Statistics
| Branch: | Revision:

root / cpu-all.h @ cf67c6ba

History | View | Annotate | Download (25 kB)

1
/*
2
 * defines common to all virtual CPUs
3
 *
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18
 */
19
#ifndef CPU_ALL_H
20
#define CPU_ALL_H
21

    
22
#include "qemu-common.h"
23
#include "cpu-common.h"
24

    
25
/* some important defines:
26
 *
27
 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
28
 * memory accesses.
29
 *
30
 * HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and
31
 * otherwise little endian.
32
 *
33
 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
34
 *
35
 * TARGET_WORDS_BIGENDIAN : same for target cpu
36
 */
37

    
38
#include "softfloat.h"
39

    
40
#if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
41
#define BSWAP_NEEDED
42
#endif
43

    
44
#ifdef BSWAP_NEEDED
45

    
46
static inline uint16_t tswap16(uint16_t s)
47
{
48
    return bswap16(s);
49
}
50

    
51
static inline uint32_t tswap32(uint32_t s)
52
{
53
    return bswap32(s);
54
}
55

    
56
static inline uint64_t tswap64(uint64_t s)
57
{
58
    return bswap64(s);
59
}
60

    
61
static inline void tswap16s(uint16_t *s)
62
{
63
    *s = bswap16(*s);
64
}
65

    
66
static inline void tswap32s(uint32_t *s)
67
{
68
    *s = bswap32(*s);
69
}
70

    
71
static inline void tswap64s(uint64_t *s)
72
{
73
    *s = bswap64(*s);
74
}
75

    
76
#else
77

    
78
static inline uint16_t tswap16(uint16_t s)
79
{
80
    return s;
81
}
82

    
83
static inline uint32_t tswap32(uint32_t s)
84
{
85
    return s;
86
}
87

    
88
static inline uint64_t tswap64(uint64_t s)
89
{
90
    return s;
91
}
92

    
93
static inline void tswap16s(uint16_t *s)
94
{
95
}
96

    
97
static inline void tswap32s(uint32_t *s)
98
{
99
}
100

    
101
static inline void tswap64s(uint64_t *s)
102
{
103
}
104

    
105
#endif
106

    
107
#if TARGET_LONG_SIZE == 4
108
#define tswapl(s) tswap32(s)
109
#define tswapls(s) tswap32s((uint32_t *)(s))
110
#define bswaptls(s) bswap32s(s)
111
#else
112
#define tswapl(s) tswap64(s)
113
#define tswapls(s) tswap64s((uint64_t *)(s))
114
#define bswaptls(s) bswap64s(s)
115
#endif
116

    
117
typedef union {
118
    float32 f;
119
    uint32_t l;
120
} CPU_FloatU;
121

    
122
/* NOTE: arm FPA is horrible as double 32 bit words are stored in big
123
   endian ! */
124
typedef union {
125
    float64 d;
126
#if defined(HOST_WORDS_BIGENDIAN)
127
    struct {
128
        uint32_t upper;
129
        uint32_t lower;
130
    } l;
131
#else
132
    struct {
133
        uint32_t lower;
134
        uint32_t upper;
135
    } l;
136
#endif
137
    uint64_t ll;
138
} CPU_DoubleU;
139

    
140
#if defined(FLOATX80)
141
typedef union {
142
     floatx80 d;
143
     struct {
144
         uint64_t lower;
145
         uint16_t upper;
146
     } l;
147
} CPU_LDoubleU;
148
#endif
149

    
150
typedef union {
151
    float128 q;
152
#if defined(HOST_WORDS_BIGENDIAN)
153
    struct {
154
        uint32_t upmost;
155
        uint32_t upper;
156
        uint32_t lower;
157
        uint32_t lowest;
158
    } l;
159
    struct {
160
        uint64_t upper;
161
        uint64_t lower;
162
    } ll;
163
#else
164
    struct {
165
        uint32_t lowest;
166
        uint32_t lower;
167
        uint32_t upper;
168
        uint32_t upmost;
169
    } l;
170
    struct {
171
        uint64_t lower;
172
        uint64_t upper;
173
    } ll;
174
#endif
175
} CPU_QuadU;
176

