pagetable.  */
2630
            table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
2631
        }
2632
        desc = ldl_phys(table);
2633
        switch (desc & 3) {
2634
        case 0: /* Page translation fault.  */
2635
            code = 7;
2636
            goto do_fault;
2637
        case 1: /* 64k page.  */
2638
            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
2639
            ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
2640
            *page_size = 0x10000;
2641
            break;
2642
        case 2: /* 4k page.  */
2643
            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
2644
            ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
2645
            *page_size = 0x1000;
2646
            break;
2647
        case 3: /* 1k page.  */
2648
            if (type == 1) {
2649
                if (arm_feature(env, ARM_FEATURE_XSCALE)) {
2650
                    phys_addr = (desc & 0xfffff000) | (address & 0xfff);
2651
                } else {
2652
                    /* Page translation fault.  */
2653
                    code = 7;
2654
                    goto do_fault;
2655
                }
2656
            } else {
2657
                phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
2658
            }
2659
            ap = (desc >> 4) & 3;
2660
            *page_size = 0x400;
2661
            break;
2662
        default:
2663
            /* Never happens, but compiler isn't smart enough to tell.  */
2664
            abort();
2665
        }
2666
        code = 15;
2667
    }
2668
    *prot = check_ap(env, ap, domain_prot, access_type, is_user);
2669
    if (!*prot) {
2670
        /* Access permission fault.  */
2671
        goto do_fault;
2672
    }
2673
    *prot |= PAGE_EXEC;
2674
    *phys_ptr = phys_addr;
2675
    return 0;
2676
do_fault:
2677
    return code | (domain << 4);
2678
}
2679

    
2680
static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type,
2681
                            int is_user, hwaddr *phys_ptr,
2682
                            int *prot, target_ulong *page_size)
2683
{
2684
    int code;
2685
    uint32_t table;
2686
    uint32_t desc;
2687
    uint32_t xn;
2688
    uint32_t pxn = 0;
2689
    int type;
2690
    int ap;
2691
    int domain = 0;
2692
    int domain_prot;
2693
    hwaddr phys_addr;
2694

    
2695
    /* Pagetable walk.  */
2696
    /* Lookup l1 descriptor.  */
2697
    table = get_level1_table_address(env, address);
2698
    desc = ldl_phys(table);
2699
    type = (desc & 3);
2700
    if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
2701
        /* Section translation fault, or attempt to use the encoding
2702
         * which is Reserved on implementations without PXN.
2703
         */
2704
        code = 5;
2705
        goto do_fault;
2706
    }
2707
    if ((type == 1) || !(desc & (1 << 18))) {
2708
        /* Page or Section.  */
2709
        domain = (desc >> 5) & 0x0f;
2710
    }
2711
    domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
2712
    if (domain_prot == 0 || domain_prot == 2) {
2713
        if (type != 1) {
2714
            code = 9; /* Section domain fault.  */
2715
        } else {
2716
            code = 11; /* Page domain fault.  */
2717
        }
2718
        goto do_fault;
2719
    }
2720
    if (type != 1) {
2721
        if (desc & (1 << 18)) {
2722
            /* Supersection.  */
2723
            phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
2724
            *page_size = 0x1000000;
2725
        } else {
2726
            /* Section.  */
2727
            phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
2728
            *page_size = 0x100000;
2729
        }
2730
        ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
2731
        xn = desc & (1 << 4);
2732
        pxn = desc & 1;
2733
        code = 13;
2734
    } else {
2735
        if (arm_feature(env, ARM_FEATURE_PXN)) {
2736
            pxn = (desc >> 2) & 1;
2737
        }
2738
        /* Lookup l2 entry.  */
2739
        table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
2740
        desc = ldl_phys(table);
2741
        ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
2742
        switch (desc & 3) {
2743
        case 0: /* Page translation fault.  */
2744
            code = 7;
2745
            goto do_fault;
2746
        case 1: /* 64k page.  */
2747
            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
2748
            xn = desc & (1 << 15);
2749
            *page_size = 0x10000;
2750
            break;
2751
        case 2: case 3: /* 4k page.  */
2752
            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
2753
            xn = desc & 1;
2754
            *page_size = 0x1000;
2755
            break;
2756
        default:
2757
            /* Never happens, but compiler isn't smart enough to tell.  */
2758
            abort();
2759
        }
2760
        code = 15;
2761
    }
2762
    if (domain_prot == 3) {
2763
        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2764
    } else {
2765
        if (pxn && !is_user) {
2766
            xn = 1;
2767
        }
2768
        if (xn && access_type == 2)
2769
            goto do_fault;
2770

    
2771
        /* The simplified model uses AP[0] as an access control bit.  */
2772
        if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
2773
            /* Access flag fault.  */
2774
            code = (code == 15) ? 6 : 3;
2775
            goto do_fault;
2776
        }
2777
        *prot = check_ap(env, ap, domain_prot, access_type, is_user);
2778
        if (!*prot) {
2779
            /* Access permission fault.  */
2780
            goto do_fault;
2781
        }
2782
        if (!xn) {
2783
            *prot |= PAGE_EXEC;
2784
        }
2785
    }
2786
    *phys_ptr = phys_addr;
2787
    return 0;
2788
do_fault:
2789
    return code | (domain << 4);
2790
}
2791

    
2792
/* Fault type for long-descriptor MMU fault reporting; this corresponds
2793
 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
2794
 */
2795
typedef enum {
2796
    translation_fault = 1,
2797
    access_fault = 2,
2798
    permission_fault = 3,
2799
} MMUFaultType;
2800

    
2801
static int get_phys_addr_lpae(CPUARMState *env, uint32_t address,
2802
                              int access_type, int is_user,
2803
                              hwaddr *phys_ptr, int *prot,
2804
                              target_ulong *page_size_ptr)
2805
{
2806
    /* Read an LPAE long-descriptor translation table. */
2807
    MMUFaultType fault_type = translation_fault;
2808
    uint32_t level = 1;
2809
    uint32_t epd;
2810
    uint32_t tsz;
2811
    uint64_t ttbr;
2812
    int ttbr_select;
2813
    int n;
2814
    hwaddr descaddr;
2815
    uint32_t tableattrs;
2816
    target_ulong page_size;
2817
    uint32_t attrs;
2818

