Statistics
| Branch: | Revision:

root / hw / usb-ehci.c @ d0539307

History | View | Annotate | Download (62.4 kB)

1
/*
2
 * QEMU USB EHCI Emulation
3
 *
4
 * Copyright(c) 2008  Emutex Ltd. (address@hidden)
5
 *
6
 * EHCI project was started by Mark Burkley, with contributions by
7
 * Niels de Vos.  David S. Ahern continued working on it.  Kevin Wolf,
8
 * Jan Kiszka and Vincent Palatin contributed bugfixes.
9
 *
10
 *
11
 * This library is free software; you can redistribute it and/or
12
 * modify it under the terms of the GNU Lesser General Public
13
 * License as published by the Free Software Foundation; either
14
 * version 2 of the License, or(at your option) any later version.
15
 *
16
 * This library is distributed in the hope that it will be useful,
17
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19
 * Lesser General Public License for more details.
20
 *
21
 * You should have received a copy of the GNU General Public License
22
 * along with this program; if not, see <http://www.gnu.org/licenses/>.
23
 *
24
 * TODO:
25
 *  o Downstream port handoff
26
 */
27

    
28
#include "hw.h"
29
#include "qemu-timer.h"
30
#include "usb.h"
31
#include "pci.h"
32
#include "monitor.h"
33
#include "trace.h"
34

    
35
#define EHCI_DEBUG   0
36

    
37
#if EHCI_DEBUG
38
#define DPRINTF printf
39
#else
40
#define DPRINTF(...)
41
#endif
42

    
43
/* internal processing - reset HC to try and recover */
44
#define USB_RET_PROCERR   (-99)
45

    
46
#define MMIO_SIZE        0x1000
47

    
48
/* Capability Registers Base Address - section 2.2 */
49
#define CAPREGBASE       0x0000
50
#define CAPLENGTH        CAPREGBASE + 0x0000  // 1-byte, 0x0001 reserved
51
#define HCIVERSION       CAPREGBASE + 0x0002  // 2-bytes, i/f version #
52
#define HCSPARAMS        CAPREGBASE + 0x0004  // 4-bytes, structural params
53
#define HCCPARAMS        CAPREGBASE + 0x0008  // 4-bytes, capability params
54
#define EECP             HCCPARAMS + 1
55
#define HCSPPORTROUTE1   CAPREGBASE + 0x000c
56
#define HCSPPORTROUTE2   CAPREGBASE + 0x0010
57

    
58
#define OPREGBASE        0x0020        // Operational Registers Base Address
59

    
60
#define USBCMD           OPREGBASE + 0x0000
61
#define USBCMD_RUNSTOP   (1 << 0)      // run / Stop
62
#define USBCMD_HCRESET   (1 << 1)      // HC Reset
63
#define USBCMD_FLS       (3 << 2)      // Frame List Size
64
#define USBCMD_FLS_SH    2             // Frame List Size Shift
65
#define USBCMD_PSE       (1 << 4)      // Periodic Schedule Enable
66
#define USBCMD_ASE       (1 << 5)      // Asynch Schedule Enable
67
#define USBCMD_IAAD      (1 << 6)      // Int Asynch Advance Doorbell
68
#define USBCMD_LHCR      (1 << 7)      // Light Host Controller Reset
69
#define USBCMD_ASPMC     (3 << 8)      // Async Sched Park Mode Count
70
#define USBCMD_ASPME     (1 << 11)     // Async Sched Park Mode Enable
71
#define USBCMD_ITC       (0x7f << 16)  // Int Threshold Control
72
#define USBCMD_ITC_SH    16            // Int Threshold Control Shift
73

    
74
#define USBSTS           OPREGBASE + 0x0004
75
#define USBSTS_RO_MASK   0x0000003f
76
#define USBSTS_INT       (1 << 0)      // USB Interrupt
77
#define USBSTS_ERRINT    (1 << 1)      // Error Interrupt
78
#define USBSTS_PCD       (1 << 2)      // Port Change Detect
79
#define USBSTS_FLR       (1 << 3)      // Frame List Rollover
80
#define USBSTS_HSE       (1 << 4)      // Host System Error
81
#define USBSTS_IAA       (1 << 5)      // Interrupt on Async Advance
82
#define USBSTS_HALT      (1 << 12)     // HC Halted
83
#define USBSTS_REC       (1 << 13)     // Reclamation
84
#define USBSTS_PSS       (1 << 14)     // Periodic Schedule Status
85
#define USBSTS_ASS       (1 << 15)     // Asynchronous Schedule Status
86

    
87
/*
88
 *  Interrupt enable bits correspond to the interrupt active bits in USBSTS
89
 *  so no need to redefine here.
90
 */
91
#define USBINTR              OPREGBASE + 0x0008
92
#define USBINTR_MASK         0x0000003f
93

    
94
#define FRINDEX              OPREGBASE + 0x000c
95
#define CTRLDSSEGMENT        OPREGBASE + 0x0010
96
#define PERIODICLISTBASE     OPREGBASE + 0x0014
97
#define ASYNCLISTADDR        OPREGBASE + 0x0018
98
#define ASYNCLISTADDR_MASK   0xffffffe0
99

    
100
#define CONFIGFLAG           OPREGBASE + 0x0040
101

    
102
#define PORTSC               (OPREGBASE + 0x0044)
103
#define PORTSC_BEGIN         PORTSC
104
#define PORTSC_END           (PORTSC + 4 * NB_PORTS)
105
/*
106
 * Bits that are reserverd or are read-only are masked out of values
107
 * written to us by software
108
 */
109
#define PORTSC_RO_MASK       0x007021c5
110
#define PORTSC_RWC_MASK      0x0000002a
111
#define PORTSC_WKOC_E        (1 << 22)    // Wake on Over Current Enable
112
#define PORTSC_WKDS_E        (1 << 21)    // Wake on Disconnect Enable
113
#define PORTSC_WKCN_E        (1 << 20)    // Wake on Connect Enable
114
#define PORTSC_PTC           (15 << 16)   // Port Test Control
115
#define PORTSC_PTC_SH        16           // Port Test Control shift
116
#define PORTSC_PIC           (3 << 14)    // Port Indicator Control
117
#define PORTSC_PIC_SH        14           // Port Indicator Control Shift
118
#define PORTSC_POWNER        (1 << 13)    // Port Owner
119
#define PORTSC_PPOWER        (1 << 12)    // Port Power
120
#define PORTSC_LINESTAT      (3 << 10)    // Port Line Status
121
#define PORTSC_LINESTAT_SH   10           // Port Line Status Shift
122
#define PORTSC_PRESET        (1 << 8)     // Port Reset
123
#define PORTSC_SUSPEND       (1 << 7)     // Port Suspend
124
#define PORTSC_FPRES         (1 << 6)     // Force Port Resume
125
#define PORTSC_OCC           (1 << 5)     // Over Current Change
126
#define PORTSC_OCA           (1 << 4)     // Over Current Active
127
#define PORTSC_PEDC          (1 << 3)     // Port Enable/Disable Change
128
#define PORTSC_PED           (1 << 2)     // Port Enable/Disable
129
#define PORTSC_CSC           (1 << 1)     // Connect Status Change
130
#define PORTSC_CONNECT       (1 << 0)     // Current Connect Status
131

    
132
#define FRAME_TIMER_FREQ 1000
133
#define FRAME_TIMER_USEC (1000000 / FRAME_TIMER_FREQ)
134

    
135
#define NB_MAXINTRATE    8        // Max rate at which controller issues ints
136
#define NB_PORTS         4        // Number of downstream ports
137
#define BUFF_SIZE        5*4096   // Max bytes to transfer per transaction
138
#define MAX_ITERATIONS   20       // Max number of QH before we break the loop
139
#define MAX_QH           100      // Max allowable queue heads in a chain
140

    
141
/*  Internal periodic / asynchronous schedule state machine states
142
 */
143
typedef enum {
144
    EST_INACTIVE = 1000,
145
    EST_ACTIVE,
146
    EST_EXECUTING,
147
    EST_SLEEPING,
148
    /*  The following states are internal to the state machine function
149
    */
150
    EST_WAITLISTHEAD,
151
    EST_FETCHENTRY,
152
    EST_FETCHQH,
153
    EST_FETCHITD,
154
    EST_ADVANCEQUEUE,
155
    EST_FETCHQTD,
156
    EST_EXECUTE,
157
    EST_WRITEBACK,
158
    EST_HORIZONTALQH
159
} EHCI_STATES;
160

    
161
/* macros for accessing fields within next link pointer entry */
162
#define NLPTR_GET(x)             ((x) & 0xffffffe0)
163
#define NLPTR_TYPE_GET(x)        (((x) >> 1) & 3)
164
#define NLPTR_TBIT(x)            ((x) & 1)  // 1=invalid, 0=valid
165

    
166
/* link pointer types */
167
#define NLPTR_TYPE_ITD           0     // isoc xfer descriptor
168
#define NLPTR_TYPE_QH            1     // queue head
169
#define NLPTR_TYPE_STITD         2     // split xaction, isoc xfer descriptor
170
#define NLPTR_TYPE_FSTN          3     // frame span traversal node
171

    
172

    
173
/*  EHCI spec version 1.0 Section 3.3
174
 */
175
typedef struct EHCIitd {
176
    uint32_t next;
177

    
178
    uint32_t transact[8];
179
#define ITD_XACT_ACTIVE          (1 << 31)
180
#define ITD_XACT_DBERROR         (1 << 30)
181
#define ITD_XACT_BABBLE          (1 << 29)
182
#define ITD_XACT_XACTERR         (1 << 28)
183
#define ITD_XACT_LENGTH_MASK     0x0fff0000
184
#define ITD_XACT_LENGTH_SH       16
185
#define ITD_XACT_IOC             (1 << 15)
186
#define ITD_XACT_PGSEL_MASK      0x00007000
187
#define ITD_XACT_PGSEL_SH        12
188
#define ITD_XACT_OFFSET_MASK     0x00000fff
189

    
190
    uint32_t bufptr[7];
191
#define ITD_BUFPTR_MASK          0xfffff000
192
#define ITD_BUFPTR_SH            12
193
#define ITD_BUFPTR_EP_MASK       0x00000f00
194
#define ITD_BUFPTR_EP_SH         8
195
#define ITD_BUFPTR_DEVADDR_MASK  0x0000007f
196
#define ITD_BUFPTR_DEVADDR_SH    0
197
#define ITD_BUFPTR_DIRECTION     (1 << 11)
198
#define ITD_BUFPTR_MAXPKT_MASK   0x000007ff
199
#define ITD_BUFPTR_MAXPKT_SH     0
200
#define ITD_BUFPTR_MULT_MASK     0x00000003
201
} EHCIitd;
202

    
203
/*  EHCI spec version 1.0 Section 3.4
204
 */
205
typedef struct EHCIsitd {
206
    uint32_t next;                  // Standard next link pointer
207
    uint32_t epchar;
208
#define SITD_EPCHAR_IO              (1 << 31)
209
#define SITD_EPCHAR_PORTNUM_MASK    0x7f000000
210
#define SITD_EPCHAR_PORTNUM_SH      24
211
#define SITD_EPCHAR_HUBADD_MASK     0x007f0000
212
#define SITD_EPCHAR_HUBADDR_SH      16
213
#define SITD_EPCHAR_EPNUM_MASK      0x00000f00
214
#define SITD_EPCHAR_EPNUM_SH        8
215
#define SITD_EPCHAR_DEVADDR_MASK    0x0000007f
216