    
177
/* CPU memory access without any memory or io remapping */
178

    
179
/*
180
 * the generic syntax for the memory accesses is:
181
 *
182
 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
183
 *
184
 * store: st{type}{size}{endian}_{access_type}(ptr, val)
185
 *
186
 * type is:
187
 * (empty): integer access
188
 *   f    : float access
189
 *
190
 * sign is:
191
 * (empty): for floats or 32 bit size
192
 *   u    : unsigned
193
 *   s    : signed
194
 *
195
 * size is:
196
 *   b: 8 bits
197
 *   w: 16 bits
198
 *   l: 32 bits
199
 *   q: 64 bits
200
 *
201
 * endian is:
202
 * (empty): target cpu endianness or 8 bit access
203
 *   r    : reversed target cpu endianness (not implemented yet)
204
 *   be   : big endian (not implemented yet)
205
 *   le   : little endian (not implemented yet)
206
 *
207
 * access_type is:
208
 *   raw    : host memory access
209
 *   user   : user mode access using soft MMU
210
 *   kernel : kernel mode access using soft MMU
211
 */
212
static inline int ldub_p(const void *ptr)
213
{
214
    return *(uint8_t *)ptr;
215
}
216

    
217
static inline int ldsb_p(const void *ptr)
218
{
219
    return *(int8_t *)ptr;
220
}
221

    
222
static inline void stb_p(void *ptr, int v)
223
{
224
    *(uint8_t *)ptr = v;
225
}
226

    
227
/* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
228
   kernel handles unaligned load/stores may give better results, but
229
   it is a system wide setting : bad */
230
#if defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
231

    
232
/* conservative code for little endian unaligned accesses */
233
static inline int lduw_le_p(const void *ptr)
234
{
235
#ifdef _ARCH_PPC
236
    int val;
237
    __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
238
    return val;
239
#else
240
    const uint8_t *p = ptr;
241
    return p[0] | (p[1] << 8);
242
#endif
243
}
244

    
245
static inline int ldsw_le_p(const void *ptr)
246
{
247
#ifdef _ARCH_PPC
248
    int val;
249
    __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
250
    return (int16_t)val;
251
#else
252
    const uint8_t *p = ptr;
253
    return (int16_t)(p[0] | (p[1] << 8));
254
#endif
255
}
256

    
257
static inline int ldl_le_p(const void *ptr)
258
{
259
#ifdef _ARCH_PPC
260
    int val;
261
    __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
262
    return val;
263
#else
264
    const uint8_t *p = ptr;
265
    return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
266
#endif
267
}
268

    
269
static inline uint64_t ldq_le_p(const void *ptr)
270
{
271
    const uint8_t *p = ptr;
272
    uint32_t v1, v2;
273
    v1 = ldl_le_p(p);
274
    v2 = ldl_le_p(p + 4);
275
    return v1 | ((uint64_t)v2 << 32);
276
}
277

    
278
static inline void stw_le_p(void *ptr, int v)
279
{
280
#ifdef _ARCH_PPC
281
    __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
282
#else
283
    uint8_t *p = ptr;
284
    p[0] = v;
285
    p[1] = v >> 8;
286
#endif
287
}
288

    
289
static inline void stl_le_p(void *ptr, int v)
290
{
291
#ifdef _ARCH_PPC
292
    __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
293
#else
294
    uint8_t *p = ptr;
295
    p[0] = v;
296
    p[1] = v >> 8;
297
    p[2] = v >> 16;
298
    p[3] = v >> 24;
299
#endif
300
}
301

    
302
static inline void stq_le_p(void *ptr, uint64_t v)
303
{
304
    uint8_t *p = ptr;
305
    stl_le_p(p, (uint32_t)v);
306
    stl_le_p(p + 4, v >> 32);
307
}
308

    
309
/* float access */
310

    
311
static inline float32 ldfl_le_p(const void *ptr)
312
{
313
    union {
314
        float32 f;
315
        uint32_t i;
316
    } u;
317
    u.i = ldl_le_p(ptr);
318
    return u.f;
319
}
320

    
321
static inline void stfl_le_p(void *ptr, float32 v)
322
{
323
    union {
324
        float32 f;
325
        uint32_t i;
326
    } u;
327
    u.f = v;
328
    stl_le_p(ptr, u.i);
329
}
330

    
331
static inline float64 ldfq_le_p(const void *ptr)
332
{
333
    CPU_DoubleU u;
334
    u.l.lower = ldl_le_p(ptr);
335
    u.l.upper = ldl_le_p(ptr + 4);
336
    return u.d;
337
}
338