    
2819
    /* Determine whether this address is in the region controlled by
2820
     * TTBR0 or TTBR1 (or if it is in neither region and should fault).
2821
     * This is a Non-secure PL0/1 stage 1 translation, so controlled by
2822
     * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
2823
     */
2824
    uint32_t t0sz = extract32(env->cp15.c2_control, 0, 3);
2825
    uint32_t t1sz = extract32(env->cp15.c2_control, 16, 3);
2826
    if (t0sz && !extract32(address, 32 - t0sz, t0sz)) {
2827
        /* there is a ttbr0 region and we are in it (high bits all zero) */
2828
        ttbr_select = 0;
2829
    } else if (t1sz && !extract32(~address, 32 - t1sz, t1sz)) {
2830
        /* there is a ttbr1 region and we are in it (high bits all one) */
2831
        ttbr_select = 1;
2832
    } else if (!t0sz) {
2833
        /* ttbr0 region is "everything not in the ttbr1 region" */
2834
        ttbr_select = 0;
2835
    } else if (!t1sz) {
2836
        /* ttbr1 region is "everything not in the ttbr0 region" */
2837
        ttbr_select = 1;
2838
    } else {
2839
        /* in the gap between the two regions, this is a Translation fault */
2840
        fault_type = translation_fault;
2841
        goto do_fault;
2842
    }
2843

    
2844
    /* Note that QEMU ignores shareability and cacheability attributes,
2845
     * so we don't need to do anything with the SH, ORGN, IRGN fields
2846
     * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
2847
     * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
2848
     * implement any ASID-like capability so we can ignore it (instead
2849
     * we will always flush the TLB any time the ASID is changed).
2850
     */
2851
    if (ttbr_select == 0) {
2852
        ttbr = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0;
2853
        epd = extract32(env->cp15.c2_control, 7, 1);
2854
        tsz = t0sz;
2855
    } else {
2856
        ttbr = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1;
2857
        epd = extract32(env->cp15.c2_control, 23, 1);
2858
        tsz = t1sz;
2859
    }
2860

    
2861
    if (epd) {
2862
        /* Translation table walk disabled => Translation fault on TLB miss */
2863
        goto do_fault;
2864
    }
2865

    
2866
    /* If the region is small enough we will skip straight to a 2nd level
2867
     * lookup. This affects the number of bits of the address used in
2868
     * combination with the TTBR to find the first descriptor. ('n' here
2869
     * matches the usage in the ARM ARM sB3.6.6, where bits [39..n] are
2870
     * from the TTBR, [n-1..3] from the vaddr, and [2..0] always zero).
2871
     */
2872
    if (tsz > 1) {
2873
        level = 2;
2874
        n = 14 - tsz;
2875
    } else {
2876
        n = 5 - tsz;
2877
    }
2878

    
2879
    /* Clear the vaddr bits which aren't part of the within-region address,
2880
     * so that we don't have to special case things when calculating the
2881
     * first descriptor address.
2882
     */
2883
    address &= (0xffffffffU >> tsz);
2884

    
2885
    /* Now we can extract the actual base address from the TTBR */
2886
    descaddr = extract64(ttbr, 0, 40);
2887
    descaddr &= ~((1ULL << n) - 1);
2888

    
2889
    tableattrs = 0;
2890
    for (;;) {
2891
        uint64_t descriptor;
2892

    
2893
        descaddr |= ((address >> (9 * (4 - level))) & 0xff8);
2894
        descriptor = ldq_phys(descaddr);
2895
        if (!(descriptor & 1) ||
2896
            (!(descriptor & 2) && (level == 3))) {
2897
            /* Invalid, or the Reserved level 3 encoding */
2898
            goto do_fault;
2899
        }
2900
        descaddr = descriptor & 0xfffffff000ULL;
2901

    
2902
        if ((descriptor & 2) && (level < 3)) {
2903
            /* Table entry. The top five bits are attributes which  may
2904
             * propagate down through lower levels of the table (and
2905
             * which are all arranged so that 0 means "no effect", so
2906
             * we can gather them up by ORing in the bits at each level).
2907
             */
2908
            tableattrs |= extract64(descriptor, 59, 5);
2909
            level++;
2910
            continue;
2911
        }
2912
        /* Block entry at level 1 or 2, or page entry at level 3.
2913
         * These are basically the same thing, although the number
2914
         * of bits we pull in from the vaddr varies.
2915
         */
2916
        page_size = (1 << (39 - (9 * level)));
2917
        descaddr |= (address & (page_size - 1));
2918
        /* Extract attributes from the descriptor and merge with table attrs */
2919
        attrs = extract64(descriptor, 2, 10)
2920
            | (extract64(descriptor, 52, 12) << 10);
2921
        attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
2922
        attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
2923
        /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
2924
         * means "force PL1 access only", which means forcing AP[1] to 0.
2925
         */
2926
        if (extract32(tableattrs, 2, 1)) {
2927
            attrs &= ~(1 << 4);
2928
        }
2929
        /* Since we're always in the Non-secure state, NSTable is ignored. */
2930
        break;
2931
    }
2932
    /* Here descaddr is the final physical address, and attributes
2933
     * are all in attrs.
2934
     */
2935
    fault_type = access_fault;
2936
    if ((attrs & (1 << 8)) == 0) {
2937
        /* Access flag */
2938
        goto do_fault;
2939
    }
2940
    fault_type = permission_fault;
2941
    if (is_user && !(attrs & (1 << 4))) {
2942
        /* Unprivileged access not enabled */
2943
        goto do_fault;
2944
    }
2945
    *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2946
    if (attrs & (1 << 12) || (!is_user && (attrs & (1 << 11)))) {
2947
        /* XN or PXN */
2948
        if (access_type == 2) {
2949
            goto do_fault;
2950
        }
2951
        *prot &= ~PAGE_EXEC;
2952
    }
2953
    if (attrs & (1 << 5)) {
2954
        /* Write access forbidden */
2955
        if (access_type == 1) {
2956
            goto do_fault;
2957
        }
2958
        *prot &= ~PAGE_WRITE;
2959
    }
2960

    
2961
    *phys_ptr = descaddr;
2962
    *page_size_ptr = page_size;
2963
    return 0;
2964

    
2965
do_fault:
2966
    /* Long-descriptor format IFSR/DFSR value */
2967
    return (1 << 9) | (fault_type << 2) | level;
2968
}
2969

    
2970
static int get_phys_addr_mpu(CPUARMState *env, uint32_t address,
2971
                             int access_type, int is_user,
2972
                             hwaddr *phys_ptr, int *prot)
2973
{
2974
    int n;
2975
    uint32_t mask;
2976
    uint32_t base;
2977

