Statistics
| Branch: | Revision:

root / cpu-exec.c @ d05e66d2

History | View | Annotate | Download (19.5 kB)

1
/*
2
 *  i386 emulator main execution loop
3
 * 
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "config.h"
21
#ifdef TARGET_I386
22
#include "exec-i386.h"
23
#endif
24
#ifdef TARGET_ARM
25
#include "exec-arm.h"
26
#endif
27

    
28
#include "disas.h"
29

    
30
//#define DEBUG_EXEC
31
//#define DEBUG_SIGNAL
32

    
33
#if defined(TARGET_ARM)
34
/* XXX: unify with i386 target */
35
void cpu_loop_exit(void)
36
{
37
    longjmp(env->jmp_env, 1);
38
}
39
#endif
40

    
41
/* main execution loop */
42

    
43
int cpu_exec(CPUState *env1)
44
{
45
    int saved_T0, saved_T1, saved_T2;
46
    CPUState *saved_env;
47
#ifdef reg_EAX
48
    int saved_EAX;
49
#endif
50
#ifdef reg_ECX
51
    int saved_ECX;
52
#endif
53
#ifdef reg_EDX
54
    int saved_EDX;
55
#endif
56
#ifdef reg_EBX
57
    int saved_EBX;
58
#endif
59
#ifdef reg_ESP
60
    int saved_ESP;
61
#endif
62
#ifdef reg_EBP
63
    int saved_EBP;
64
#endif
65
#ifdef reg_ESI
66
    int saved_ESI;
67
#endif
68
#ifdef reg_EDI
69
    int saved_EDI;
70
#endif
71
#ifdef __sparc__
72
    int saved_i7, tmp_T0;
73
#endif
74
    int code_gen_size, ret, interrupt_request;
75
    void (*gen_func)(void);
76
    TranslationBlock *tb, **ptb;
77
    uint8_t *tc_ptr, *cs_base, *pc;
78
    unsigned int flags;
79

    
80
    /* first we save global registers */
81
    saved_T0 = T0;
82
    saved_T1 = T1;
83
    saved_T2 = T2;
84
    saved_env = env;
85
    env = env1;
86
#ifdef __sparc__
87
    /* we also save i7 because longjmp may not restore it */
88
    asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
89
#endif
90

    
91
#if defined(TARGET_I386)
92
#ifdef reg_EAX
93
    saved_EAX = EAX;
94
    EAX = env->regs[R_EAX];
95
#endif
96
#ifdef reg_ECX
97
    saved_ECX = ECX;
98
    ECX = env->regs[R_ECX];
99
#endif
100
#ifdef reg_EDX
101
    saved_EDX = EDX;
102
    EDX = env->regs[R_EDX];
103
#endif
104
#ifdef reg_EBX
105
    saved_EBX = EBX;
106
    EBX = env->regs[R_EBX];
107
#endif
108
#ifdef reg_ESP
109
    saved_ESP = ESP;
110
    ESP = env->regs[R_ESP];
111
#endif
112
#ifdef reg_EBP
113
    saved_EBP = EBP;
114
    EBP = env->regs[R_EBP];
115
#endif
116
#ifdef reg_ESI
117
    saved_ESI = ESI;
118
    ESI = env->regs[R_ESI];
119
#endif
120
#ifdef reg_EDI
121
    saved_EDI = EDI;
122
    EDI = env->regs[R_EDI];
123
#endif
124
    
125
    /* put eflags in CPU temporary format */
126
    CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
127
    DF = 1 - (2 * ((env->eflags >> 10) & 1));
128
    CC_OP = CC_OP_EFLAGS;
129
    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
130
#elif defined(TARGET_ARM)
131
    {
132
        unsigned int psr;
133
        psr = env->cpsr;
134
        env->CF = (psr >> 29) & 1;
135
        env->NZF = (psr & 0xc0000000) ^ 0x40000000;
136
        env->VF = (psr << 3) & 0x80000000;
137
        env->cpsr = psr & ~0xf0000000;
138
    }
139
#else
140
#error unsupported target CPU
141
#endif
142
    env->exception_index = -1;
143