    
339
static inline void stfq_le_p(void *ptr, float64 v)
340
{
341
    CPU_DoubleU u;
342
    u.d = v;
343
    stl_le_p(ptr, u.l.lower);
344
    stl_le_p(ptr + 4, u.l.upper);
345
}
346

    
347
#else
348

    
349
static inline int lduw_le_p(const void *ptr)
350
{
351
    return *(uint16_t *)ptr;
352
}
353

    
354
static inline int ldsw_le_p(const void *ptr)
355
{
356
    return *(int16_t *)ptr;
357
}
358

    
359
static inline int ldl_le_p(const void *ptr)
360
{
361
    return *(uint32_t *)ptr;
362
}
363

    
364
static inline uint64_t ldq_le_p(const void *ptr)
365
{
366
    return *(uint64_t *)ptr;
367
}
368

    
369
static inline void stw_le_p(void *ptr, int v)
370
{
371
    *(uint16_t *)ptr = v;
372
}
373

    
374
static inline void stl_le_p(void *ptr, int v)
375
{
376
    *(uint32_t *)ptr = v;
377
}
378

    
379
static inline void stq_le_p(void *ptr, uint64_t v)
380
{
381
    *(uint64_t *)ptr = v;
382
}
383

    
384
/* float access */
385

    
386
static inline float32 ldfl_le_p(const void *ptr)
387
{
388
    return *(float32 *)ptr;
389
}
390

    
391
static inline float64 ldfq_le_p(const void *ptr)
392
{
393
    return *(float64 *)ptr;
394
}
395

    
396
static inline void stfl_le_p(void *ptr, float32 v)
397
{
398
    *(float32 *)ptr = v;
399
}
400

    
401
static inline void stfq_le_p(void *ptr, float64 v)
402
{
403
    *(float64 *)ptr = v;
404
}
405
#endif
406

    
407
#if !defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
408

    
409
static inline int lduw_be_p(const void *ptr)
410
{
411
#if defined(__i386__)
412
    int val;
413
    asm volatile ("movzwl %1, %0\n"
414
                  "xchgb %b0, %h0\n"
415
                  : "=q" (val)
416
                  : "m" (*(uint16_t *)ptr));
417
    return val;
418
#else
419
    const uint8_t *b = ptr;
420
    return ((b[0] << 8) | b[1]);
421
#endif
422
}
423

    
424
static inline int ldsw_be_p(const void *ptr)
425
{
426
#if defined(__i386__)
427
    int val;
428
    asm volatile ("movzwl %1, %0\n"
429
                  "xchgb %b0, %h0\n"
430
                  : "=q" (val)
431
                  : "m" (*(uint16_t *)ptr));
432
    return (int16_t)val;
433
#else
434
    const uint8_t *b = ptr;
435
    return (int16_t)((b[0] << 8) | b[1]);
436
#endif
437
}
438

    
439
static inline int ldl_be_p(const void *ptr)
440
{
441
#if defined(__i386__) || defined(__x86_64__)
442
    int val;
443
    asm volatile ("movl %1, %0\n"
444
                  "bswap %0\n"
445
                  : "=r" (val)
446
                  : "m" (*(uint32_t *)ptr));
447
    return val;
448
#else
449
    const uint8_t *b = ptr;
450
    return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
451
#endif
452
}
453

    
454
static inline uint64_t ldq_be_p(const void *ptr)
455
{
456
    uint32_t a,b;
457
    a = ldl_be_p(ptr);
458
    b = ldl_be_p((uint8_t *)ptr + 4);
459
    return (((uint64_t)a<<32)|b);
460
}
461

    
462
static inline void stw_be_p(void *ptr, int v)
463
{
464
#if defined(__i386__)
465
    asm volatile ("xchgb %b0, %h0\n"
466
                  "movw %w0, %1\n"
467
                  : "=q" (v)
468
                  : "m" (*(uint16_t *)ptr), "0" (v));
469
#else
470
    uint8_t *d = (uint8_t *) ptr;
471
    d[0] = v >> 8;
472
    d[1] = v;
473
#endif
474
}
475