    
2978
    *phys_ptr = address;
2979
    for (n = 7; n >= 0; n--) {
2980
        base = env->cp15.c6_region[n];
2981
        if ((base & 1) == 0)
2982
            continue;
2983
        mask = 1 << ((base >> 1) & 0x1f);
2984
        /* Keep this shift separate from the above to avoid an
2985
           (undefined) << 32.  */
2986
        mask = (mask << 1) - 1;
2987
        if (((base ^ address) & ~mask) == 0)
2988
            break;
2989
    }
2990
    if (n < 0)
2991
        return 2;
2992

    
2993
    if (access_type == 2) {
2994
        mask = env->cp15.c5_insn;
2995
    } else {
2996
        mask = env->cp15.c5_data;
2997
    }
2998
    mask = (mask >> (n * 4)) & 0xf;
2999
    switch (mask) {
3000
    case 0:
3001
        return 1;
3002
    case 1:
3003
        if (is_user)
3004
          return 1;
3005
        *prot = PAGE_READ | PAGE_WRITE;
3006
        break;
3007
    case 2:
3008
        *prot = PAGE_READ;
3009
        if (!is_user)
3010
            *prot |= PAGE_WRITE;
3011
        break;
3012
    case 3:
3013
        *prot = PAGE_READ | PAGE_WRITE;
3014
        break;
3015
    case 5:
3016
        if (is_user)
3017
            return 1;
3018
        *prot = PAGE_READ;
3019
        break;
3020
    case 6:
3021
        *prot = PAGE_READ;
3022
        break;
3023
    default:
3024
        /* Bad permission.  */
3025
        return 1;
3026
    }
3027
    *prot |= PAGE_EXEC;
3028
    return 0;
3029
}
3030

    
3031
/* get_phys_addr - get the physical address for this virtual address
3032
 *
3033
 * Find the physical address corresponding to the given virtual address,
3034
 * by doing a translation table walk on MMU based systems or using the
3035
 * MPU state on MPU based systems.
3036
 *
3037
 * Returns 0 if the translation was successful. Otherwise, phys_ptr,
3038
 * prot and page_size are not filled in, and the return value provides
3039
 * information on why the translation aborted, in the format of a
3040
 * DFSR/IFSR fault register, with the following caveats:
3041
 *  * we honour the short vs long DFSR format differences.
3042
 *  * the WnR bit is never set (the caller must do this).
3043
 *  * for MPU based systems we don't bother to return a full FSR format
3044
 *    value.
3045
 *
3046
 * @env: CPUARMState
3047
 * @address: virtual address to get physical address for
3048
 * @access_type: 0 for read, 1 for write, 2 for execute
3049
 * @is_user: 0 for privileged access, 1 for user
3050
 * @phys_ptr: set to the physical address corresponding to the virtual address
3051
 * @prot: set to the permissions for the page containing phys_ptr
3052
 * @page_size: set to the size of the page containing phys_ptr
3053
 */
3054
static inline int get_phys_addr(CPUARMState *env, uint32_t address,
3055
                                int access_type, int is_user,
3056
                                hwaddr *phys_ptr, int *prot,
3057
                                target_ulong *page_size)
3058
{
3059
    /* Fast Context Switch Extension.  */
3060
    if (address < 0x02000000)
3061
        address += env->cp15.c13_fcse;
3062

    
3063
    if ((env->cp15.c1_sys & 1) == 0) {
3064
        /* MMU/MPU disabled.  */
3065
        *phys_ptr = address;
3066
        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
3067
        *page_size = TARGET_PAGE_SIZE;
3068
        return 0;
3069
    } else if (arm_feature(env, ARM_FEATURE_MPU)) {
3070
        *page_size = TARGET_PAGE_SIZE;
3071
        return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
3072
                                 prot);
3073
    } else if (extended_addresses_enabled(env)) {
3074
        return get_phys_addr_lpae(env, address, access_type, is_user, phys_ptr,
3075
                                  prot, page_size);
3076
    } else if (env->cp15.c1_sys & (1 << 23)) {
3077
        return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
3078
                                prot, page_size);
3079
    } else {
3080
        return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
3081
                                prot, page_size);
3082
    }
3083
}
3084

    
3085
int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address,
3086
                              int access_type, int mmu_idx)
3087
{
3088
    hwaddr phys_addr;
3089
    target_ulong page_size;
3090
    int prot;
3091
    int ret, is_user;
3092

    
3093
    is_user = mmu_idx == MMU_USER_IDX;
3094
    ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
3095
                        &page_size);
3096
    if (ret == 0) {
3097
        /* Map a single [sub]page.  */
3098
        phys_addr &= ~(hwaddr)0x3ff;
3099
        address &= ~(uint32_t)0x3ff;
3100
        tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size);
3101
        return 0;
3102
    }
3103

    
3104
    if (access_type == 2) {
3105
        env->cp15.c5_insn = ret;
3106
        env->cp15.c6_insn = address;
3107
        env->exception_index = EXCP_PREFETCH_ABORT;
3108
    } else {
3109
        env->cp15.c5_data = ret;
3110
        if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
3111
            env->cp15.c5_data |= (1 << 11);
3112
        env->cp15.c6_data = address;
3113
        env->exception_index = EXCP_DATA_ABORT;
3114
    }
3115
    return 1;
3116
}
3117

    
3118
hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
3119
{
3120
    ARMCPU *cpu = ARM_CPU(cs);
3121
    hwaddr phys_addr;
3122
    target_ulong page_size;
3123
    int prot;
3124
    int ret;
3125

    
3126
    ret = get_phys_addr(&cpu->env, addr, 0, 0, &phys_addr, &prot, &page_size);
3127

    
3128
    if (ret != 0) {
3129
        return -1;
3130
    }
3131

    
3132
    return phys_addr;
3133
}
3134

    
3135
void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
3136
{
3137
    if ((env->uncached_cpsr & CPSR_M) == mode) {
3138
        env->regs[13] = val;
3139
    } else {
3140
        env->banked_r13[bank_number(mode)] = val;
3141
    }
3142
}
3143

    
3144
uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
3145
{
3146
    if ((env->uncached_cpsr & CPSR_M) == mode) {
3147
        return env->regs[13];
3148
    } else {
3149
        return env->banked_r13[bank_number(mode)];
3150
    }
3151
}
3152