    
217
    uint32_t uframe;
218
#define SITD_UFRAME_CMASK_MASK      0x0000ff00
219
#define SITD_UFRAME_CMASK_SH        8
220
#define SITD_UFRAME_SMASK_MASK      0x000000ff
221

    
222
    uint32_t results;
223
#define SITD_RESULTS_IOC              (1 << 31)
224
#define SITD_RESULTS_PGSEL            (1 << 30)
225
#define SITD_RESULTS_TBYTES_MASK      0x03ff0000
226
#define SITD_RESULTS_TYBYTES_SH       16
227
#define SITD_RESULTS_CPROGMASK_MASK   0x0000ff00
228
#define SITD_RESULTS_CPROGMASK_SH     8
229
#define SITD_RESULTS_ACTIVE           (1 << 7)
230
#define SITD_RESULTS_ERR              (1 << 6)
231
#define SITD_RESULTS_DBERR            (1 << 5)
232
#define SITD_RESULTS_BABBLE           (1 << 4)
233
#define SITD_RESULTS_XACTERR          (1 << 3)
234
#define SITD_RESULTS_MISSEDUF         (1 << 2)
235
#define SITD_RESULTS_SPLITXSTATE      (1 << 1)
236

    
237
    uint32_t bufptr[2];
238
#define SITD_BUFPTR_MASK              0xfffff000
239
#define SITD_BUFPTR_CURROFF_MASK      0x00000fff
240
#define SITD_BUFPTR_TPOS_MASK         0x00000018
241
#define SITD_BUFPTR_TPOS_SH           3
242
#define SITD_BUFPTR_TCNT_MASK         0x00000007
243

    
244
    uint32_t backptr;                 // Standard next link pointer
245
} EHCIsitd;
246

    
247
/*  EHCI spec version 1.0 Section 3.5
248
 */
249
typedef struct EHCIqtd {
250
    uint32_t next;                    // Standard next link pointer
251
    uint32_t altnext;                 // Standard next link pointer
252
    uint32_t token;
253
#define QTD_TOKEN_DTOGGLE             (1 << 31)
254
#define QTD_TOKEN_TBYTES_MASK         0x7fff0000
255
#define QTD_TOKEN_TBYTES_SH           16
256
#define QTD_TOKEN_IOC                 (1 << 15)
257
#define QTD_TOKEN_CPAGE_MASK          0x00007000
258
#define QTD_TOKEN_CPAGE_SH            12
259
#define QTD_TOKEN_CERR_MASK           0x00000c00
260
#define QTD_TOKEN_CERR_SH             10
261
#define QTD_TOKEN_PID_MASK            0x00000300
262
#define QTD_TOKEN_PID_SH              8
263
#define QTD_TOKEN_ACTIVE              (1 << 7)
264
#define QTD_TOKEN_HALT                (1 << 6)
265
#define QTD_TOKEN_DBERR               (1 << 5)
266
#define QTD_TOKEN_BABBLE              (1 << 4)
267
#define QTD_TOKEN_XACTERR             (1 << 3)
268
#define QTD_TOKEN_MISSEDUF            (1 << 2)
269
#define QTD_TOKEN_SPLITXSTATE         (1 << 1)
270
#define QTD_TOKEN_PING                (1 << 0)
271

    
272
    uint32_t bufptr[5];               // Standard buffer pointer
273
#define QTD_BUFPTR_MASK               0xfffff000
274
} EHCIqtd;
275

    
276
/*  EHCI spec version 1.0 Section 3.6
277
 */
278
typedef struct EHCIqh {
279
    uint32_t next;                    // Standard next link pointer
280

    
281
    /* endpoint characteristics */
282
    uint32_t epchar;
283
#define QH_EPCHAR_RL_MASK             0xf0000000
284
#define QH_EPCHAR_RL_SH               28
285
#define QH_EPCHAR_C                   (1 << 27)
286
#define QH_EPCHAR_MPLEN_MASK          0x07FF0000
287
#define QH_EPCHAR_MPLEN_SH            16
288
#define QH_EPCHAR_H                   (1 << 15)
289
#define QH_EPCHAR_DTC                 (1 << 14)
290
#define QH_EPCHAR_EPS_MASK            0x00003000
291
#define QH_EPCHAR_EPS_SH              12
292
#define EHCI_QH_EPS_FULL              0
293
#define EHCI_QH_EPS_LOW               1
294
#define EHCI_QH_EPS_HIGH              2
295
#define EHCI_QH_EPS_RESERVED          3
296

    
297
#define QH_EPCHAR_EP_MASK             0x00000f00
298
#define QH_EPCHAR_EP_SH               8
299
#define QH_EPCHAR_I                   (1 << 7)
300
#define QH_EPCHAR_DEVADDR_MASK        0x0000007f
301
#define QH_EPCHAR_DEVADDR_SH          0
302

    
303
    /* endpoint capabilities */
304
    uint32_t epcap;
305
#define QH_EPCAP_MULT_MASK            0xc0000000
306
#define QH_EPCAP_MULT_SH              30
307
#define QH_EPCAP_PORTNUM_MASK         0x3f800000
308
#define QH_EPCAP_PORTNUM_SH           23
309
#define QH_EPCAP_HUBADDR_MASK         0x007f0000
310
#define QH_EPCAP_HUBADDR_SH           16
311
#define QH_EPCAP_CMASK_MASK           0x0000ff00
312
#define QH_EPCAP_CMASK_SH             8
313
#define QH_EPCAP_SMASK_MASK           0x000000ff
314
#define QH_EPCAP_SMASK_SH             0
315

    
316
    uint32_t current_qtd;             // Standard next link pointer
317
    uint32_t next_qtd;                // Standard next link pointer
318
    uint32_t altnext_qtd;
319
#define QH_ALTNEXT_NAKCNT_MASK        0x0000001e
320
#define QH_ALTNEXT_NAKCNT_SH          1
321

    
322
    uint32_t token;                   // Same as QTD token
323
    uint32_t bufptr[5];               // Standard buffer pointer
324
#define BUFPTR_CPROGMASK_MASK         0x000000ff
325
#define BUFPTR_FRAMETAG_MASK          0x0000001f
326
#define BUFPTR_SBYTES_MASK            0x00000fe0
327
#define BUFPTR_SBYTES_SH              5
328
} EHCIqh;
329

    
330
/*  EHCI spec version 1.0 Section 3.7
331
 */
332
typedef struct EHCIfstn {
333
    uint32_t next;                    // Standard next link pointer
334
    uint32_t backptr;                 // Standard next link pointer
335
} EHCIfstn;
336

    
337
typedef struct EHCIQueue EHCIQueue;
338
typedef struct EHCIState EHCIState;
339

    
340
enum async_state {
341
    EHCI_ASYNC_NONE = 0,
342
    EHCI_ASYNC_INFLIGHT,
343
    EHCI_ASYNC_FINISHED,
344
};
345

    
346
struct EHCIQueue {
347
    EHCIState *ehci;
348
    QTAILQ_ENTRY(EHCIQueue) next;
349
    bool async_schedule;
350
    uint32_t seen, ts;
351

    
352
    /* cached data from guest - needs to be flushed
353
     * when guest removes an entry (doorbell, handshake sequence)
354
     */
355
    EHCIqh qh;             // copy of current QH (being worked on)
356
    uint32_t qhaddr;       // address QH read from
357
    EHCIqtd qtd;           // copy of current QTD (being worked on)
358
    uint32_t qtdaddr;      // address QTD read from
359

    
360
    USBPacket packet;
361
    uint8_t buffer[BUFF_SIZE];
362
    int pid;
363
    uint32_t tbytes;
364
    enum async_state async;
365
    int usb_status;
366
};
367

    
368
struct EHCIState {
369
    PCIDevice dev;
370
    USBBus bus;
371
    qemu_irq irq;
372
    target_phys_addr_t mem_base;
373
    int mem;
374
    int num_ports;
375
    /*
376
     *  EHCI spec version 1.0 Section 2.3
377
     *  Host Controller Operational Registers
378
     */
379
    union {
380
        uint8_t mmio[MMIO_SIZE];
381
        struct {
382
            uint8_t cap[OPREGBASE];
383
            uint32_t usbcmd;
384
            uint32_t usbsts;
385
            uint32_t usbintr;
386
            uint32_t frindex;
387
            uint32_t ctrldssegment;
388
            uint32_t periodiclistbase;
389
            uint32_t asynclistaddr;
390
            uint32_t notused[9];
391
            uint32_t configflag;
392
            uint32_t portsc[NB_PORTS];
393
        };
394
    };
395

    
396
    /*
397
     *  Internal states, shadow registers, etc
398
     */
399
    uint32_t sofv;
400
    QEMUTimer *frame_timer;
401
    int attach_poll_counter;
402
    int astate;                        // Current state in asynchronous schedule
403
    int pstate;                        // Current state in periodic schedule
404
    USBPort ports[NB_PORTS];
405
    uint32_t usbsts_pending;
406
    QTAILQ_HEAD(, EHCIQueue) queues;
407

    
408
    uint32_t a_fetch_addr;   // which address to look at next
409
    uint32_t p_fetch_addr;   // which address to look at next
410

    
411
    USBPacket ipacket;
412
    uint8_t ibuffer[BUFF_SIZE];
413
    int isoch_pause;
414

    
415
    uint32_t last_run_usec;
416
    uint32_t frame_end_usec;
417
};
418

    
419
#define SET_LAST_RUN_CLOCK(s) \
420
    (s)->last_run_usec = qemu_get_clock_ns(vm_clock) / 1000;
421

    
422
/* nifty macros from Arnon's EHCI version  */
423
#define get_field(data, field) \
424
    (((data) & field##_MASK) >> field##_SH)
425

    
426
#define set_field(data, newval, field) do { \
427
    uint32_t val = *data; \
428
    val &= ~ field##_MASK; \
429
    val |= ((newval) << field##_SH) & field##_MASK; \
430
    *data = val; \
431
    } while(0)
432

    
433
static const char *ehci_state_names[] = {
434
    [ EST_INACTIVE ]     = "INACTIVE",
435
    [ EST_ACTIVE ]       = "ACTIVE",
436
    [ EST_EXECUTING ]    = "EXECUTING",
437
    [ EST_SLEEPING ]     = "SLEEPING",
438
    [ EST_WAITLISTHEAD ] = "WAITLISTHEAD",
439
    [ EST_FETCHENTRY ]   = "FETCH ENTRY",
440
    [ EST_FETCHQH ]      = "FETCH QH",
441
    [ EST_FETCHITD ]     = "FETCH ITD",
442
    [ EST_ADVANCEQUEUE ] = "ADVANCEQUEUE",
443
    [ EST_FETCHQTD ]     = "FETCH QTD",
444
    [ EST_EXECUTE ]      = "EXECUTE",
445
    [ EST_WRITEBACK ]    = "WRITEBACK",
446
    [ EST_HORIZONTALQH ] = "HORIZONTALQH",
447
};
448