    
476
static inline void stl_be_p(void *ptr, int v)
477
{
478
#if defined(__i386__) || defined(__x86_64__)
479
    asm volatile ("bswap %0\n"
480
                  "movl %0, %1\n"
481
                  : "=r" (v)
482
                  : "m" (*(uint32_t *)ptr), "0" (v));
483
#else
484
    uint8_t *d = (uint8_t *) ptr;
485
    d[0] = v >> 24;
486
    d[1] = v >> 16;
487
    d[2] = v >> 8;
488
    d[3] = v;
489
#endif
490
}
491

    
492
static inline void stq_be_p(void *ptr, uint64_t v)
493
{
494
    stl_be_p(ptr, v >> 32);
495
    stl_be_p((uint8_t *)ptr + 4, v);
496
}
497

    
498
/* float access */
499

    
500
static inline float32 ldfl_be_p(const void *ptr)
501
{
502
    union {
503
        float32 f;
504
        uint32_t i;
505
    } u;
506
    u.i = ldl_be_p(ptr);
507
    return u.f;
508
}
509

    
510
static inline void stfl_be_p(void *ptr, float32 v)
511
{
512
    union {
513
        float32 f;
514
        uint32_t i;
515
    } u;
516
    u.f = v;
517
    stl_be_p(ptr, u.i);
518
}
519

    
520
static inline float64 ldfq_be_p(const void *ptr)
521
{
522
    CPU_DoubleU u;
523
    u.l.upper = ldl_be_p(ptr);
524
    u.l.lower = ldl_be_p((uint8_t *)ptr + 4);
525
    return u.d;
526
}
527

    
528
static inline void stfq_be_p(void *ptr, float64 v)
529
{
530
    CPU_DoubleU u;
531
    u.d = v;
532
    stl_be_p(ptr, u.l.upper);
533
    stl_be_p((uint8_t *)ptr + 4, u.l.lower);
534
}
535

    
536
#else
537

    
538
static inline int lduw_be_p(const void *ptr)
539
{
540
    return *(uint16_t *)ptr;
541
}
542

    
543
static inline int ldsw_be_p(const void *ptr)
544
{
545
    return *(int16_t *)ptr;
546
}
547

    
548
static inline int ldl_be_p(const void *ptr)
549
{
550
    return *(uint32_t *)ptr;
551
}
552

    
553
static inline uint64_t ldq_be_p(const void *ptr)
554
{
555
    return *(uint64_t *)ptr;
556
}
557

    
558
static inline void stw_be_p(void *ptr, int v)
559
{
560
    *(uint16_t *)ptr = v;
561
}
562

    
563
static inline void stl_be_p(void *ptr, int v)
564
{
565
    *(uint32_t *)ptr = v;
566
}
567

    
568
static inline void stq_be_p(void *ptr, uint64_t v)
569
{
570
    *(uint64_t *)ptr = v;
571
}
572

    
573
/* float access */
574

    
575
static inline float32 ldfl_be_p(const void *ptr)
576
{
577
    return *(float32 *)ptr;
578
}
579

    
580
static inline float64 ldfq_be_p(const void *ptr)
581
{
582
    return *(float64 *)ptr;
583
}
584

    
585
static inline void stfl_be_p(void *ptr, float32 v)
586
{
587
    *(float32 *)ptr = v;
588
}
589

    
590
static inline void stfq_be_p(void *ptr, float64 v)
591
{
592
    *(float64 *)ptr = v;
593
}
594

    
595
#endif
596

    
597
/* target CPU memory access functions */
598
#if defined(TARGET_WORDS_BIGENDIAN)
599
#define lduw_p(p) lduw_be_p(p)
600
#define ldsw_p(p) ldsw_be_p(p)
601
#define ldl_p(p) ldl_be_p(p)
602
#define ldq_p(p) ldq_be_p(p)
603
#define ldfl_p(p) ldfl_be_p(p)
604
#define ldfq_p(p) ldfq_be_p(p)
605
#define stw_p(p, v) stw_be_p(p, v)
606
#define stl_p(p, v) stl_be_p(p, v)
607
#define stq_p(p, v) stq_be_p(p, v)
608
#define stfl_p(p, v) stfl_be_p(p, v)
609
#define stfq_p(p, v) stfq_be_p(p, v)
610
#else
611
#define lduw_p(p) lduw_le_p(p)
612
#define ldsw_p(p) ldsw_le_p(p)
613
#define ldl_p(p) ldl_le_p(p)
614
#define ldq_p(p) ldq_le_p(p)
615
#define ldfl_p(p) ldfl_le_p(p)
616
#define ldfq_p(p) ldfq_le_p(p)
617
#define stw_p(p, v) stw_le_p(p, v)
618
#define stl_p(p, v) stl_le_p(p, v)
619
#define stq_p(p, v) stq_le_p(p, v)
620
#define stfl_p(p, v) stfl_le_p(p, v)
621
#define stfq_p(p, v) stfq_le_p(p, v)
622
#endif
623