    
3153
uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
3154
{
3155
    switch (reg) {
3156
    case 0: /* APSR */
3157
        return xpsr_read(env) & 0xf8000000;
3158
    case 1: /* IAPSR */
3159
        return xpsr_read(env) & 0xf80001ff;
3160
    case 2: /* EAPSR */
3161
        return xpsr_read(env) & 0xff00fc00;
3162
    case 3: /* xPSR */
3163
        return xpsr_read(env) & 0xff00fdff;
3164
    case 5: /* IPSR */
3165
        return xpsr_read(env) & 0x000001ff;
3166
    case 6: /* EPSR */
3167
        return xpsr_read(env) & 0x0700fc00;
3168
    case 7: /* IEPSR */
3169
        return xpsr_read(env) & 0x0700edff;
3170
    case 8: /* MSP */
3171
        return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
3172
    case 9: /* PSP */
3173
        return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
3174
    case 16: /* PRIMASK */
3175
        return (env->uncached_cpsr & CPSR_I) != 0;
3176
    case 17: /* BASEPRI */
3177
    case 18: /* BASEPRI_MAX */
3178
        return env->v7m.basepri;
3179
    case 19: /* FAULTMASK */
3180
        return (env->uncached_cpsr & CPSR_F) != 0;
3181
    case 20: /* CONTROL */
3182
        return env->v7m.control;
3183
    default:
3184
        /* ??? For debugging only.  */
3185
        cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
3186
        return 0;
3187
    }
3188
}
3189

    
3190
void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
3191
{
3192
    switch (reg) {
3193
    case 0: /* APSR */
3194
        xpsr_write(env, val, 0xf8000000);
3195
        break;
3196
    case 1: /* IAPSR */
3197
        xpsr_write(env, val, 0xf8000000);
3198
        break;
3199
    case 2: /* EAPSR */
3200
        xpsr_write(env, val, 0xfe00fc00);
3201
        break;
3202
    case 3: /* xPSR */
3203
        xpsr_write(env, val, 0xfe00fc00);
3204
        break;
3205
    case 5: /* IPSR */
3206
        /* IPSR bits are readonly.  */
3207
        break;
3208
    case 6: /* EPSR */
3209
        xpsr_write(env, val, 0x0600fc00);
3210
        break;
3211
    case 7: /* IEPSR */
3212
        xpsr_write(env, val, 0x0600fc00);
3213
        break;
3214
    case 8: /* MSP */
3215
        if (env->v7m.current_sp)
3216
            env->v7m.other_sp = val;
3217
        else
3218
            env->regs[13] = val;
3219
        break;
3220
    case 9: /* PSP */
3221
        if (env->v7m.current_sp)
3222
            env->regs[13] = val;
3223
        else
3224
            env->v7m.other_sp = val;
3225
        break;
3226
    case 16: /* PRIMASK */
3227
        if (val & 1)
3228
            env->uncached_cpsr |= CPSR_I;
3229
        else
3230
            env->uncached_cpsr &= ~CPSR_I;
3231
        break;
3232
    case 17: /* BASEPRI */
3233
        env->v7m.basepri = val & 0xff;
3234
        break;
3235
    case 18: /* BASEPRI_MAX */
3236
        val &= 0xff;
3237
        if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
3238
            env->v7m.basepri = val;
3239
        break;
3240
    case 19: /* FAULTMASK */
3241
        if (val & 1)
3242
            env->uncached_cpsr |= CPSR_F;
3243
        else
3244
            env->uncached_cpsr &= ~CPSR_F;
3245
        break;
3246
    case 20: /* CONTROL */
3247
        env->v7m.control = val & 3;
3248
        switch_v7m_sp(env, (val & 2) != 0);
3249
        break;
3250
    default:
3251
        /* ??? For debugging only.  */
3252
        cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
3253
        return;
3254
    }
3255
}
3256

    
3257
#endif
3258

    
3259
/* Note that signed overflow is undefined in C.  The following routines are
3260
   careful to use unsigned types where modulo arithmetic is required.
3261
   Failure to do so _will_ break on newer gcc.  */
3262

    
3263
/* Signed saturating arithmetic.  */
3264

    
3265
/* Perform 16-bit signed saturating addition.  */
3266
static inline uint16_t add16_sat(uint16_t a, uint16_t b)
3267
{
3268
    uint16_t res;
3269

    
3270
    res = a + b;
3271
    if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
3272
        if (a & 0x8000)
3273
            res = 0x8000;
3274
        else
3275
            res = 0x7fff;
3276
    }
3277
    return res;
3278
}
3279

    
3280
/* Perform 8-bit signed saturating addition.  */
3281
static inline uint8_t add8_sat(uint8_t a, uint8_t b)
3282
{
3283
    uint8_t res;
3284

    
3285
    res = a + b;
3286
    if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
3287
        if (a & 0x80)
3288
            res = 0x80;
3289
        else
3290
            res = 0x7f;
3291
    }
3292
    return res;
3293
}
3294

    
3295
/* Perform 16-bit signed saturating subtraction.  */
3296
static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
3297
{
3298
    uint16_t res;
3299

    
3300
    res = a - b;
3301
    if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
3302
        if (a & 0x8000)
3303
            res = 0x8000;
3304
        else
3305
            res = 0x7fff;
3306
    }
3307
    return res;
3308
}
3309

    
3310
/* Perform 8-bit signed saturating subtraction.  */
3311
static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
3312
{
3313
    uint8_t res;
3314

    
3315
    res = a - b;
3316
    if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
3317
        if (a & 0x80)
3318
            res = 0x80;
3319
        else
3320
            res = 0x7f;
3321
    }
3322
    return res;
3323
}
3324

    
3325
#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
3326
#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
3327
#define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
3328
#define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
3329
#define PFX q
3330

    
3331
#include "op_addsub.h"
3332

    
3333
/* Unsigned saturating arithmetic.  */
3334
static inline uint16_t add16_usat(uint16_t a, uint16_t b)
3335
{
3336
    uint16_t res;
3337
    res = a + b;
3338
    if (res < a)
3339
        res = 0xffff;
3340
    return res;
3341
}
3342

    
3343
static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
3344
{
3345
    if (a > b)
3346
        return a - b;
3347
    else
3348
        return 0;
3349
}
3350

    
3351
static inline uint8_t add8_usat(uint8_t a, uint8_t b)
3352
{
3353
    uint8_t res;
3354
    res = a + b;
3355
    if (res < a)
3356
        res = 0xff;
3357
    return res;
3358
}
3359

    
3360
static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
3361
{
3362
    if (a > b)
3363
        return a - b;
3364
    else
3365
        return 0;
3366
}
3367