    
449
static const char *ehci_mmio_names[] = {
450
    [ CAPLENGTH ]        = "CAPLENGTH",
451
    [ HCIVERSION ]       = "HCIVERSION",
452
    [ HCSPARAMS ]        = "HCSPARAMS",
453
    [ HCCPARAMS ]        = "HCCPARAMS",
454
    [ USBCMD ]           = "USBCMD",
455
    [ USBSTS ]           = "USBSTS",
456
    [ USBINTR ]          = "USBINTR",
457
    [ FRINDEX ]          = "FRINDEX",
458
    [ PERIODICLISTBASE ] = "P-LIST BASE",
459
    [ ASYNCLISTADDR ]    = "A-LIST ADDR",
460
    [ PORTSC_BEGIN ]     = "PORTSC #0",
461
    [ PORTSC_BEGIN + 4]  = "PORTSC #1",
462
    [ PORTSC_BEGIN + 8]  = "PORTSC #2",
463
    [ PORTSC_BEGIN + 12] = "PORTSC #3",
464
    [ CONFIGFLAG ]       = "CONFIGFLAG",
465
};
466

    
467
static const char *nr2str(const char **n, size_t len, uint32_t nr)
468
{
469
    if (nr < len && n[nr] != NULL) {
470
        return n[nr];
471
    } else {
472
        return "unknown";
473
    }
474
}
475

    
476
static const char *state2str(uint32_t state)
477
{
478
    return nr2str(ehci_state_names, ARRAY_SIZE(ehci_state_names), state);
479
}
480

    
481
static const char *addr2str(target_phys_addr_t addr)
482
{
483
    return nr2str(ehci_mmio_names, ARRAY_SIZE(ehci_mmio_names), addr);
484
}
485

    
486
static void ehci_trace_usbsts(uint32_t mask, int state)
487
{
488
    /* interrupts */
489
    if (mask & USBSTS_INT) {
490
        trace_usb_ehci_usbsts("INT", state);
491
    }
492
    if (mask & USBSTS_ERRINT) {
493
        trace_usb_ehci_usbsts("ERRINT", state);
494
    }
495
    if (mask & USBSTS_PCD) {
496
        trace_usb_ehci_usbsts("PCD", state);
497
    }
498
    if (mask & USBSTS_FLR) {
499
        trace_usb_ehci_usbsts("FLR", state);
500
    }
501
    if (mask & USBSTS_HSE) {
502
        trace_usb_ehci_usbsts("HSE", state);
503
    }
504
    if (mask & USBSTS_IAA) {
505
        trace_usb_ehci_usbsts("IAA", state);
506
    }
507

    
508
    /* status */
509
    if (mask & USBSTS_HALT) {
510
        trace_usb_ehci_usbsts("HALT", state);
511
    }
512
    if (mask & USBSTS_REC) {
513
        trace_usb_ehci_usbsts("REC", state);
514
    }
515
    if (mask & USBSTS_PSS) {
516
        trace_usb_ehci_usbsts("PSS", state);
517
    }
518
    if (mask & USBSTS_ASS) {
519
        trace_usb_ehci_usbsts("ASS", state);
520
    }
521
}
522

    
523
static inline void ehci_set_usbsts(EHCIState *s, int mask)
524
{
525
    if ((s->usbsts & mask) == mask) {
526
        return;
527
    }
528
    ehci_trace_usbsts(mask, 1);
529
    s->usbsts |= mask;
530
}
531

    
532
static inline void ehci_clear_usbsts(EHCIState *s, int mask)
533
{
534
    if ((s->usbsts & mask) == 0) {
535
        return;
536
    }
537
    ehci_trace_usbsts(mask, 0);
538
    s->usbsts &= ~mask;
539
}
540

    
541
static inline void ehci_set_interrupt(EHCIState *s, int intr)
542
{
543
    int level = 0;
544

    
545
    // TODO honour interrupt threshold requests
546

    
547
    ehci_set_usbsts(s, intr);
548

    
549
    if ((s->usbsts & USBINTR_MASK) & s->usbintr) {
550
        level = 1;
551
    }
552

    
553
    qemu_set_irq(s->irq, level);
554
}
555

    
556
static inline void ehci_record_interrupt(EHCIState *s, int intr)
557
{
558
    s->usbsts_pending |= intr;
559
}
560

    
561
static inline void ehci_commit_interrupt(EHCIState *s)
562
{
563
    if (!s->usbsts_pending) {
564
        return;
565
    }
566
    ehci_set_interrupt(s, s->usbsts_pending);
567
    s->usbsts_pending = 0;
568
}
569

    
570
static void ehci_set_state(EHCIState *s, int async, int state)
571
{
572
    if (async) {
573
        trace_usb_ehci_state("async", state2str(state));
574
        s->astate = state;
575
    } else {
576
        trace_usb_ehci_state("periodic", state2str(state));
577
        s->pstate = state;
578
    }
579
}
580

    
581
static int ehci_get_state(EHCIState *s, int async)
582
{
583
    return async ? s->astate : s->pstate;
584
}
585

    
586
static void ehci_set_fetch_addr(EHCIState *s, int async, uint32_t addr)
587
{
588
    if (async) {
589
        s->a_fetch_addr = addr;
590
    } else {
591
        s->p_fetch_addr = addr;
592
    }
593
}
594

    
595
static int ehci_get_fetch_addr(EHCIState *s, int async)
596
{
597
    return async ? s->a_fetch_addr : s->p_fetch_addr;
598
}
599

    
600
static void ehci_trace_qh(EHCIQueue *q, target_phys_addr_t addr, EHCIqh *qh)
601
{
602
    trace_usb_ehci_qh(q, addr, qh->next,
603
                      qh->current_qtd, qh->next_qtd, qh->altnext_qtd,
604
                      get_field(qh->epchar, QH_EPCHAR_RL),
605
                      get_field(qh->epchar, QH_EPCHAR_MPLEN),
606
                      get_field(qh->epchar, QH_EPCHAR_EPS),
607
                      get_field(qh->epchar, QH_EPCHAR_EP),
608
                      get_field(qh->epchar, QH_EPCHAR_DEVADDR),
609
                      (bool)(qh->epchar & QH_EPCHAR_C),
610
                      (bool)(qh->epchar & QH_EPCHAR_H),
611
                      (bool)(qh->epchar & QH_EPCHAR_DTC),
612
                      (bool)(qh->epchar & QH_EPCHAR_I));
613
}
614

    
615
static void ehci_trace_qtd(EHCIQueue *q, target_phys_addr_t addr, EHCIqtd *qtd)
616
{
617
    trace_usb_ehci_qtd(q, addr, qtd->next, qtd->altnext,
618
                       get_field(qtd->token, QTD_TOKEN_TBYTES),
619
                       get_field(qtd->token, QTD_TOKEN_CPAGE),
620
                       get_field(qtd->token, QTD_TOKEN_CERR),
621
                       get_field(qtd->token, QTD_TOKEN_PID),
622
                       (bool)(qtd->token & QTD_TOKEN_IOC),
623
                       (bool)(qtd->token & QTD_TOKEN_ACTIVE),
624
                       (bool)(qtd->token & QTD_TOKEN_HALT),
625
                       (bool)(qtd->token & QTD_TOKEN_BABBLE),
626
                       (bool)(qtd->token & QTD_TOKEN_XACTERR));
627
}
628

    
629
static void ehci_trace_itd(EHCIState *s, target_phys_addr_t addr, EHCIitd *itd)
630
{
631
    trace_usb_ehci_itd(addr, itd->next);
632
}
633

    
634
/* queue management */
635

    
636
static EHCIQueue *ehci_alloc_queue(EHCIState *ehci, int async)
637
{
638
    EHCIQueue *q;
639

    
640
    q = qemu_mallocz(sizeof(*q));
641
    q->ehci = ehci;
642
    q->async_schedule = async;
643
    QTAILQ_INSERT_HEAD(&ehci->queues, q, next);
644
    trace_usb_ehci_queue_action(q, "alloc");
645
    return q;
646
}
647

    
648
static void ehci_free_queue(EHCIQueue *q)
649
{
650
    trace_usb_ehci_queue_action(q, "free");
651
    if (q->async == EHCI_ASYNC_INFLIGHT) {
652
        usb_cancel_packet(&q->packet);
653
    }
654
    QTAILQ_REMOVE(&q->ehci->queues, q, next);
655
    qemu_free(q);
656
}
657

    
658
static EHCIQueue *ehci_find_queue_by_qh(EHCIState *ehci, uint32_t addr)
659
{
660
    EHCIQueue *q;
661

    
662
    QTAILQ_FOREACH(q, &ehci->queues, next) {
663
        if (addr == q->qhaddr) {
664
            return q;
665
        }
666
    }
667
    return NULL;
668
}
669

    
670
static void ehci_queues_rip_unused(EHCIState *ehci)
671
{
672
    EHCIQueue *q, *tmp;
673

    
674
    QTAILQ_FOREACH_SAFE(q, &ehci->queues, next, tmp) {
675
        if (q->seen) {
676
            q->seen = 0;
677
            q->ts = ehci->last_run_usec;
678
            continue;
679
        }
680
        if (ehci->last_run_usec < q->ts + 250000) {
681
            /* allow 0.25 sec idle */
682
            continue;
683
        }
684
        ehci_free_queue(q);
685
    }
686
}
687

    
688
static void ehci_queues_rip_device(EHCIState *ehci, USBDevice *dev)
689
{
690
    EHCIQueue *q, *tmp;
691

    
692
    QTAILQ_FOREACH_SAFE(q, &ehci->queues, next, tmp) {
693
        if (q->packet.owner != dev) {
694
            continue;
695
        }
696
        ehci_free_queue(q);
697
    }
698
}
699

    
700
static void ehci_queues_rip_all(EHCIState *ehci)
701
{
702
    EHCIQueue *q, *tmp;
703

    
704
    QTAILQ_FOREACH_SAFE(q, &ehci->queues, next, tmp) {
705
        ehci_free_queue(q);
706
    }
707
}
708

    
709
/* Attach or detach a device on root hub */
710

    
711
static void ehci_attach(USBPort *port)
712
{
713
    EHCIState *s = port->opaque;
714
    uint32_t *portsc = &s->portsc[port->index];
715

    
716
    trace_usb_ehci_port_attach(port->index, port->dev->product_desc);
717

    
718
    *portsc |= PORTSC_CONNECT;
719
    *portsc |= PORTSC_CSC;
720

    
721
    /*
722
     *  If a high speed device is attached then we own this port(indicated
723
     *  by zero in the PORTSC_POWNER bit field) so set the status bit
724
     *  and set an interrupt if enabled.
725
     */
726
    if ( !(*portsc & PORTSC_POWNER)) {
727
        ehci_set_interrupt(s, USBSTS_PCD);
728
    }
729
}
730

    
731
static void ehci_detach(USBPort *port)
732
{
733
    EHCIState *s = port->opaque;
734
    uint32_t *portsc = &s->portsc[port->index];
735

    
736
    trace_usb_ehci_port_detach(port->index);
737

    
738
    *portsc &= ~PORTSC_CONNECT;
739
    *portsc |= PORTSC_CSC;
740

    
741
    /*
742
     *  If a high speed device is attached then we own this port(indicated
743
     *  by zero in the PORTSC_POWNER bit field) so set the status bit
744
     *  and set an interrupt if enabled.
745
     */
746
    if ( !(*portsc & PORTSC_POWNER)) {
747
        ehci_set_interrupt(s, USBSTS_PCD);
748
    }
749
}
750

    
751
/* 4.1 host controller initialization */
752
static void ehci_reset(void *opaque)
753
{
754
    EHCIState *s = opaque;
755
    int i;
756