    
624
/* MMU memory access macros */
625

    
626
#if defined(CONFIG_USER_ONLY)
627
#include <assert.h>
628
#include "qemu-types.h"
629

    
630
/* On some host systems the guest address space is reserved on the host.
631
 * This allows the guest address space to be offset to a convenient location.
632
 */
633
#if defined(CONFIG_USE_GUEST_BASE)
634
extern unsigned long guest_base;
635
extern int have_guest_base;
636
extern unsigned long reserved_va;
637
#define GUEST_BASE guest_base
638
#define RESERVED_VA reserved_va
639
#else
640
#define GUEST_BASE 0ul
641
#define RESERVED_VA 0ul
642
#endif
643

    
644
/* All direct uses of g2h and h2g need to go away for usermode softmmu.  */
645
#define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
646

    
647
#if HOST_LONG_BITS <= TARGET_VIRT_ADDR_SPACE_BITS
648
#define h2g_valid(x) 1
649
#else
650
#define h2g_valid(x) ({ \
651
    unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
652
    __guest < (1ul << TARGET_VIRT_ADDR_SPACE_BITS); \
653
})
654
#endif
655

    
656
#define h2g(x) ({ \
657
    unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
658
    /* Check if given address fits target address space */ \
659
    assert(h2g_valid(x)); \
660
    (abi_ulong)__ret; \
661
})
662

    
663
#define saddr(x) g2h(x)
664
#define laddr(x) g2h(x)
665

    
666
#else /* !CONFIG_USER_ONLY */
667
/* NOTE: we use double casts if pointers and target_ulong have
668
   different sizes */
669
#define saddr(x) (uint8_t *)(long)(x)
670
#define laddr(x) (uint8_t *)(long)(x)
671
#endif
672

    
673
#define ldub_raw(p) ldub_p(laddr((p)))
674
#define ldsb_raw(p) ldsb_p(laddr((p)))
675
#define lduw_raw(p) lduw_p(laddr((p)))
676
#define ldsw_raw(p) ldsw_p(laddr((p)))
677
#define ldl_raw(p) ldl_p(laddr((p)))
678
#define ldq_raw(p) ldq_p(laddr((p)))
679
#define ldfl_raw(p) ldfl_p(laddr((p)))
680
#define ldfq_raw(p) ldfq_p(laddr((p)))
681
#define stb_raw(p, v) stb_p(saddr((p)), v)
682
#define stw_raw(p, v) stw_p(saddr((p)), v)
683
#define stl_raw(p, v) stl_p(saddr((p)), v)
684
#define stq_raw(p, v) stq_p(saddr((p)), v)
685
#define stfl_raw(p, v) stfl_p(saddr((p)), v)
686
#define stfq_raw(p, v) stfq_p(saddr((p)), v)
687

    
688

    
689
#if defined(CONFIG_USER_ONLY)
690

    
691
/* if user mode, no other memory access functions */
692
#define ldub(p) ldub_raw(p)
693
#define ldsb(p) ldsb_raw(p)
694
#define lduw(p) lduw_raw(p)
695
#define ldsw(p) ldsw_raw(p)
696
#define ldl(p) ldl_raw(p)
697
#define ldq(p) ldq_raw(p)
698
#define ldfl(p) ldfl_raw(p)
699
#define ldfq(p) ldfq_raw(p)
700
#define stb(p, v) stb_raw(p, v)
701
#define stw(p, v) stw_raw(p, v)
702
#define stl(p, v) stl_raw(p, v)
703
#define stq(p, v) stq_raw(p, v)
704
#define stfl(p, v) stfl_raw(p, v)
705
#define stfq(p, v) stfq_raw(p, v)
706

    
707
#define ldub_code(p) ldub_raw(p)
708
#define ldsb_code(p) ldsb_raw(p)
709
#define lduw_code(p) lduw_raw(p)
710
#define ldsw_code(p) ldsw_raw(p)
711
#define ldl_code(p) ldl_raw(p)
712
#define ldq_code(p) ldq_raw(p)
713