    
3368
#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
3369
#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
3370
#define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
3371
#define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
3372
#define PFX uq
3373

    
3374
#include "op_addsub.h"
3375

    
3376
/* Signed modulo arithmetic.  */
3377
#define SARITH16(a, b, n, op) do { \
3378
    int32_t sum; \
3379
    sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
3380
    RESULT(sum, n, 16); \
3381
    if (sum >= 0) \
3382
        ge |= 3 << (n * 2); \
3383
    } while(0)
3384

    
3385
#define SARITH8(a, b, n, op) do { \
3386
    int32_t sum; \
3387
    sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
3388
    RESULT(sum, n, 8); \
3389
    if (sum >= 0) \
3390
        ge |= 1 << n; \
3391
    } while(0)
3392

    
3393

    
3394
#define ADD16(a, b, n) SARITH16(a, b, n, +)
3395
#define SUB16(a, b, n) SARITH16(a, b, n, -)
3396
#define ADD8(a, b, n)  SARITH8(a, b, n, +)
3397
#define SUB8(a, b, n)  SARITH8(a, b, n, -)
3398
#define PFX s
3399
#define ARITH_GE
3400

    
3401
#include "op_addsub.h"
3402

    
3403
/* Unsigned modulo arithmetic.  */
3404
#define ADD16(a, b, n) do { \
3405
    uint32_t sum; \
3406
    sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
3407
    RESULT(sum, n, 16); \
3408
    if ((sum >> 16) == 1) \
3409
        ge |= 3 << (n * 2); \
3410
    } while(0)
3411

    
3412
#define ADD8(a, b, n) do { \
3413
    uint32_t sum; \
3414
    sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
3415
    RESULT(sum, n, 8); \
3416
    if ((sum >> 8) == 1) \
3417
        ge |= 1 << n; \
3418
    } while(0)
3419

    
3420
#define SUB16(a, b, n) do { \
3421
    uint32_t sum; \
3422
    sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
3423
    RESULT(sum, n, 16); \
3424
    if ((sum >> 16) == 0) \
3425
        ge |= 3 << (n * 2); \
3426
    } while(0)
3427

    
3428
#define SUB8(a, b, n) do { \
3429
    uint32_t sum; \
3430
    sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
3431
    RESULT(sum, n, 8); \
3432
    if ((sum >> 8) == 0) \
3433
        ge |= 1 << n; \
3434
    } while(0)
3435

    
3436
#define PFX u
3437
#define ARITH_GE
3438

    
3439
#include "op_addsub.h"
3440

    
3441
/* Halved signed arithmetic.  */
3442
#define ADD16(a, b, n) \
3443
  RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
3444
#define SUB16(a, b, n) \
3445
  RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
3446
#define ADD8(a, b, n) \
3447
  RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
3448
#define SUB8(a, b, n) \
3449
  RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
3450
#define PFX sh
3451

    
3452
#include "op_addsub.h"
3453

    
3454
/* Halved unsigned arithmetic.  */
3455
#define ADD16(a, b, n) \
3456
  RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
3457
#define SUB16(a, b, n) \
3458
  RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
3459
#define ADD8(a, b, n) \
3460
  RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
3461
#define SUB8(a, b, n) \
3462
  RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
3463
#define PFX uh
3464

    
3465
#include "op_addsub.h"
3466

    
3467
static inline uint8_t do_usad(uint8_t a, uint8_t b)
3468
{
3469
    if (a > b)
3470
        return a - b;
3471
    else
3472
        return b - a;
3473
}
3474

    
3475
/* Unsigned sum of absolute byte differences.  */
3476
uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
3477
{
3478
    uint32_t sum;
3479
    sum = do_usad(a, b);
3480
    sum += do_usad(a >> 8, b >> 8);
3481
    sum += do_usad(a >> 16, b >>16);
3482
    sum += do_usad(a >> 24, b >> 24);
3483
    return sum;
3484
}
3485

    
3486
/* For ARMv6 SEL instruction.  */
3487
uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
3488
{
3489
    uint32_t mask;
3490

    
3491
    mask = 0;
3492
    if (flags & 1)
3493
        mask |= 0xff;
3494
    if (flags & 2)
3495
        mask |= 0xff00;
3496
    if (flags & 4)
3497
        mask |= 0xff0000;
3498
    if (flags & 8)
3499
        mask |= 0xff000000;
3500
    return (a & mask) | (b & ~mask);
3501
}
3502

    
3503
/* VFP support.  We follow the convention used for VFP instructions:
3504
   Single precision routines have a "s" suffix, double precision a
3505
   "d" suffix.  */
3506

    
3507
/* Convert host exception flags to vfp form.  */
3508
static inline int vfp_exceptbits_from_host(int host_bits)
3509
{
3510
    int target_bits = 0;
3511

    
3512
    if (host_bits & float_flag_invalid)
3513
        target_bits |= 1;
3514
    if (host_bits & float_flag_divbyzero)
3515
        target_bits |= 2;
3516
    if (host_bits & float_flag_overflow)
3517
        target_bits |= 4;
3518
    if (host_bits & (float_flag_underflow | float_flag_output_denormal))
3519
        target_bits |= 8;
3520
    if (host_bits & float_flag_inexact)
3521
        target_bits |= 0x10;
3522
    if (host_bits & float_flag_input_denormal)
3523
        target_bits |= 0x80;
3524
    return target_bits;
3525
}
3526

    
3527
uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
3528
{
3529
    int i;
3530
    uint32_t fpscr;
3531

    
3532
    fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
3533
            | (env->vfp.vec_len << 16)
3534
            | (env->vfp.vec_stride << 20);
3535
    i = get_float_exception_flags(&env->vfp.fp_status);
3536
    i |= get_float_exception_flags(&env->vfp.standard_fp_status);
3537
    fpscr |= vfp_exceptbits_from_host(i);
3538
    return fpscr;
3539
}
3540

    
3541
uint32_t vfp_get_fpscr(CPUARMState *env)
3542
{
3543
    return HELPER(vfp_get_fpscr)(env);
3544
}
3545

    
3546
/* Convert vfp exception flags to target form.  */
3547
static inline int vfp_exceptbits_to_host(int target_bits)
3548
{
3549
    int host_bits = 0;
3550