    
757
    trace_usb_ehci_reset();
758

    
759
    memset(&s->mmio[OPREGBASE], 0x00, MMIO_SIZE - OPREGBASE);
760

    
761
    s->usbcmd = NB_MAXINTRATE << USBCMD_ITC_SH;
762
    s->usbsts = USBSTS_HALT;
763

    
764
    s->astate = EST_INACTIVE;
765
    s->pstate = EST_INACTIVE;
766
    s->isoch_pause = -1;
767
    s->attach_poll_counter = 0;
768

    
769
    for(i = 0; i < NB_PORTS; i++) {
770
        s->portsc[i] = PORTSC_POWNER | PORTSC_PPOWER;
771

    
772
        if (s->ports[i].dev) {
773
            usb_attach(&s->ports[i], s->ports[i].dev);
774
        }
775
    }
776
    ehci_queues_rip_all(s);
777
}
778

    
779
static uint32_t ehci_mem_readb(void *ptr, target_phys_addr_t addr)
780
{
781
    EHCIState *s = ptr;
782
    uint32_t val;
783

    
784
    val = s->mmio[addr];
785

    
786
    return val;
787
}
788

    
789
static uint32_t ehci_mem_readw(void *ptr, target_phys_addr_t addr)
790
{
791
    EHCIState *s = ptr;
792
    uint32_t val;
793

    
794
    val = s->mmio[addr] | (s->mmio[addr+1] << 8);
795

    
796
    return val;
797
}
798

    
799
static uint32_t ehci_mem_readl(void *ptr, target_phys_addr_t addr)
800
{
801
    EHCIState *s = ptr;
802
    uint32_t val;
803

    
804
    val = s->mmio[addr] | (s->mmio[addr+1] << 8) |
805
          (s->mmio[addr+2] << 16) | (s->mmio[addr+3] << 24);
806

    
807
    trace_usb_ehci_mmio_readl(addr, addr2str(addr), val);
808
    return val;
809
}
810

    
811
static void ehci_mem_writeb(void *ptr, target_phys_addr_t addr, uint32_t val)
812
{
813
    fprintf(stderr, "EHCI doesn't handle byte writes to MMIO\n");
814
    exit(1);
815
}
816

    
817
static void ehci_mem_writew(void *ptr, target_phys_addr_t addr, uint32_t val)
818
{
819
    fprintf(stderr, "EHCI doesn't handle 16-bit writes to MMIO\n");
820
    exit(1);
821
}
822

    
823
static void handle_port_status_write(EHCIState *s, int port, uint32_t val)
824
{
825
    uint32_t *portsc = &s->portsc[port];
826
    int rwc;
827
    USBDevice *dev = s->ports[port].dev;
828

    
829
    rwc = val & PORTSC_RWC_MASK;
830
    val &= PORTSC_RO_MASK;
831

    
832
    // handle_read_write_clear(&val, portsc, PORTSC_PEDC | PORTSC_CSC);
833

    
834
    *portsc &= ~rwc;
835

    
836
    if ((val & PORTSC_PRESET) && !(*portsc & PORTSC_PRESET)) {
837
        trace_usb_ehci_port_reset(port, 1);
838
    }
839

    
840
    if (!(val & PORTSC_PRESET) &&(*portsc & PORTSC_PRESET)) {
841
        trace_usb_ehci_port_reset(port, 0);
842
        usb_attach(&s->ports[port], dev);
843

    
844
        // TODO how to handle reset of ports with no device
845
        if (dev) {
846
            usb_send_msg(dev, USB_MSG_RESET);
847
        }
848

    
849
        if (s->ports[port].dev) {
850
            *portsc &= ~PORTSC_CSC;
851
        }
852

    
853
        /*  Table 2.16 Set the enable bit(and enable bit change) to indicate
854
         *  to SW that this port has a high speed device attached
855
         *
856
         *  TODO - when to disable?
857
         */
858
        val |= PORTSC_PED;
859
        val |= PORTSC_PEDC;
860
    }
861

    
862
    *portsc &= ~PORTSC_RO_MASK;
863
    *portsc |= val;
864
}
865

    
866
static void ehci_mem_writel(void *ptr, target_phys_addr_t addr, uint32_t val)
867
{
868
    EHCIState *s = ptr;
869
    uint32_t *mmio = (uint32_t *)(&s->mmio[addr]);
870
    uint32_t old = *mmio;
871
    int i;
872

    
873
    trace_usb_ehci_mmio_writel(addr, addr2str(addr), val);
874

    
875
    /* Only aligned reads are allowed on OHCI */
876
    if (addr & 3) {
877
        fprintf(stderr, "usb-ehci: Mis-aligned write to addr 0x"
878
                TARGET_FMT_plx "\n", addr);
879
        return;
880
    }
881

    
882
    if (addr >= PORTSC && addr < PORTSC + 4 * NB_PORTS) {
883
        handle_port_status_write(s, (addr-PORTSC)/4, val);
884
        trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old);
885
        return;
886
    }
887

    
888
    if (addr < OPREGBASE) {
889
        fprintf(stderr, "usb-ehci: write attempt to read-only register"
890
                TARGET_FMT_plx "\n", addr);
891
        return;
892
    }
893

    
894

    
895
    /* Do any register specific pre-write processing here.  */
896
    switch(addr) {
897
    case USBCMD:
898
        if ((val & USBCMD_RUNSTOP) && !(s->usbcmd & USBCMD_RUNSTOP)) {
899
            qemu_mod_timer(s->frame_timer, qemu_get_clock_ns(vm_clock));
900
            SET_LAST_RUN_CLOCK(s);
901
            ehci_clear_usbsts(s, USBSTS_HALT);
902
        }
903

    
904
        if (!(val & USBCMD_RUNSTOP) && (s->usbcmd & USBCMD_RUNSTOP)) {
905
            qemu_del_timer(s->frame_timer);
906
            // TODO - should finish out some stuff before setting halt
907
            ehci_set_usbsts(s, USBSTS_HALT);
908
        }
909

    
910
        if (val & USBCMD_HCRESET) {
911
            ehci_reset(s);
912
            val &= ~USBCMD_HCRESET;
913
        }
914

    
915
        /* not supporting dynamic frame list size at the moment */
916
        if ((val & USBCMD_FLS) && !(s->usbcmd & USBCMD_FLS)) {
917
            fprintf(stderr, "attempt to set frame list size -- value %d\n",
918
                    val & USBCMD_FLS);
919
            val &= ~USBCMD_FLS;
920
        }
921
        break;
922

    
923
    case USBSTS:
924
        val &= USBSTS_RO_MASK;              // bits 6 thru 31 are RO
925
        ehci_clear_usbsts(s, val);          // bits 0 thru 5 are R/WC
926
        val = s->usbsts;
927
        ehci_set_interrupt(s, 0);
928
        break;
929

    
930
    case USBINTR:
931
        val &= USBINTR_MASK;
932
        break;
933

    
934
    case FRINDEX:
935
        s->sofv = val >> 3;
936
        break;
937

    
938
    case CONFIGFLAG:
939
        val &= 0x1;
940
        if (val) {
941
            for(i = 0; i < NB_PORTS; i++)
942
                s->portsc[i] &= ~PORTSC_POWNER;
943
        }
944
        break;
945

    
946
    case PERIODICLISTBASE:
947
        if ((s->usbcmd & USBCMD_PSE) && (s->usbcmd & USBCMD_RUNSTOP)) {
948
            fprintf(stderr,
949
              "ehci: PERIODIC list base register set while periodic schedule\n"
950
              "      is enabled and HC is enabled\n");
951
        }
952
        break;
953

    
954
    case ASYNCLISTADDR:
955
        if ((s->usbcmd & USBCMD_ASE) && (s->usbcmd & USBCMD_RUNSTOP)) {
956
            fprintf(stderr,
957
              "ehci: ASYNC list address register set while async schedule\n"
958
              "      is enabled and HC is enabled\n");
959
        }
960
        break;
961
    }
962

    
963
    *mmio = val;
964
    trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old);
965
}
966

    
967

    
968
// TODO : Put in common header file, duplication from usb-ohci.c
969

    
970
/* Get an array of dwords from main memory */
971
static inline int get_dwords(uint32_t addr, uint32_t *buf, int num)
972
{
973
    int i;
974

    
975
    for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
976
        cpu_physical_memory_rw(addr,(uint8_t *)buf, sizeof(*buf), 0);
977
        *buf = le32_to_cpu(*buf);
978
    }
979

    
980
    return 1;
981
}
982

    
983
/* Put an array of dwords in to main memory */
984
static inline int put_dwords(uint32_t addr, uint32_t *buf, int num)
985
{
986
    int i;
987

    
988
    for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
989
        uint32_t tmp = cpu_to_le32(*buf);
990
        cpu_physical_memory_rw(addr,(uint8_t *)&tmp, sizeof(tmp), 1);
991
    }
992

    
993
    return 1;
994
}
995

    
996
// 4.10.2
997

    
998
static int ehci_qh_do_overlay(EHCIQueue *q)
999
{
1000
    int i;
1001
    int dtoggle;
1002
    int ping;
1003
    int eps;
1004
    int reload;
1005

    
1006
    // remember values in fields to preserve in qh after overlay
1007

    
1008
    dtoggle = q->qh.token & QTD_TOKEN_DTOGGLE;
1009
    ping    = q->qh.token & QTD_TOKEN_PING;
1010

    
1011
    q->qh.current_qtd = q->qtdaddr;
1012
    q->qh.next_qtd    = q->qtd.next;
1013
    q->qh.altnext_qtd = q->qtd.altnext;
1014
    q->qh.token       = q->qtd.token;
1015

    
1016

    
1017
    eps = get_field(q->qh.epchar, QH_EPCHAR_EPS);
1018
    if (eps == EHCI_QH_EPS_HIGH) {
1019
        q->qh.token &= ~QTD_TOKEN_PING;
1020
        q->qh.token |= ping;
1021
    }
1022

    
1023
    reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1024
    set_field(&q->qh.altnext_qtd, reload, QH_ALTNEXT_NAKCNT);
1025

    
1026
    for (i = 0; i < 5; i++) {
1027
        q->qh.bufptr[i] = q->qtd.bufptr[i];
1028
    }
1029

    
1030
    if (!(q->qh.epchar & QH_EPCHAR_DTC)) {
1031
        // preserve QH DT bit
1032
        q->qh.token &= ~QTD_TOKEN_DTOGGLE;
1033
        q->qh.token |= dtoggle;
1034
    }
1035

    
1036
    q->qh.bufptr[1] &= ~BUFPTR_CPROGMASK_MASK;
1037
    q->qh.bufptr[2] &= ~BUFPTR_FRAMETAG_MASK;
1038

    
1039
    put_dwords(NLPTR_GET(q->qhaddr), (uint32_t *) &q->qh, sizeof(EHCIqh) >> 2);
1040

    
1041
    return 0;
1042
}
1043

    
1044
static int ehci_buffer_rw(EHCIQueue *q, int bytes, int rw)
1045
{
1046
    int bufpos = 0;
1047
    int cpage, offset;
1048
    uint32_t head;
1049
    uint32_t tail;
1050

    
1051

    
1052
    if (!bytes) {
1053
        return 0;
1054
    }
1055

    
1056
    cpage = get_field(q->qh.token, QTD_TOKEN_CPAGE);
1057
    if (cpage > 4) {
1058
        fprintf(stderr, "cpage out of range (%d)\n", cpage);
1059
        return USB_RET_PROCERR;
1060
    }
1061