    
714
#define ldub_kernel(p) ldub_raw(p)
715
#define ldsb_kernel(p) ldsb_raw(p)
716
#define lduw_kernel(p) lduw_raw(p)
717
#define ldsw_kernel(p) ldsw_raw(p)
718
#define ldl_kernel(p) ldl_raw(p)
719
#define ldq_kernel(p) ldq_raw(p)
720
#define ldfl_kernel(p) ldfl_raw(p)
721
#define ldfq_kernel(p) ldfq_raw(p)
722
#define stb_kernel(p, v) stb_raw(p, v)
723
#define stw_kernel(p, v) stw_raw(p, v)
724
#define stl_kernel(p, v) stl_raw(p, v)
725
#define stq_kernel(p, v) stq_raw(p, v)
726
#define stfl_kernel(p, v) stfl_raw(p, v)
727
#define stfq_kernel(p, vt) stfq_raw(p, v)
728

    
729
#endif /* defined(CONFIG_USER_ONLY) */
730

    
731
/* page related stuff */
732

    
733
#define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
734
#define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
735
#define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
736

    
737
/* ??? These should be the larger of unsigned long and target_ulong.  */
738
extern unsigned long qemu_real_host_page_size;
739
extern unsigned long qemu_host_page_bits;
740
extern unsigned long qemu_host_page_size;
741
extern unsigned long qemu_host_page_mask;
742

    
743
#define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
744

    
745
/* same as PROT_xxx */
746
#define PAGE_READ      0x0001
747
#define PAGE_WRITE     0x0002
748
#define PAGE_EXEC      0x0004
749
#define PAGE_BITS      (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
750
#define PAGE_VALID     0x0008
751
/* original state of the write flag (used when tracking self-modifying
752
   code */
753
#define PAGE_WRITE_ORG 0x0010
754
#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
755
/* FIXME: Code that sets/uses this is broken and needs to go away.  */
756
#define PAGE_RESERVED  0x0020
757
#endif
758

    
759
#if defined(CONFIG_USER_ONLY)
760
void page_dump(FILE *f);
761

    
762
typedef int (*walk_memory_regions_fn)(void *, abi_ulong,
763
                                      abi_ulong, unsigned long);
764
int walk_memory_regions(void *, walk_memory_regions_fn);
765

    
766
int page_get_flags(target_ulong address);
767
void page_set_flags(target_ulong start, target_ulong end, int flags);
768
int page_check_range(target_ulong start, target_ulong len, int flags);
769
#endif
770

    
771
CPUState *cpu_copy(CPUState *env);
772
CPUState *qemu_get_cpu(int cpu);
773

    
774
#define CPU_DUMP_CODE 0x00010000
775

    
776
void cpu_dump_state(CPUState *env, FILE *f, fprintf_function cpu_fprintf,
777
                    int flags);
778
void cpu_dump_statistics(CPUState *env, FILE *f, fprintf_function cpu_fprintf,
779
                         int flags);
780

    
781
void QEMU_NORETURN cpu_abort(CPUState *env, const char *fmt, ...)
782
    GCC_FMT_ATTR(2, 3);
783
extern CPUState *first_cpu;
784
extern CPUState *cpu_single_env;
785

    
786
/* Flags for use in ENV->INTERRUPT_PENDING.
787

788
   The numbers assigned here are non-sequential in order to preserve
789
   binary compatibility with the vmstate dump.  Bit 0 (0x0001) was
790
   previously used for CPU_INTERRUPT_EXIT, and is cleared when loading
791
   the vmstate dump.  */
792

    
793
/* External hardware interrupt pending.  This is typically used for
794
   interrupts from devices.  */
795
#define CPU_INTERRUPT_HARD        0x0002
796

    
797
/* Exit the current TB.  This is typically used when some system-level device
798
   makes some change to the memory mapping.  E.g. the a20 line change.  */
799
#define CPU_INTERRUPT_EXITTB      0x0004
800

    
801
/* Halt the CPU.  */
802
#define CPU_INTERRUPT_HALT        0x0020
803

    
804
/* Debug event pending.  */
805
#define CPU_INTERRUPT_DEBUG       0x0080
806

    
807
/* Several target-specific external hardware interrupts.  Each target/cpu.h
808
   should define proper names based on these defines.  */
809
#define CPU_INTERRUPT_TGT_EXT_0   0x0008
810
#define CPU_INTERRUPT_TGT_EXT_1   0x0010
811
#define CPU_INTERRUPT_TGT_EXT_2   0x0040
812
#define CPU_INTERRUPT_TGT_EXT_3   0x0200
813
#define CPU_INTERRUPT_TGT_EXT_4   0x1000
814