    
3551
    if (target_bits & 1)
3552
        host_bits |= float_flag_invalid;
3553
    if (target_bits & 2)
3554
        host_bits |= float_flag_divbyzero;
3555
    if (target_bits & 4)
3556
        host_bits |= float_flag_overflow;
3557
    if (target_bits & 8)
3558
        host_bits |= float_flag_underflow;
3559
    if (target_bits & 0x10)
3560
        host_bits |= float_flag_inexact;
3561
    if (target_bits & 0x80)
3562
        host_bits |= float_flag_input_denormal;
3563
    return host_bits;
3564
}
3565

    
3566
void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
3567
{
3568
    int i;
3569
    uint32_t changed;
3570

    
3571
    changed = env->vfp.xregs[ARM_VFP_FPSCR];
3572
    env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
3573
    env->vfp.vec_len = (val >> 16) & 7;
3574
    env->vfp.vec_stride = (val >> 20) & 3;
3575

    
3576
    changed ^= val;
3577
    if (changed & (3 << 22)) {
3578
        i = (val >> 22) & 3;
3579
        switch (i) {
3580
        case 0:
3581
            i = float_round_nearest_even;
3582
            break;
3583
        case 1:
3584
            i = float_round_up;
3585
            break;
3586
        case 2:
3587
            i = float_round_down;
3588
            break;
3589
        case 3:
3590
            i = float_round_to_zero;
3591
            break;
3592
        }
3593
        set_float_rounding_mode(i, &env->vfp.fp_status);
3594
    }
3595
    if (changed & (1 << 24)) {
3596
        set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
3597
        set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
3598
    }
3599
    if (changed & (1 << 25))
3600
        set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
3601

    
3602
    i = vfp_exceptbits_to_host(val);
3603
    set_float_exception_flags(i, &env->vfp.fp_status);
3604
    set_float_exception_flags(0, &env->vfp.standard_fp_status);
3605
}
3606

    
3607
void vfp_set_fpscr(CPUARMState *env, uint32_t val)
3608
{
3609
    HELPER(vfp_set_fpscr)(env, val);
3610
}
3611

    
3612
#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
3613

    
3614
#define VFP_BINOP(name) \
3615
float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
3616
{ \
3617
    float_status *fpst = fpstp; \
3618
    return float32_ ## name(a, b, fpst); \
3619
} \
3620
float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
3621
{ \
3622
    float_status *fpst = fpstp; \
3623
    return float64_ ## name(a, b, fpst); \
3624
}
3625
VFP_BINOP(add)
3626
VFP_BINOP(sub)
3627
VFP_BINOP(mul)
3628
VFP_BINOP(div)
3629
#undef VFP_BINOP
3630

    
3631
float32 VFP_HELPER(neg, s)(float32 a)
3632
{
3633
    return float32_chs(a);
3634
}
3635

    
3636
float64 VFP_HELPER(neg, d)(float64 a)
3637
{
3638
    return float64_chs(a);
3639
}
3640

    
3641
float32 VFP_HELPER(abs, s)(float32 a)
3642
{
3643
    return float32_abs(a);
3644
}
3645

    
3646
float64 VFP_HELPER(abs, d)(float64 a)
3647
{
3648
    return float64_abs(a);
3649
}
3650

    
3651
float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
3652
{
3653
    return float32_sqrt(a, &env->vfp.fp_status);
3654
}
3655

    
3656
float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
3657
{
3658
    return float64_sqrt(a, &env->vfp.fp_status);
3659
}
3660

    
3661
/* XXX: check quiet/signaling case */
3662
#define DO_VFP_cmp(p, type) \
3663
void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env)  \
3664
{ \
3665
    uint32_t flags; \
3666
    switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
3667
    case 0: flags = 0x6; break; \
3668
    case -1: flags = 0x8; break; \
3669
    case 1: flags = 0x2; break; \
3670
    default: case 2: flags = 0x3; break; \
3671
    } \
3672
    env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
3673
        | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
3674
} \
3675
void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
3676
{ \
3677
    uint32_t flags; \
3678
    switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
3679
    case 0: flags = 0x6; break; \
3680
    case -1: flags = 0x8; break; \
3681
    case 1: flags = 0x2; break; \
3682
    default: case 2: flags = 0x3; break; \
3683
    } \
3684
    env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
3685
        | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
3686
}
3687
DO_VFP_cmp(s, float32)
3688
DO_VFP_cmp(d, float64)
3689
#undef DO_VFP_cmp
3690

    
3691
/* Integer to float and float to integer conversions */
3692

    
3693
#define CONV_ITOF(name, fsz, sign) \
3694
    float##fsz HELPER(name)(uint32_t x, void *fpstp) \
3695
{ \
3696
    float_status *fpst = fpstp; \
3697
    return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
3698
}
3699

    
3700
#define CONV_FTOI(name, fsz, sign, round) \
3701
uint32_t HELPER(name)(float##fsz x, void *fpstp) \
3702
{ \
3703
    float_status *fpst = fpstp; \
3704
    if (float##fsz##_is_any_nan(x)) { \
3705
        float_raise(float_flag_invalid, fpst); \
3706
        return 0; \
3707
    } \
3708
    return float##fsz##_to_##sign##int32##round(x, fpst); \
3709
}
3710

    
3711
#define FLOAT_CONVS(name, p, fsz, sign) \
3712
CONV_ITOF(vfp_##name##to##p, fsz, sign) \
3713
CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
3714
CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
3715

    
3716
FLOAT_CONVS(si, s, 32, )
3717
FLOAT_CONVS(si, d, 64, )
3718
FLOAT_CONVS(ui, s, 32, u)
3719
FLOAT_CONVS(ui, d, 64, u)
3720

    
3721
#undef CONV_ITOF
3722
#undef CONV_FTOI
3723
#undef FLOAT_CONVS
3724

    
3725
/* floating point conversion */
3726
float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
3727
{
3728
    float64 r = float32_to_float64(x, &env->vfp.fp_status);
3729
    /* ARM requires that S<->D conversion of any kind of NaN generates
3730
     * a quiet NaN by forcing the most significant frac bit to 1.
3731
     */
3732
    return float64_maybe_silence_nan(r);
3733
}
3734

    
3735
float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
3736
{
3737
    float32 r =  float64_to_float32(x, &env->vfp.fp_status);
3738
    /* ARM requires that S<->D conversion of any kind of NaN generates
3739
     * a quiet NaN by forcing the most significant frac bit to 1.
3740
     */
3741
    return float32_maybe_silence_nan(r);
3742
}
3743