    
1062
    offset = q->qh.bufptr[0] & ~QTD_BUFPTR_MASK;
1063

    
1064
    do {
1065
        /* start and end of this page */
1066
        head = q->qh.bufptr[cpage] & QTD_BUFPTR_MASK;
1067
        tail = head + ~QTD_BUFPTR_MASK + 1;
1068
        /* add offset into page */
1069
        head |= offset;
1070

    
1071
        if (bytes <= (tail - head)) {
1072
            tail = head + bytes;
1073
        }
1074

    
1075
        trace_usb_ehci_data(rw, cpage, offset, head, tail-head, bufpos);
1076
        cpu_physical_memory_rw(head, q->buffer + bufpos, tail - head, rw);
1077

    
1078
        bufpos += (tail - head);
1079
        offset += (tail - head);
1080
        bytes -= (tail - head);
1081

    
1082
        if (bytes > 0) {
1083
            cpage++;
1084
            offset = 0;
1085
        }
1086
    } while (bytes > 0);
1087

    
1088
    /* save cpage */
1089
    set_field(&q->qh.token, cpage, QTD_TOKEN_CPAGE);
1090

    
1091
    /* save offset into cpage */
1092
    q->qh.bufptr[0] &= QTD_BUFPTR_MASK;
1093
    q->qh.bufptr[0] |= offset;
1094

    
1095
    return 0;
1096
}
1097

    
1098
static void ehci_async_complete_packet(USBDevice *dev, USBPacket *packet)
1099
{
1100
    EHCIQueue *q = container_of(packet, EHCIQueue, packet);
1101

    
1102
    trace_usb_ehci_queue_action(q, "wakeup");
1103
    assert(q->async == EHCI_ASYNC_INFLIGHT);
1104
    q->async = EHCI_ASYNC_FINISHED;
1105
    q->usb_status = packet->len;
1106
}
1107

    
1108
static void ehci_execute_complete(EHCIQueue *q)
1109
{
1110
    int c_err, reload;
1111

    
1112
    assert(q->async != EHCI_ASYNC_INFLIGHT);
1113
    q->async = EHCI_ASYNC_NONE;
1114

    
1115
    DPRINTF("execute_complete: qhaddr 0x%x, next %x, qtdaddr 0x%x, status %d\n",
1116
            q->qhaddr, q->qh.next, q->qtdaddr, q->usb_status);
1117

    
1118
    if (q->usb_status < 0) {
1119
err:
1120
        /* TO-DO: put this is in a function that can be invoked below as well */
1121
        c_err = get_field(q->qh.token, QTD_TOKEN_CERR);
1122
        c_err--;
1123
        set_field(&q->qh.token, c_err, QTD_TOKEN_CERR);
1124

    
1125
        switch(q->usb_status) {
1126
        case USB_RET_NODEV:
1127
            q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_XACTERR);
1128
            ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1129
            break;
1130
        case USB_RET_STALL:
1131
            q->qh.token |= QTD_TOKEN_HALT;
1132
            ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1133
            break;
1134
        case USB_RET_NAK:
1135
            /* 4.10.3 */
1136
            reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1137
            if ((q->pid == USB_TOKEN_IN) && reload) {
1138
                int nakcnt = get_field(q->qh.altnext_qtd, QH_ALTNEXT_NAKCNT);
1139
                nakcnt--;
1140
                set_field(&q->qh.altnext_qtd, nakcnt, QH_ALTNEXT_NAKCNT);
1141
            } else if (!reload) {
1142
                return;
1143
            }
1144
            break;
1145
        case USB_RET_BABBLE:
1146
            q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_BABBLE);
1147
            ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1148
            break;
1149
        default:
1150
            /* should not be triggerable */
1151
            fprintf(stderr, "USB invalid response %d to handle\n", q->usb_status);
1152
            assert(0);
1153
            break;
1154
        }
1155
    } else {
1156
        // DPRINTF("Short packet condition\n");
1157
        // TODO check 4.12 for splits
1158

    
1159
        if ((q->usb_status > q->tbytes) && (q->pid == USB_TOKEN_IN)) {
1160
            q->usb_status = USB_RET_BABBLE;
1161
            goto err;
1162
        }
1163

    
1164
        if (q->tbytes && q->pid == USB_TOKEN_IN) {
1165
            if (ehci_buffer_rw(q, q->usb_status, 1) != 0) {
1166
                q->usb_status = USB_RET_PROCERR;
1167
                return;
1168
            }
1169
            q->tbytes -= q->usb_status;
1170
        } else {
1171
            q->tbytes = 0;
1172
        }
1173

    
1174
        DPRINTF("updating tbytes to %d\n", q->tbytes);
1175
        set_field(&q->qh.token, q->tbytes, QTD_TOKEN_TBYTES);
1176
    }
1177

    
1178
    q->qh.token ^= QTD_TOKEN_DTOGGLE;
1179
    q->qh.token &= ~QTD_TOKEN_ACTIVE;
1180

    
1181
    if ((q->usb_status >= 0) && (q->qh.token & QTD_TOKEN_IOC)) {
1182
        ehci_record_interrupt(q->ehci, USBSTS_INT);
1183
    }
1184
}
1185

    
1186
// 4.10.3
1187

    
1188
static int ehci_execute(EHCIQueue *q)
1189
{
1190
    USBPort *port;
1191
    USBDevice *dev;
1192
    int ret;
1193
    int i;
1194
    int endp;
1195
    int devadr;
1196

    
1197
    if ( !(q->qh.token & QTD_TOKEN_ACTIVE)) {
1198
        fprintf(stderr, "Attempting to execute inactive QH\n");
1199
        return USB_RET_PROCERR;
1200
    }
1201

    
1202
    q->tbytes = (q->qh.token & QTD_TOKEN_TBYTES_MASK) >> QTD_TOKEN_TBYTES_SH;
1203
    if (q->tbytes > BUFF_SIZE) {
1204
        fprintf(stderr, "Request for more bytes than allowed\n");
1205
        return USB_RET_PROCERR;
1206
    }
1207

    
1208
    q->pid = (q->qh.token & QTD_TOKEN_PID_MASK) >> QTD_TOKEN_PID_SH;
1209
    switch(q->pid) {
1210
        case 0: q->pid = USB_TOKEN_OUT; break;
1211
        case 1: q->pid = USB_TOKEN_IN; break;
1212
        case 2: q->pid = USB_TOKEN_SETUP; break;
1213
        default: fprintf(stderr, "bad token\n"); break;
1214
    }
1215

    
1216
    if ((q->tbytes && q->pid != USB_TOKEN_IN) &&
1217
        (ehci_buffer_rw(q, q->tbytes, 0) != 0)) {
1218
        return USB_RET_PROCERR;
1219
    }
1220

    
1221
    endp = get_field(q->qh.epchar, QH_EPCHAR_EP);
1222
    devadr = get_field(q->qh.epchar, QH_EPCHAR_DEVADDR);
1223

    
1224
    ret = USB_RET_NODEV;
1225

    
1226
    // TO-DO: associating device with ehci port
1227
    for(i = 0; i < NB_PORTS; i++) {
1228
        port = &q->ehci->ports[i];
1229
        dev = port->dev;
1230

    
1231
        // TODO sometime we will also need to check if we are the port owner
1232

    
1233
        if (!(q->ehci->portsc[i] &(PORTSC_CONNECT))) {
1234
            DPRINTF("Port %d, no exec, not connected(%08X)\n",
1235
                    i, q->ehci->portsc[i]);
1236
            continue;
1237
        }
1238

    
1239
        q->packet.pid = q->pid;
1240
        q->packet.devaddr = devadr;
1241
        q->packet.devep = endp;
1242
        q->packet.data = q->buffer;
1243
        q->packet.len = q->tbytes;
1244

    
1245
        ret = usb_handle_packet(dev, &q->packet);
1246

    
1247
        DPRINTF("submit: qh %x next %x qtd %x pid %x len %d (total %d) endp %x ret %d\n",
1248
                q->qhaddr, q->qh.next, q->qtdaddr, q->pid,
1249
                q->packet.len, q->tbytes, endp, ret);
1250

    
1251
        if (ret != USB_RET_NODEV) {
1252
            break;
1253
        }
1254
    }
1255

    
1256
    if (ret > BUFF_SIZE) {
1257
        fprintf(stderr, "ret from usb_handle_packet > BUFF_SIZE\n");
1258
        return USB_RET_PROCERR;
1259
    }
1260

    
1261
    return ret;
1262
}
1263

    
1264
/*  4.7.2
1265
 */
1266

    
1267
static int ehci_process_itd(EHCIState *ehci,
1268
                            EHCIitd *itd)
1269
{
1270
    USBPort *port;
1271
    USBDevice *dev;
1272
    int ret;
1273
    int i, j;
1274
    int ptr;
1275
    int pid;
1276
    int pg;
1277
    int len;
1278
    int dir;
1279
    int devadr;
1280
    int endp;
1281

    
1282
    dir =(itd->bufptr[1] & ITD_BUFPTR_DIRECTION);
1283
    devadr = get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR);
1284
    endp = get_field(itd->bufptr[0], ITD_BUFPTR_EP);
1285
    /* maxpkt = get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT); */
1286

    
1287
    for(i = 0; i < 8; i++) {
1288
        if (itd->transact[i] & ITD_XACT_ACTIVE) {
1289
            DPRINTF("ISOCHRONOUS active for frame %d, interval %d\n",
1290
                    ehci->frindex >> 3, i);
1291

    
1292
            pg = get_field(itd->transact[i], ITD_XACT_PGSEL);
1293
            ptr = (itd->bufptr[pg] & ITD_BUFPTR_MASK) |
1294
                (itd->transact[i] & ITD_XACT_OFFSET_MASK);
1295
            len = get_field(itd->transact[i], ITD_XACT_LENGTH);
1296

    
1297
            if (len > BUFF_SIZE) {
1298
                return USB_RET_PROCERR;
1299
            }
1300

    
1301
            DPRINTF("ISOCH: buffer %08X len %d\n", ptr, len);
1302

    
1303
            if (!dir) {
1304
                cpu_physical_memory_rw(ptr, &ehci->ibuffer[0], len, 0);
1305
                pid = USB_TOKEN_OUT;
1306
            } else
1307
                pid = USB_TOKEN_IN;
1308

    
1309
            ret = USB_RET_NODEV;
1310

    
1311
            for (j = 0; j < NB_PORTS; j++) {
1312
                port = &ehci->ports[j];
1313
                dev = port->dev;
1314

    
1315
                // TODO sometime we will also need to check if we are the port owner
1316

    
1317
                if (!(ehci->portsc[j] &(PORTSC_CONNECT))) {
1318
                    DPRINTF("Port %d, no exec, not connected(%08X)\n",
1319
                            j, ehci->portsc[j]);
1320
                    continue;
1321
                }
1322

    
1323
                ehci->ipacket.pid = pid;
1324
                ehci->ipacket.devaddr = devadr;
1325
                ehci->ipacket.devep = endp;
1326
                ehci->ipacket.data = ehci->ibuffer;
1327
                ehci->ipacket.len = len;
1328

    
1329
                DPRINTF("calling usb_handle_packet\n");
1330
                ret = usb_handle_packet(dev, &ehci->ipacket);
1331