    
815
/* Several target-specific internal interrupts.  These differ from the
816
   preceeding target-specific interrupts in that they are intended to
817
   originate from within the cpu itself, typically in response to some
818
   instruction being executed.  These, therefore, are not masked while
819
   single-stepping within the debugger.  */
820
#define CPU_INTERRUPT_TGT_INT_0   0x0100
821
#define CPU_INTERRUPT_TGT_INT_1   0x0400
822
#define CPU_INTERRUPT_TGT_INT_2   0x0800
823

    
824
/* First unused bit: 0x2000.  */
825

    
826
/* The set of all bits that should be masked when single-stepping.  */
827
#define CPU_INTERRUPT_SSTEP_MASK \
828
    (CPU_INTERRUPT_HARD          \
829
     | CPU_INTERRUPT_TGT_EXT_0   \
830
     | CPU_INTERRUPT_TGT_EXT_1   \
831
     | CPU_INTERRUPT_TGT_EXT_2   \
832
     | CPU_INTERRUPT_TGT_EXT_3   \
833
     | CPU_INTERRUPT_TGT_EXT_4)
834

    
835
#ifndef CONFIG_USER_ONLY
836
typedef void (*CPUInterruptHandler)(CPUState *, int);
837

    
838
extern CPUInterruptHandler cpu_interrupt_handler;
839

    
840
static inline void cpu_interrupt(CPUState *s, int mask)
841
{
842
    cpu_interrupt_handler(s, mask);
843
}
844
#else /* USER_ONLY */
845
void cpu_interrupt(CPUState *env, int mask);
846
#endif /* USER_ONLY */
847

    
848
void cpu_reset_interrupt(CPUState *env, int mask);
849

    
850
void cpu_exit(CPUState *s);
851

    
852
int qemu_cpu_has_work(CPUState *env);
853

    
854
/* Breakpoint/watchpoint flags */
855
#define BP_MEM_READ           0x01
856
#define BP_MEM_WRITE          0x02
857
#define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
858
#define BP_STOP_BEFORE_ACCESS 0x04
859
#define BP_WATCHPOINT_HIT     0x08
860
#define BP_GDB                0x10
861
#define BP_CPU                0x20
862

    
863
int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
864
                          CPUBreakpoint **breakpoint);
865
int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags);
866
void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint);
867
void cpu_breakpoint_remove_all(CPUState *env, int mask);
868
int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
869
                          int flags, CPUWatchpoint **watchpoint);
870
int cpu_watchpoint_remove(CPUState *env, target_ulong addr,
871
                          target_ulong len, int flags);
872
void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint);
873
void cpu_watchpoint_remove_all(CPUState *env, int mask);
874

    
875
#define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
876
#define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
877
#define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
878

    
879
void cpu_single_step(CPUState *env, int enabled);
880
void cpu_reset(CPUState *s);
881
int cpu_is_stopped(CPUState *env);
882
void run_on_cpu(CPUState *env, void (*func)(void *data), void *data);
883

    
884
#define CPU_LOG_TB_OUT_ASM (1 << 0)
885
#define CPU_LOG_TB_IN_ASM  (1 << 1)
886
#define CPU_LOG_TB_OP      (1 << 2)
887
#define CPU_LOG_TB_OP_OPT  (1 << 3)
888
#define CPU_LOG_INT        (1 << 4)
889
#define CPU_LOG_EXEC       (1 << 5)
890
#define CPU_LOG_PCALL      (1 << 6)
891
#define CPU_LOG_IOPORT     (1 << 7)
892
#define CPU_LOG_TB_CPU     (1 << 8)
893
#define CPU_LOG_RESET      (1 << 9)
894

    
895
/* define log items */
896
typedef struct CPULogItem {
897
    int mask;
898
    const char *name;
899
    const char *help;
900
} CPULogItem;
901

    
902
extern const CPULogItem cpu_log_items[];
903

    
904
void cpu_set_log(int log_flags);
905
void cpu_set_log_filename(const char *filename);
906
int cpu_str_to_log_mask(const char *str);
907