    
3744
/* VFP3 fixed point conversion.  */
3745
#define VFP_CONV_FIX(name, p, fsz, itype, sign) \
3746
float##fsz HELPER(vfp_##name##to##p)(uint##fsz##_t  x, uint32_t shift, \
3747
                                    void *fpstp) \
3748
{ \
3749
    float_status *fpst = fpstp; \
3750
    float##fsz tmp; \
3751
    tmp = sign##int32_to_##float##fsz((itype##_t)x, fpst); \
3752
    return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
3753
} \
3754
uint##fsz##_t HELPER(vfp_to##name##p)(float##fsz x, uint32_t shift, \
3755
                                       void *fpstp) \
3756
{ \
3757
    float_status *fpst = fpstp; \
3758
    float##fsz tmp; \
3759
    if (float##fsz##_is_any_nan(x)) { \
3760
        float_raise(float_flag_invalid, fpst); \
3761
        return 0; \
3762
    } \
3763
    tmp = float##fsz##_scalbn(x, shift, fpst); \
3764
    return float##fsz##_to_##itype##_round_to_zero(tmp, fpst); \
3765
}
3766

    
3767
VFP_CONV_FIX(sh, d, 64, int16, )
3768
VFP_CONV_FIX(sl, d, 64, int32, )
3769
VFP_CONV_FIX(uh, d, 64, uint16, u)
3770
VFP_CONV_FIX(ul, d, 64, uint32, u)
3771
VFP_CONV_FIX(sh, s, 32, int16, )
3772
VFP_CONV_FIX(sl, s, 32, int32, )
3773
VFP_CONV_FIX(uh, s, 32, uint16, u)
3774
VFP_CONV_FIX(ul, s, 32, uint32, u)
3775
#undef VFP_CONV_FIX
3776

    
3777
/* Half precision conversions.  */
3778
static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
3779
{
3780
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
3781
    float32 r = float16_to_float32(make_float16(a), ieee, s);
3782
    if (ieee) {
3783
        return float32_maybe_silence_nan(r);
3784
    }
3785
    return r;
3786
}
3787

    
3788
static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
3789
{
3790
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
3791
    float16 r = float32_to_float16(a, ieee, s);
3792
    if (ieee) {
3793
        r = float16_maybe_silence_nan(r);
3794
    }
3795
    return float16_val(r);
3796
}
3797

    
3798
float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
3799
{
3800
    return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
3801
}
3802

    
3803
uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
3804
{
3805
    return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
3806
}
3807

    
3808
float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
3809
{
3810
    return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
3811
}
3812

    
3813
uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
3814
{
3815
    return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
3816
}
3817

    
3818
#define float32_two make_float32(0x40000000)
3819
#define float32_three make_float32(0x40400000)
3820
#define float32_one_point_five make_float32(0x3fc00000)
3821

    
3822
float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
3823
{
3824
    float_status *s = &env->vfp.standard_fp_status;
3825
    if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
3826
        (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
3827
        if (!(float32_is_zero(a) || float32_is_zero(b))) {
3828
            float_raise(float_flag_input_denormal, s);
3829
        }
3830
        return float32_two;
3831
    }
3832
    return float32_sub(float32_two, float32_mul(a, b, s), s);
3833
}
3834

    
3835
float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
3836
{
3837
    float_status *s = &env->vfp.standard_fp_status;
3838
    float32 product;
3839
    if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
3840
        (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
3841
        if (!(float32_is_zero(a) || float32_is_zero(b))) {
3842
            float_raise(float_flag_input_denormal, s);
3843
        }
3844
        return float32_one_point_five;
3845
    }
3846
    product = float32_mul(a, b, s);
3847
    return float32_div(float32_sub(float32_three, product, s), float32_two, s);
3848
}
3849

    
3850
/* NEON helpers.  */
3851

    
3852
/* Constants 256 and 512 are used in some helpers; we avoid relying on
3853
 * int->float conversions at run-time.  */
3854
#define float64_256 make_float64(0x4070000000000000LL)
3855
#define float64_512 make_float64(0x4080000000000000LL)
3856

    
3857
/* The algorithm that must be used to calculate the estimate
3858
 * is specified by the ARM ARM.
3859
 */
3860
static float64 recip_estimate(float64 a, CPUARMState *env)
3861
{
3862
    /* These calculations mustn't set any fp exception flags,
3863
     * so we use a local copy of the fp_status.
3864
     */
3865
    float_status dummy_status = env->vfp.standard_fp_status;
3866
    float_status *s = &dummy_status;
3867
    /* q = (int)(a * 512.0) */
3868
    float64 q = float64_mul(float64_512, a, s);
3869
    int64_t q_int = float64_to_int64_round_to_zero(q, s);
3870

    
3871
    /* r = 1.0 / (((double)q + 0.5) / 512.0) */
3872
    q = int64_to_float64(q_int, s);
3873
    q = float64_add(q, float64_half, s);
3874
    q = float64_div(q, float64_512, s);
3875
    q = float64_div(float64_one, q, s);
3876

    
3877
    /* s = (int)(256.0 * r + 0.5) */
3878
    q = float64_mul(q, float64_256, s);
3879
    q = float64_add(q, float64_half, s);
3880
    q_int = float64_to_int64_round_to_zero(q, s);
3881

    
3882
    /* return (double)s / 256.0 */
3883
    return float64_div(int64_to_float64(q_int, s), float64_256, s);
3884
}
3885

    
3886
float32 HELPER(recpe_f32)(float32 a, CPUARMState *env)
3887
{
3888
    float_status *s = &env->vfp.standard_fp_status;
3889
    float64 f64;
3890
    uint32_t val32 = float32_val(a);
3891

    
3892
    int result_exp;
3893
    int a_exp = (val32  & 0x7f800000) >> 23;
3894
    int sign = val32 & 0x80000000;
3895

    
3896
    if (float32_is_any_nan(a)) {
3897
        if (float32_is_signaling_nan(a)) {
3898
            float_raise(float_flag_invalid, s);
3899
        }
3900
        return float32_default_nan;
3901
    } else if (float32_is_infinity(a)) {
3902
        return float32_set_sign(float32_zero, float32_is_neg(a));
3903
    } else if (float32_is_zero_or_denormal(a)) {
3904
        if (!float32_is_zero(a)) {
3905
            float_raise(float_flag_input_denormal, s);
3906
        }
3907
        float_raise(float_flag_divbyzero, s);
3908
        return float32_set_sign(float32_infinity, float32_is_neg(a));
3909
    } else if (a_exp >= 253) {
3910
        float_raise(float_flag_underflow, s);
3911
        return float32_set_sign(float32_zero, float32_is_neg(a));
3912
    }
3913