    
1332
                if (ret != USB_RET_NODEV) {
1333
                    break;
1334
                }
1335
            }
1336

    
1337
            /*  In isoch, there is no facility to indicate a NAK so let's
1338
             *  instead just complete a zero-byte transaction.  Setting
1339
             *  DBERR seems too draconian.
1340
             */
1341

    
1342
            if (ret == USB_RET_NAK) {
1343
                if (ehci->isoch_pause > 0) {
1344
                    DPRINTF("ISOCH: received a NAK but paused so returning\n");
1345
                    ehci->isoch_pause--;
1346
                    return 0;
1347
                } else if (ehci->isoch_pause == -1) {
1348
                    DPRINTF("ISOCH: recv NAK & isoch pause inactive, setting\n");
1349
                    // Pause frindex for up to 50 msec waiting for data from
1350
                    // remote
1351
                    ehci->isoch_pause = 50;
1352
                    return 0;
1353
                } else {
1354
                    DPRINTF("ISOCH: isoch pause timeout! return 0\n");
1355
                    ret = 0;
1356
                }
1357
            } else {
1358
                DPRINTF("ISOCH: received ACK, clearing pause\n");
1359
                ehci->isoch_pause = -1;
1360
            }
1361

    
1362
            if (ret >= 0) {
1363
                itd->transact[i] &= ~ITD_XACT_ACTIVE;
1364

    
1365
                if (itd->transact[i] & ITD_XACT_IOC) {
1366
                    ehci_record_interrupt(ehci, USBSTS_INT);
1367
                }
1368
            }
1369

    
1370
            if (ret >= 0 && dir) {
1371
                cpu_physical_memory_rw(ptr, &ehci->ibuffer[0], len, 1);
1372

    
1373
                if (ret != len) {
1374
                    DPRINTF("ISOCH IN expected %d, got %d\n",
1375
                            len, ret);
1376
                    set_field(&itd->transact[i], ret, ITD_XACT_LENGTH);
1377
                }
1378
            }
1379
        }
1380
    }
1381
    return 0;
1382
}
1383

    
1384
/*  This state is the entry point for asynchronous schedule
1385
 *  processing.  Entry here consitutes a EHCI start event state (4.8.5)
1386
 */
1387
static int ehci_state_waitlisthead(EHCIState *ehci,  int async)
1388
{
1389
    EHCIqh qh;
1390
    int i = 0;
1391
    int again = 0;
1392
    uint32_t entry = ehci->asynclistaddr;
1393

    
1394
    /* set reclamation flag at start event (4.8.6) */
1395
    if (async) {
1396
        ehci_set_usbsts(ehci, USBSTS_REC);
1397
    }
1398

    
1399
    ehci_queues_rip_unused(ehci);
1400

    
1401
    /*  Find the head of the list (4.9.1.1) */
1402
    for(i = 0; i < MAX_QH; i++) {
1403
        get_dwords(NLPTR_GET(entry), (uint32_t *) &qh, sizeof(EHCIqh) >> 2);
1404
        ehci_trace_qh(NULL, NLPTR_GET(entry), &qh);
1405

    
1406
        if (qh.epchar & QH_EPCHAR_H) {
1407
            if (async) {
1408
                entry |= (NLPTR_TYPE_QH << 1);
1409
            }
1410

    
1411
            ehci_set_fetch_addr(ehci, async, entry);
1412
            ehci_set_state(ehci, async, EST_FETCHENTRY);
1413
            again = 1;
1414
            goto out;
1415
        }
1416

    
1417
        entry = qh.next;
1418
        if (entry == ehci->asynclistaddr) {
1419
            break;
1420
        }
1421
    }
1422

    
1423
    /* no head found for list. */
1424

    
1425
    ehci_set_state(ehci, async, EST_ACTIVE);
1426

    
1427
out:
1428
    return again;
1429
}
1430

    
1431

    
1432
/*  This state is the entry point for periodic schedule processing as
1433
 *  well as being a continuation state for async processing.
1434
 */
1435
static int ehci_state_fetchentry(EHCIState *ehci, int async)
1436
{
1437
    int again = 0;
1438
    uint32_t entry = ehci_get_fetch_addr(ehci, async);
1439

    
1440
    if (entry < 0x1000) {
1441
        DPRINTF("fetchentry: entry invalid (0x%08x)\n", entry);
1442
        ehci_set_state(ehci, async, EST_ACTIVE);
1443
        goto out;
1444
    }
1445

    
1446
    /* section 4.8, only QH in async schedule */
1447
    if (async && (NLPTR_TYPE_GET(entry) != NLPTR_TYPE_QH)) {
1448
        fprintf(stderr, "non queue head request in async schedule\n");
1449
        return -1;
1450
    }
1451

    
1452
    switch (NLPTR_TYPE_GET(entry)) {
1453
    case NLPTR_TYPE_QH:
1454
        ehci_set_state(ehci, async, EST_FETCHQH);
1455
        again = 1;
1456
        break;
1457

    
1458
    case NLPTR_TYPE_ITD:
1459
        ehci_set_state(ehci, async, EST_FETCHITD);
1460
        again = 1;
1461
        break;
1462

    
1463
    default:
1464
        // TODO: handle siTD and FSTN types
1465
        fprintf(stderr, "FETCHENTRY: entry at %X is of type %d "
1466
                "which is not supported yet\n", entry, NLPTR_TYPE_GET(entry));
1467
        return -1;
1468
    }
1469

    
1470
out:
1471
    return again;
1472
}
1473

    
1474
static EHCIQueue *ehci_state_fetchqh(EHCIState *ehci, int async)
1475
{
1476
    uint32_t entry;
1477
    EHCIQueue *q;
1478
    int reload;
1479

    
1480
    entry = ehci_get_fetch_addr(ehci, async);
1481
    q = ehci_find_queue_by_qh(ehci, entry);
1482
    if (NULL == q) {
1483
        q = ehci_alloc_queue(ehci, async);
1484
    }
1485
    q->qhaddr = entry;
1486
    q->seen++;
1487

    
1488
    if (q->seen > 1) {
1489
        /* we are going in circles -- stop processing */
1490
        ehci_set_state(ehci, async, EST_ACTIVE);
1491
        q = NULL;
1492
        goto out;
1493
    }
1494

    
1495
    get_dwords(NLPTR_GET(q->qhaddr), (uint32_t *) &q->qh, sizeof(EHCIqh) >> 2);
1496
    ehci_trace_qh(q, NLPTR_GET(q->qhaddr), &q->qh);
1497

    
1498
    if (q->async == EHCI_ASYNC_INFLIGHT) {
1499
        /* I/O still in progress -- skip queue */
1500
        ehci_set_state(ehci, async, EST_HORIZONTALQH);
1501
        goto out;
1502
    }
1503
    if (q->async == EHCI_ASYNC_FINISHED) {
1504
        /* I/O finished -- continue processing queue */
1505
        trace_usb_ehci_queue_action(q, "resume");
1506
        ehci_set_state(ehci, async, EST_EXECUTING);
1507
        goto out;
1508
    }
1509

    
1510
    if (async && (q->qh.epchar & QH_EPCHAR_H)) {
1511

    
1512
        /*  EHCI spec version 1.0 Section 4.8.3 & 4.10.1 */
1513
        if (ehci->usbsts & USBSTS_REC) {
1514
            ehci_clear_usbsts(ehci, USBSTS_REC);
1515
        } else {
1516
            DPRINTF("FETCHQH:  QH 0x%08x. H-bit set, reclamation status reset"
1517
                       " - done processing\n", q->qhaddr);
1518
            ehci_set_state(ehci, async, EST_ACTIVE);
1519
            q = NULL;
1520
            goto out;
1521
        }
1522
    }
1523

    
1524
#if EHCI_DEBUG
1525
    if (q->qhaddr != q->qh.next) {
1526
    DPRINTF("FETCHQH:  QH 0x%08x (h %x halt %x active %x) next 0x%08x\n",
1527
               q->qhaddr,
1528
               q->qh.epchar & QH_EPCHAR_H,
1529
               q->qh.token & QTD_TOKEN_HALT,
1530
               q->qh.token & QTD_TOKEN_ACTIVE,
1531
               q->qh.next);
1532
    }
1533
#endif
1534

    
1535
    reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1536
    if (reload) {
1537
        set_field(&q->qh.altnext_qtd, reload, QH_ALTNEXT_NAKCNT);
1538
    }
1539

    
1540
    if (q->qh.token & QTD_TOKEN_HALT) {
1541
        ehci_set_state(ehci, async, EST_HORIZONTALQH);
1542

    
1543
    } else if ((q->qh.token & QTD_TOKEN_ACTIVE) && (q->qh.current_qtd > 0x1000)) {
1544
        q->qtdaddr = q->qh.current_qtd;
1545
        ehci_set_state(ehci, async, EST_FETCHQTD);
1546

    
1547
    } else {
1548
        /*  EHCI spec version 1.0 Section 4.10.2 */
1549
        ehci_set_state(ehci, async, EST_ADVANCEQUEUE);
1550
    }
1551

    
1552
out:
1553
    return q;
1554
}
1555

    
1556
static int ehci_state_fetchitd(EHCIState *ehci, int async)
1557
{
1558
    uint32_t entry;
1559
    EHCIitd itd;
1560

    
1561
    assert(!async);
1562
    entry = ehci_get_fetch_addr(ehci, async);
1563

    
1564
    get_dwords(NLPTR_GET(entry),(uint32_t *) &itd,
1565
               sizeof(EHCIitd) >> 2);
1566
    ehci_trace_itd(ehci, entry, &itd);
1567

    
1568
    if (ehci_process_itd(ehci, &itd) != 0) {
1569
        return -1;
1570
    }
1571

    
1572
    put_dwords(NLPTR_GET(entry), (uint32_t *) &itd,
1573
                sizeof(EHCIitd) >> 2);
1574
    ehci_set_fetch_addr(ehci, async, itd.next);
1575
    ehci_set_state(ehci, async, EST_FETCHENTRY);
1576

    
1577
    return 1;
1578
}
1579

    
1580
/* Section 4.10.2 - paragraph 3 */
1581
static int ehci_state_advqueue(EHCIQueue *q, int async)
1582
{
1583
#if 0
1584
    /* TO-DO: 4.10.2 - paragraph 2
1585
     * if I-bit is set to 1 and QH is not active
1586
     * go to horizontal QH
1587
     */
1588
    if (I-bit set) {
1589
        ehci_set_state(ehci, async, EST_HORIZONTALQH);
1590
        goto out;
1591
    }
1592
#endif
1593

    
1594
    /*
1595
     * want data and alt-next qTD is valid
1596
     */
1597
    if (((q->qh.token & QTD_TOKEN_TBYTES_MASK) != 0) &&
1598
        (q->qh.altnext_qtd > 0x1000) &&
1599
        (NLPTR_TBIT(q->qh.altnext_qtd) == 0)) {
1600
        q->qtdaddr = q->qh.altnext_qtd;
1601
        ehci_set_state(q->ehci, async, EST_FETCHQTD);
1602

    
1603
    /*
1604
     *  next qTD is valid
1605
     */
1606
    } else if ((q->qh.next_qtd > 0x1000) &&
1607
               (NLPTR_TBIT(q->qh.next_qtd) == 0)) {
1608
        q->qtdaddr = q->qh.next_qtd;
1609
        ehci_set_state(q->ehci, async, EST_FETCHQTD);
1610