    
908
#if !defined(CONFIG_USER_ONLY)
909

    
910
/* Return the physical page corresponding to a virtual one. Use it
911
   only for debugging because no protection checks are done. Return -1
912
   if no page found. */
913
target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
914

    
915
/* memory API */
916

    
917
extern int phys_ram_fd;
918
extern ram_addr_t ram_size;
919

    
920
/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
921
#define RAM_PREALLOC_MASK   (1 << 0)
922

    
923
typedef struct RAMBlock {
924
    uint8_t *host;
925
    ram_addr_t offset;
926
    ram_addr_t length;
927
    uint32_t flags;
928
    char idstr[256];
929
    QLIST_ENTRY(RAMBlock) next;
930
#if defined(__linux__) && !defined(TARGET_S390X)
931
    int fd;
932
#endif
933
} RAMBlock;
934

    
935
typedef struct RAMList {
936
    uint8_t *phys_dirty;
937
    QLIST_HEAD(ram, RAMBlock) blocks;
938
} RAMList;
939
extern RAMList ram_list;
940

    
941
extern const char *mem_path;
942
extern int mem_prealloc;
943

    
944
/* physical memory access */
945

    
946
/* MMIO pages are identified by a combination of an IO device index and
947
   3 flags.  The ROMD code stores the page ram offset in iotlb entry, 
948
   so only a limited number of ids are avaiable.  */
949

    
950
#define IO_MEM_NB_ENTRIES  (1 << (TARGET_PAGE_BITS  - IO_MEM_SHIFT))
951

    
952
/* Flags stored in the low bits of the TLB virtual address.  These are
953
   defined so that fast path ram access is all zeros.  */
954
/* Zero if TLB entry is valid.  */
955
#define TLB_INVALID_MASK   (1 << 3)
956
/* Set if TLB entry references a clean RAM page.  The iotlb entry will
957
   contain the page physical address.  */
958
#define TLB_NOTDIRTY    (1 << 4)
959
/* Set if TLB entry is an IO callback.  */
960
#define TLB_MMIO        (1 << 5)
961

    
962
#define VGA_DIRTY_FLAG       0x01
963
#define CODE_DIRTY_FLAG      0x02
964
#define MIGRATION_DIRTY_FLAG 0x08
965

    
966
/* read dirty bit (return 0 or 1) */
967
static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
968
{
969
    return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
970
}
971

    
972
static inline int cpu_physical_memory_get_dirty_flags(ram_addr_t addr)
973
{
974
    return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS];
975
}
976

    
977
static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
978
                                                int dirty_flags)
979
{
980
    return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
981
}
982

    
983
static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
984
{
985
    ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
986
}
987

    
988
static inline int cpu_physical_memory_set_dirty_flags(ram_addr_t addr,
989
                                                      int dirty_flags)
990
{
991
    return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] |= dirty_flags;
992
}
993

    
994
static inline void cpu_physical_memory_mask_dirty_range(ram_addr_t start,
995
                                                        int length,
996
                                                        int dirty_flags)
997
{
998
    int i, mask, len;
999
    uint8_t *p;
1000

    
1001
    len = length >> TARGET_PAGE_BITS;
1002
    mask = ~dirty_flags;
1003
    p = ram_list.phys_dirty + (start >> TARGET_PAGE_BITS);
1004
    for (i = 0; i < len; i++) {
1005
        p[i] &= mask;
1006
    }
1007
}
1008

    
1009
void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1010
                                     int dirty_flags);
1011
void cpu_tlb_update_dirty(CPUState *env);
1012

    
1013
int cpu_physical_memory_set_dirty_tracking(int enable);
1014

    
1015
int cpu_physical_memory_get_dirty_tracking(void);
1016

    
1017
int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
1018
                                   target_phys_addr_t end_addr);
1019

    
1020
int cpu_physical_log_start(target_phys_addr_t start_addr,
1021
                           ram_addr_t size);
1022

    
1023
int cpu_physical_log_stop(target_phys_addr_t start_addr,
1024
                          ram_addr_t size);
1025

    
1026
void dump_exec_info(FILE *f, fprintf_function cpu_fprintf);
1027
#endif /* !CONFIG_USER_ONLY */
1028

    
1029
int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
1030
                        uint8_t *buf, int len, int is_write);
1031

    
1032
#endif /* CPU_ALL_H */