    
3914
    f64 = make_float64((0x3feULL << 52)
3915
                       | ((int64_t)(val32 & 0x7fffff) << 29));
3916

    
3917
    result_exp = 253 - a_exp;
3918

    
3919
    f64 = recip_estimate(f64, env);
3920

    
3921
    val32 = sign
3922
        | ((result_exp & 0xff) << 23)
3923
        | ((float64_val(f64) >> 29) & 0x7fffff);
3924
    return make_float32(val32);
3925
}
3926

    
3927
/* The algorithm that must be used to calculate the estimate
3928
 * is specified by the ARM ARM.
3929
 */
3930
static float64 recip_sqrt_estimate(float64 a, CPUARMState *env)
3931
{
3932
    /* These calculations mustn't set any fp exception flags,
3933
     * so we use a local copy of the fp_status.
3934
     */
3935
    float_status dummy_status = env->vfp.standard_fp_status;
3936
    float_status *s = &dummy_status;
3937
    float64 q;
3938
    int64_t q_int;
3939

    
3940
    if (float64_lt(a, float64_half, s)) {
3941
        /* range 0.25 <= a < 0.5 */
3942

    
3943
        /* a in units of 1/512 rounded down */
3944
        /* q0 = (int)(a * 512.0);  */
3945
        q = float64_mul(float64_512, a, s);
3946
        q_int = float64_to_int64_round_to_zero(q, s);
3947

    
3948
        /* reciprocal root r */
3949
        /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0);  */
3950
        q = int64_to_float64(q_int, s);
3951
        q = float64_add(q, float64_half, s);
3952
        q = float64_div(q, float64_512, s);
3953
        q = float64_sqrt(q, s);
3954
        q = float64_div(float64_one, q, s);
3955
    } else {
3956
        /* range 0.5 <= a < 1.0 */
3957

    
3958
        /* a in units of 1/256 rounded down */
3959
        /* q1 = (int)(a * 256.0); */
3960
        q = float64_mul(float64_256, a, s);
3961
        int64_t q_int = float64_to_int64_round_to_zero(q, s);
3962

    
3963
        /* reciprocal root r */
3964
        /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
3965
        q = int64_to_float64(q_int, s);
3966
        q = float64_add(q, float64_half, s);
3967
        q = float64_div(q, float64_256, s);
3968
        q = float64_sqrt(q, s);
3969
        q = float64_div(float64_one, q, s);
3970
    }
3971
    /* r in units of 1/256 rounded to nearest */
3972
    /* s = (int)(256.0 * r + 0.5); */
3973

    
3974
    q = float64_mul(q, float64_256,s );
3975
    q = float64_add(q, float64_half, s);
3976
    q_int = float64_to_int64_round_to_zero(q, s);
3977

    
3978
    /* return (double)s / 256.0;*/
3979
    return float64_div(int64_to_float64(q_int, s), float64_256, s);
3980
}
3981

    
3982
float32 HELPER(rsqrte_f32)(float32 a, CPUARMState *env)
3983
{
3984
    float_status *s = &env->vfp.standard_fp_status;
3985
    int result_exp;
3986
    float64 f64;
3987
    uint32_t val;
3988
    uint64_t val64;
3989

    
3990
    val = float32_val(a);
3991

    
3992
    if (float32_is_any_nan(a)) {
3993
        if (float32_is_signaling_nan(a)) {
3994
            float_raise(float_flag_invalid, s);
3995
        }
3996
        return float32_default_nan;
3997
    } else if (float32_is_zero_or_denormal(a)) {
3998
        if (!float32_is_zero(a)) {
3999
            float_raise(float_flag_input_denormal, s);
4000
        }
4001
        float_raise(float_flag_divbyzero, s);
4002
        return float32_set_sign(float32_infinity, float32_is_neg(a));
4003
    } else if (float32_is_neg(a)) {
4004
        float_raise(float_flag_invalid, s);
4005
        return float32_default_nan;
4006
    } else if (float32_is_infinity(a)) {
4007
        return float32_zero;
4008
    }
4009

    
4010
    /* Normalize to a double-precision value between 0.25 and 1.0,
4011
     * preserving the parity of the exponent.  */
4012
    if ((val & 0x800000) == 0) {
4013
        f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
4014
                           | (0x3feULL << 52)
4015
                           | ((uint64_t)(val & 0x7fffff) << 29));
4016
    } else {
4017
        f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
4018
                           | (0x3fdULL << 52)
4019
                           | ((uint64_t)(val & 0x7fffff) << 29));
4020
    }
4021

    
4022
    result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2;
4023

    
4024
    f64 = recip_sqrt_estimate(f64, env);
4025

    
4026
    val64 = float64_val(f64);
4027

    
4028
    val = ((result_exp & 0xff) << 23)
4029
        | ((val64 >> 29)  & 0x7fffff);
4030
    return make_float32(val);
4031
}
4032

    
4033
uint32_t HELPER(recpe_u32)(uint32_t a, CPUARMState *env)
4034
{
4035
    float64 f64;
4036

    
4037
    if ((a & 0x80000000) == 0) {
4038
        return 0xffffffff;
4039
    }
4040

    
4041
    f64 = make_float64((0x3feULL << 52)
4042
                       | ((int64_t)(a & 0x7fffffff) << 21));
4043

    
4044
    f64 = recip_estimate (f64, env);
4045

    
4046
    return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
4047
}
4048

    
4049
uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUARMState *env)
4050
{
4051
    float64 f64;
4052

    
4053
    if ((a & 0xc0000000) == 0) {
4054
        return 0xffffffff;
4055
    }
4056

    
4057
    if (a & 0x80000000) {
4058
        f64 = make_float64((0x3feULL << 52)
4059
                           | ((uint64_t)(a & 0x7fffffff) << 21));
4060
    } else { /* bits 31-30 == '01' */
4061
        f64 = make_float64((0x3fdULL << 52)
4062
                           | ((uint64_t)(a & 0x3fffffff) << 22));
4063
    }
4064

    
4065
    f64 = recip_sqrt_estimate(f64, env);
4066

    
4067
    return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
4068
}
4069

    
4070
/* VFPv4 fused multiply-accumulate */
4071
float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
4072
{
4073
    float_status *fpst = fpstp;
4074
    return float32_muladd(a, b, c, 0, fpst);
4075
}
4076

    
4077
float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
4078
{
4079
    float_status *fpst = fpstp;
4080
    return float64_muladd(a, b, c, 0, fpst);
4081
}