    
1611
    /*
1612
     *  no valid qTD, try next QH
1613
     */
1614
    } else {
1615
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1616
    }
1617

    
1618
    return 1;
1619
}
1620

    
1621
/* Section 4.10.2 - paragraph 4 */
1622
static int ehci_state_fetchqtd(EHCIQueue *q, int async)
1623
{
1624
    int again = 0;
1625

    
1626
    get_dwords(NLPTR_GET(q->qtdaddr),(uint32_t *) &q->qtd, sizeof(EHCIqtd) >> 2);
1627
    ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), &q->qtd);
1628

    
1629
    if (q->qtd.token & QTD_TOKEN_ACTIVE) {
1630
        ehci_set_state(q->ehci, async, EST_EXECUTE);
1631
        again = 1;
1632
    } else {
1633
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1634
        again = 1;
1635
    }
1636

    
1637
    return again;
1638
}
1639

    
1640
static int ehci_state_horizqh(EHCIQueue *q, int async)
1641
{
1642
    int again = 0;
1643

    
1644
    if (ehci_get_fetch_addr(q->ehci, async) != q->qh.next) {
1645
        ehci_set_fetch_addr(q->ehci, async, q->qh.next);
1646
        ehci_set_state(q->ehci, async, EST_FETCHENTRY);
1647
        again = 1;
1648
    } else {
1649
        ehci_set_state(q->ehci, async, EST_ACTIVE);
1650
    }
1651

    
1652
    return again;
1653
}
1654

    
1655
/*
1656
 *  Write the qh back to guest physical memory.  This step isn't
1657
 *  in the EHCI spec but we need to do it since we don't share
1658
 *  physical memory with our guest VM.
1659
 *
1660
 *  The first three dwords are read-only for the EHCI, so skip them
1661
 *  when writing back the qh.
1662
 */
1663
static void ehci_flush_qh(EHCIQueue *q)
1664
{
1665
    uint32_t *qh = (uint32_t *) &q->qh;
1666
    uint32_t dwords = sizeof(EHCIqh) >> 2;
1667
    uint32_t addr = NLPTR_GET(q->qhaddr);
1668

    
1669
    put_dwords(addr + 3 * sizeof(uint32_t), qh + 3, dwords - 3);
1670
}
1671

    
1672
static int ehci_state_execute(EHCIQueue *q, int async)
1673
{
1674
    int again = 0;
1675
    int reload, nakcnt;
1676
    int smask;
1677

    
1678
    if (ehci_qh_do_overlay(q) != 0) {
1679
        return -1;
1680
    }
1681

    
1682
    smask = get_field(q->qh.epcap, QH_EPCAP_SMASK);
1683

    
1684
    if (!smask) {
1685
        reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1686
        nakcnt = get_field(q->qh.altnext_qtd, QH_ALTNEXT_NAKCNT);
1687
        if (reload && !nakcnt) {
1688
            ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1689
            again = 1;
1690
            goto out;
1691
        }
1692
    }
1693

    
1694
    // TODO verify enough time remains in the uframe as in 4.4.1.1
1695
    // TODO write back ptr to async list when done or out of time
1696
    // TODO Windows does not seem to ever set the MULT field
1697

    
1698
    if (!async) {
1699
        int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT);
1700
        if (!transactCtr) {
1701
            ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1702
            again = 1;
1703
            goto out;
1704
        }
1705
    }
1706

    
1707
    if (async) {
1708
        ehci_set_usbsts(q->ehci, USBSTS_REC);
1709
    }
1710

    
1711
    q->usb_status = ehci_execute(q);
1712
    if (q->usb_status == USB_RET_PROCERR) {
1713
        again = -1;
1714
        goto out;
1715
    }
1716
    if (q->usb_status == USB_RET_ASYNC) {
1717
        ehci_flush_qh(q);
1718
        trace_usb_ehci_queue_action(q, "suspend");
1719
        q->async = EHCI_ASYNC_INFLIGHT;
1720
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1721
        again = 1;
1722
        goto out;
1723
    }
1724

    
1725
    ehci_set_state(q->ehci, async, EST_EXECUTING);
1726
    again = 1;
1727

    
1728
out:
1729
    return again;
1730
}
1731

    
1732
static int ehci_state_executing(EHCIQueue *q, int async)
1733
{
1734
    int again = 0;
1735
    int reload, nakcnt;
1736

    
1737
    ehci_execute_complete(q);
1738
    if (q->usb_status == USB_RET_ASYNC) {
1739
        goto out;
1740
    }
1741
    if (q->usb_status == USB_RET_PROCERR) {
1742
        again = -1;
1743
        goto out;
1744
    }
1745

    
1746
    // 4.10.3
1747
    if (!async) {
1748
        int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT);
1749
        transactCtr--;
1750
        set_field(&q->qh.epcap, transactCtr, QH_EPCAP_MULT);
1751
        // 4.10.3, bottom of page 82, should exit this state when transaction
1752
        // counter decrements to 0
1753
    }
1754

    
1755
    reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1756
    if (reload) {
1757
        nakcnt = get_field(q->qh.altnext_qtd, QH_ALTNEXT_NAKCNT);
1758
        if (q->usb_status == USB_RET_NAK) {
1759
            if (nakcnt) {
1760
                nakcnt--;
1761
            }
1762
        } else {
1763
            nakcnt = reload;
1764
        }
1765
        set_field(&q->qh.altnext_qtd, nakcnt, QH_ALTNEXT_NAKCNT);
1766
    }
1767

    
1768
    /* 4.10.5 */
1769
    if ((q->usb_status == USB_RET_NAK) || (q->qh.token & QTD_TOKEN_ACTIVE)) {
1770
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1771
    } else {
1772
        ehci_set_state(q->ehci, async, EST_WRITEBACK);
1773
    }
1774

    
1775
    again = 1;
1776

    
1777
out:
1778
    ehci_flush_qh(q);
1779
    return again;
1780
}
1781

    
1782

    
1783
static int ehci_state_writeback(EHCIQueue *q, int async)
1784
{
1785
    int again = 0;
1786

    
1787
    /*  Write back the QTD from the QH area */
1788
    ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), (EHCIqtd*) &q->qh.next_qtd);
1789
    put_dwords(NLPTR_GET(q->qtdaddr),(uint32_t *) &q->qh.next_qtd,
1790
                sizeof(EHCIqtd) >> 2);
1791

    
1792
    /*
1793
     * EHCI specs say go horizontal here.
1794
     *
1795
     * We can also advance the queue here for performance reasons.  We
1796
     * need to take care to only take that shortcut in case we've
1797
     * processed the qtd just written back without errors, i.e. halt
1798
     * bit is clear.
1799
     */
1800
    if (q->qh.token & QTD_TOKEN_HALT) {
1801
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1802
        again = 1;
1803
    } else {
1804
        ehci_set_state(q->ehci, async, EST_ADVANCEQUEUE);
1805
        again = 1;
1806
    }
1807
    return again;
1808
}
1809

    
1810
/*
1811
 * This is the state machine that is common to both async and periodic
1812
 */
1813

    
1814
static void ehci_advance_state(EHCIState *ehci,
1815
                               int async)
1816
{
1817
    EHCIQueue *q = NULL;
1818
    int again;
1819
    int iter = 0;
1820

    
1821
    do {
1822
        if (ehci_get_state(ehci, async) == EST_FETCHQH) {
1823
            iter++;
1824
            /* if we are roaming a lot of QH without executing a qTD
1825
             * something is wrong with the linked list. TO-DO: why is
1826
             * this hack needed?
1827
             */
1828
            assert(iter < MAX_ITERATIONS);
1829
#if 0
1830
            if (iter > MAX_ITERATIONS) {
1831
                DPRINTF("\n*** advance_state: bailing on MAX ITERATIONS***\n");
1832
                ehci_set_state(ehci, async, EST_ACTIVE);
1833
                break;
1834
            }
1835
#endif
1836
        }
1837
        switch(ehci_get_state(ehci, async)) {
1838
        case EST_WAITLISTHEAD:
1839
            again = ehci_state_waitlisthead(ehci, async);
1840
            break;
1841

    
1842
        case EST_FETCHENTRY:
1843
            again = ehci_state_fetchentry(ehci, async);
1844
            break;
1845

    
1846
        case EST_FETCHQH:
1847
            q = ehci_state_fetchqh(ehci, async);
1848
            again = q ? 1 : 0;
1849
            break;
1850

    
1851
        case EST_FETCHITD:
1852
            again = ehci_state_fetchitd(ehci, async);
1853
            break;
1854

    
1855
        case EST_ADVANCEQUEUE:
1856
            again = ehci_state_advqueue(q, async);
1857
            break;
1858

    
1859
        case EST_FETCHQTD:
1860
            again = ehci_state_fetchqtd(q, async);
1861
            break;
1862

    
1863
        case EST_HORIZONTALQH:
1864
            again = ehci_state_horizqh(q, async);
1865
            break;
1866

    
1867
        case EST_EXECUTE:
1868
            iter = 0;
1869
            again = ehci_state_execute(q, async);
1870
            break;
1871

    
1872
        case EST_EXECUTING:
1873
            assert(q != NULL);
1874
            again = ehci_state_executing(q, async);
1875
            break;
1876

    
1877
        case EST_WRITEBACK:
1878
            again = ehci_state_writeback(q, async);
1879
            break;
1880

    
1881
        default:
1882
            fprintf(stderr, "Bad state!\n");
1883
            again = -1;
1884
            assert(0);
1885
            break;
1886
        }
1887

    
1888
        if (again < 0) {
1889
            fprintf(stderr, "processing error - resetting ehci HC\n");
1890
            ehci_reset(ehci);
1891
            again = 0;
1892
            assert(0);
1893
        }
1894
    }
1895
    while (again);
1896

    
1897
    ehci_commit_interrupt(ehci);
1898
}
1899

    
1900
static void ehci_advance_async_state(EHCIState *ehci)
1901
{
1902
    int async = 1;
1903

    
1904
    switch(ehci_get_state(ehci, async)) {
1905
    case EST_INACTIVE:
1906
        if (!(ehci->usbcmd & USBCMD_ASE)) {
1907
            break;
1908
        }
1909
        ehci_set_usbsts(ehci, USBSTS_ASS);
1910
        ehci_set_state(ehci, async, EST_ACTIVE);
1911
        // No break, fall through to ACTIVE
1912

    
1913
    case EST_ACTIVE:
1914
        if ( !(ehci->usbcmd & USBCMD_ASE)) {
1915
            ehci_clear_usbsts(ehci, USBSTS_ASS);
1916
            ehci_set_state(ehci, async, EST_INACTIVE);
1917
            break;
1918
        }
1919

    
1920
        /* If the doorbell is set, the guest wants to make a change to the
1921
         * schedule. The host controller needs to release cached data.
1922
         * (section 4.8.2)
1923
         */
1924
        if (ehci->usbcmd & USBCMD_IAAD) {
1925
            DPRINTF("ASYNC: doorbell request acknowledged\n");
1926
            ehci->usbcmd &= ~USBCMD_IAAD;
1927
            ehci_set_interrupt(ehci, USBSTS_IAA);
1928
            break;
1929
        }
1930

    
1931
        /* make sure guest has acknowledged */
1932
        /* TO-DO: is this really needed? */
1933
        if (ehci->usbsts & USBSTS_IAA) {
1934
            DPRINTF("IAA status bit still set.\n");
1935
            break;
1936
        }
1937

    
1938
        /* check that address register has been set */
1939
        if (ehci->asynclistaddr == 0) {
1940
            break;
1941
        }
1942

    
1943
        ehci_set_state(ehci, async, EST_WAITLISTHEAD);
1944
        ehci_advance_state(ehci, async);
1945
        break;
1946

    
1947
    default:
1948
        /* this should only be due to a developer mistake */
1949
        fprintf(stderr, "ehci: Bad asynchronous state %d. "
1950
                "Resetting to active\n", ehci->astate);
1951
        assert(0);
1952
    }
1953
}
1954

    
1955
static void ehci_advance_periodic_state(EHCIState *ehci)
1956
{
1957
    uint32_t entry;
1958
    uint32_t list;
1959
    int async = 0;
1960

    
1961
    // 4.6
1962

    
1963
    switch(ehci_get_state(ehci, async)) {
1964
    case EST_INACTIVE:
1965
        if ( !(ehci->frindex & 7) && (ehci->usbcmd & USBCMD_PSE)) {
1966
            ehci_set_usbsts(ehci, USBSTS_PSS);
1967
            ehci_set_state(ehci, async, EST_ACTIVE);
1968
            // No break, fall through to ACTIVE
1969
        } else
1970
            break;
1971

    
1972
    case EST_ACTIVE:
1973
        if ( !(ehci->frindex & 7) && !(ehci->usbcmd & USBCMD_PSE)) {
1974
            ehci_clear_usbsts(ehci, USBSTS_PSS);
1975
            ehci_set_state(ehci, async, EST_INACTIVE);
1976
            break;
1977
        }
1978

    
1979
        list = ehci->periodiclistbase & 0xfffff000;
1980
        /* check that register has been set */
1981
        if (list == 0) {
1982
            break;
1983
        }
1984
        list |= ((ehci->frindex & 0x1ff8) >> 1);
1985

    
1986
        cpu_physical_memory_rw(list, (uint8_t *) &entry, sizeof entry, 0);
1987
        entry = le32_to_cpu(entry);
1988

    
1989
        DPRINTF("PERIODIC state adv fr=%d.  [%08X] -> %08X\n",
1990
                ehci->frindex / 8, list, entry);
1991
        ehci_set_fetch_addr(ehci, async,entry);
1992
        ehci_set_state(ehci, async, EST_FETCHENTRY);
1993
        ehci_advance_state(ehci, async);
1994
        break;
1995

    
1996
    default:
1997
        /* this should only be due to a developer mistake */
1998
        fprintf(stderr, "ehci: Bad periodic state %d. "
1999
                "Resetting to active\n", ehci->pstate);
2000
        assert(0);
2001
    }
2002
}
2003

    
2004
static void ehci_frame_timer(void *opaque)
2005
{
2006
    EHCIState *ehci = opaque;
2007
    int64_t expire_time, t_now;
2008
    int usec_elapsed;
2009
    int frames;
2010
    int usec_now;
2011
    int i;
2012
    int skipped_frames = 0;
2013

    
2014

    
2015
    t_now = qemu_get_clock_ns(vm_clock);
2016
    expire_time = t_now + (get_ticks_per_sec() / FRAME_TIMER_FREQ);
2017
    if (expire_time == t_now) {
2018
        expire_time++;
2019
    }
2020

    
2021
    usec_now = t_now / 1000;
2022
    usec_elapsed = usec_now - ehci->last_run_usec;
2023
    frames = usec_elapsed / FRAME_TIMER_USEC;
2024
    ehci->frame_end_usec = usec_now + FRAME_TIMER_USEC - 10;
2025

    
2026
    for (i = 0; i < frames; i++) {
2027
        if ( !(ehci->usbsts & USBSTS_HALT)) {
2028
            if (ehci->isoch_pause <= 0) {
2029
                ehci->frindex += 8;
2030
            }
2031

    
2032
            if (ehci->frindex > 0x00001fff) {
2033
                ehci->frindex = 0;
2034
                ehci_set_interrupt(ehci, USBSTS_FLR);
2035
            }
2036

    
2037
            ehci->sofv = (ehci->frindex - 1) >> 3;
2038
            ehci->sofv &= 0x000003ff;
2039
        }
2040

    
2041
        if (frames - i > 10) {
2042
            skipped_frames++;
2043
        } else {
2044
            ehci_advance_periodic_state(ehci);
2045
        }
2046

    
2047
        ehci->last_run_usec += FRAME_TIMER_USEC;
2048
    }
2049

    
2050
#if 0
2051
    if (skipped_frames) {
2052
        DPRINTF("WARNING - EHCI skipped %d frames\n", skipped_frames);
2053
    }
2054
#endif
2055

    
2056
    /*  Async is not inside loop since it executes everything it can once
2057
     *  called
2058
     */
2059
    ehci_advance_async_state(ehci);
2060

    
2061
    qemu_mod_timer(ehci->frame_timer, expire_time);
2062
}
2063

    
2064
static CPUReadMemoryFunc *ehci_readfn[3]={
2065
    ehci_mem_readb,
2066
    ehci_mem_readw,
2067
    ehci_mem_readl
2068
};
2069

    
2070
static CPUWriteMemoryFunc *ehci_writefn[3]={
2071
    ehci_mem_writeb,
2072
    ehci_mem_writew,
2073
    ehci_mem_writel
2074
};
2075

    
2076
static void ehci_map(PCIDevice *pci_dev, int region_num,
2077
                     pcibus_t addr, pcibus_t size, int type)
2078
{
2079
    EHCIState *s =(EHCIState *)pci_dev;
2080

    
2081
    DPRINTF("ehci_map: region %d, addr %08" PRIx64 ", size %" PRId64 ", s->mem %08X\n",
2082
            region_num, addr, size, s->mem);
2083
    s->mem_base = addr;
2084
    cpu_register_physical_memory(addr, size, s->mem);
2085
}
2086

    
2087
static void ehci_device_destroy(USBBus *bus, USBDevice *dev)
2088
{
2089
    EHCIState *s = container_of(bus, EHCIState, bus);
2090

    
2091
    ehci_queues_rip_device(s, dev);
2092
}
2093

    
2094
static int usb_ehci_initfn(PCIDevice *dev);
2095

    
2096
static USBPortOps ehci_port_ops = {
2097
    .attach = ehci_attach,
2098
    .detach = ehci_detach,
2099
    .complete = ehci_async_complete_packet,
2100
};
2101

    
2102
static USBBusOps ehci_bus_ops = {
2103
    .device_destroy = ehci_device_destroy,
2104
};
2105

    
2106
static PCIDeviceInfo ehci_info = {
2107
    .qdev.name    = "usb-ehci",
2108
    .qdev.size    = sizeof(EHCIState),
2109
    .init         = usb_ehci_initfn,
2110
};
2111

    
2112
static int usb_ehci_initfn(PCIDevice *dev)
2113
{
2114
    EHCIState *s = DO_UPCAST(EHCIState, dev, dev);
2115
    uint8_t *pci_conf = s->dev.config;
2116
    int i;
2117

    
2118
    pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
2119
    pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82801D);
2120
    pci_set_byte(&pci_conf[PCI_REVISION_ID], 0x10);
2121
    pci_set_byte(&pci_conf[PCI_CLASS_PROG], 0x20);
2122
    pci_config_set_class(pci_conf, PCI_CLASS_SERIAL_USB);
2123
    pci_set_byte(&pci_conf[PCI_HEADER_TYPE], PCI_HEADER_TYPE_NORMAL);
2124

    
2125
    /* capabilities pointer */
2126
    pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x00);
2127
    //pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x50);
2128

    
2129
    pci_set_byte(&pci_conf[PCI_INTERRUPT_PIN], 4); // interrupt pin 3
2130
    pci_set_byte(&pci_conf[PCI_MIN_GNT], 0);
2131
    pci_set_byte(&pci_conf[PCI_MAX_LAT], 0);
2132

    
2133
    // pci_conf[0x50] = 0x01; // power management caps
2134

    
2135
    pci_set_byte(&pci_conf[0x60], 0x20);  // spec release number (2.1.4)
2136
    pci_set_byte(&pci_conf[0x61], 0x20);  // frame length adjustment (2.1.5)
2137
    pci_set_word(&pci_conf[0x62], 0x00);  // port wake up capability (2.1.6)
2138

    
2139
    pci_conf[0x64] = 0x00;
2140
    pci_conf[0x65] = 0x00;
2141
    pci_conf[0x66] = 0x00;
2142
    pci_conf[0x67] = 0x00;
2143
    pci_conf[0x68] = 0x01;
2144
    pci_conf[0x69] = 0x00;
2145
    pci_conf[0x6a] = 0x00;
2146
    pci_conf[0x6b] = 0x00;  // USBLEGSUP
2147
    pci_conf[0x6c] = 0x00;
2148
    pci_conf[0x6d] = 0x00;
2149
    pci_conf[0x6e] = 0x00;
2150
    pci_conf[0x6f] = 0xc0;  // USBLEFCTLSTS
2151

    
2152
    // 2.2 host controller interface version
2153
    s->mmio[0x00] = (uint8_t) OPREGBASE;
2154
    s->mmio[0x01] = 0x00;
2155
    s->mmio[0x02] = 0x00;
2156
    s->mmio[0x03] = 0x01;        // HC version
2157
    s->mmio[0x04] = NB_PORTS;    // Number of downstream ports
2158
    s->mmio[0x05] = 0x00;        // No companion ports at present
2159
    s->mmio[0x06] = 0x00;
2160
    s->mmio[0x07] = 0x00;
2161
    s->mmio[0x08] = 0x80;        // We can cache whole frame, not 64-bit capable
2162
    s->mmio[0x09] = 0x68;        // EECP
2163
    s->mmio[0x0a] = 0x00;
2164
    s->mmio[0x0b] = 0x00;
2165

    
2166
    s->irq = s->dev.irq[3];
2167

    
2168
    usb_bus_new(&s->bus, &ehci_bus_ops, &s->dev.qdev);
2169
    for(i = 0; i < NB_PORTS; i++) {
2170
        usb_register_port(&s->bus, &s->ports[i], s, i, &ehci_port_ops,
2171
                          USB_SPEED_MASK_HIGH);
2172
        usb_port_location(&s->ports[i], NULL, i+1);
2173
        s->ports[i].dev = 0;
2174
    }
2175

    
2176
    s->frame_timer = qemu_new_timer_ns(vm_clock, ehci_frame_timer, s);
2177
    QTAILQ_INIT(&s->queues);
2178

    
2179
    qemu_register_reset(ehci_reset, s);
2180

    
2181
    s->mem = cpu_register_io_memory(ehci_readfn, ehci_writefn, s,
2182
                                    DEVICE_LITTLE_ENDIAN);
2183

    
2184
    pci_register_bar(&s->dev, 0, MMIO_SIZE, PCI_BASE_ADDRESS_SPACE_MEMORY,
2185
                                                            ehci_map);
2186

    
2187
    fprintf(stderr, "*** EHCI support is under development ***\n");
2188

    
2189
    return 0;
2190
}
2191

    
2192
static void ehci_register(void)
2193
{
2194
    pci_qdev_register(&ehci_info);
2195
}
2196
device_init(ehci_register);
2197

    
2198
/*
2199
 * vim: expandtab ts=4
2200
 */