    
144
    /* prepare setjmp context for exception handling */
145
    for(;;) {
146
        if (setjmp(env->jmp_env) == 0) {
147
            /* if an exception is pending, we execute it here */
148
            if (env->exception_index >= 0) {
149
                if (env->exception_index >= EXCP_INTERRUPT) {
150
                    /* exit request from the cpu execution loop */
151
                    ret = env->exception_index;
152
                    break;
153
                } else if (env->user_mode_only) {
154
                    /* if user mode only, we simulate a fake exception
155
                       which will be hanlded outside the cpu execution
156
                       loop */
157
#if defined(TARGET_I386)
158
                    do_interrupt_user(env->exception_index, 
159
                                      env->exception_is_int, 
160
                                      env->error_code, 
161
                                      env->exception_next_eip);
162
#endif
163
                    ret = env->exception_index;
164
                    break;
165
                } else {
166
#if defined(TARGET_I386)
167
                    /* simulate a real cpu exception. On i386, it can
168
                       trigger new exceptions, but we do not handle
169
                       double or triple faults yet. */
170
                    do_interrupt(env->exception_index, 
171
                                 env->exception_is_int, 
172
                                 env->error_code, 
173
                                 env->exception_next_eip, 0);
174
#endif
175
                }
176
                env->exception_index = -1;
177
            }
178
            T0 = 0; /* force lookup of first TB */
179
            for(;;) {
180
#ifdef __sparc__
181
                /* g1 can be modified by some libc? functions */ 
182
                tmp_T0 = T0;
183
#endif            
184
                interrupt_request = env->interrupt_request;
185
                if (interrupt_request) {
186
#if defined(TARGET_I386)
187
                    /* if hardware interrupt pending, we execute it */
188
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
189
                        (env->eflags & IF_MASK)) {
190
                        int intno;
191
                        intno = cpu_x86_get_pic_interrupt(env);
192
                        if (loglevel) {
193
                            fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
194
                        }
195
                        do_interrupt(intno, 0, 0, 0, 1);
196
                        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
197
                        /* ensure that no TB jump will be modified as
198
                           the program flow was changed */
199
#ifdef __sparc__
200
                        tmp_T0 = 0;
201
#else
202
                        T0 = 0;
203
#endif
204
                    }
205
#endif
206
                    if (interrupt_request & CPU_INTERRUPT_EXIT) {
207
                        env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
208
                        env->exception_index = EXCP_INTERRUPT;
209
                        cpu_loop_exit();
210
                    }
211
                }
212
#ifdef DEBUG_EXEC
213
                if (loglevel) {
214
#if defined(TARGET_I386)
215
                    /* restore flags in standard format */
216
                    env->regs[R_EAX] = EAX;
217
                    env->regs[R_EBX] = EBX;
218
                    env->regs[R_ECX] = ECX;
219
                    env->regs[R_EDX] = EDX;
220
                    env->regs[R_ESI] = ESI;
221
                    env->regs[R_EDI] = EDI;
222
                    env->regs[R_EBP] = EBP;
223
                    env->regs[R_ESP] = ESP;
224
                    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
225
                    cpu_x86_dump_state(env, logfile, X86_DUMP_CCOP);
226
                    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
227
#elif defined(TARGET_ARM)
228
                    env->cpsr = compute_cpsr();
229
                    cpu_arm_dump_state(env, logfile, 0);
230
                    env->cpsr &= ~0xf0000000;
231
#else
232
#error unsupported target CPU 
233
#endif
234
                }
235
#endif
236
                /* we compute the CPU state. We assume it will not
237
                   change during the whole generated block. */
238
#if defined(TARGET_I386)
239
                flags = (env->segs[R_CS].flags & DESC_B_MASK)
240
                    >> (DESC_B_SHIFT - GEN_FLAG_CODE32_SHIFT);
241
                flags |= (env->segs[R_SS].flags & DESC_B_MASK)
242
                    >> (DESC_B_SHIFT - GEN_FLAG_SS32_SHIFT);
243
                flags |= (((unsigned long)env->segs[R_DS].base | 
244
                           (unsigned long)env->segs[R_ES].base |
245
                           (unsigned long)env->segs[R_SS].base) != 0) << 
246
                    GEN_FLAG_ADDSEG_SHIFT;
247
                flags |= env->cpl << GEN_FLAG_CPL_SHIFT;
248
                flags |= env->soft_mmu << GEN_FLAG_SOFT_MMU_SHIFT;
249
                flags |= (env->eflags & VM_MASK) >> (17 - GEN_FLAG_VM_SHIFT);
250
                flags |= (env->eflags & (IOPL_MASK | TF_MASK));
251
                cs_base = env->segs[R_CS].base;
252
                pc = cs_base + env->eip;
253
#elif defined(TARGET_ARM)
254
                flags = 0;
255
                cs_base = 0;
256
                pc = (uint8_t *)env->regs[15];
257
#else
258
#error unsupported CPU
259
#endif
260
                tb = tb_find(&ptb, (unsigned long)pc, (unsigned long)cs_base, 
261
                             flags);
262
                if (!tb) {
263
                    spin_lock(&tb_lock);
264
                    /* if no translated code available, then translate it now */
265
                    tb = tb_alloc((unsigned long)pc);
266
                    if (!tb) {
267
                        /* flush must be done */
268
                        tb_flush();
269
                        /* cannot fail at this point */
270
                        tb = tb_alloc((unsigned long)pc);
271
                        /* don't forget to invalidate previous TB info */
272
                        ptb = &tb_hash[tb_hash_func((unsigned long)pc)];
273
                        T0 = 0;
274
                    }
275
                    tc_ptr = code_gen_ptr;
276
                    tb->tc_ptr = tc_ptr;
277
                    tb->cs_base = (unsigned long)cs_base;
278
                    tb->flags = flags;
279
                    ret = cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
280
#if defined(TARGET_I386)
281
                    /* XXX: suppress that, this is incorrect */
282
                    /* if invalid instruction, signal it */
283
                    if (ret != 0) {
284
                        /* NOTE: the tb is allocated but not linked, so we
285
                           can leave it */
286
                        spin_unlock(&tb_lock);
287
                        raise_exception(EXCP06_ILLOP);
288
                    }
289
#endif
290
                    *ptb = tb;
291
                    tb->hash_next = NULL;
292
                    tb_link(tb);
293
                    code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
294
                    spin_unlock(&tb_lock);
295
                }
296
#ifdef DEBUG_EXEC
297
                if (loglevel) {
298
                    fprintf(logfile, "Trace 0x%08lx [0x%08lx] %s\n",
299
                            (long)tb->tc_ptr, (long)tb->pc,
300
                            lookup_symbol((void *)tb->pc));
301
                }
302
#endif
303
#ifdef __sparc__
304
                T0 = tmp_T0;
305
#endif            
306
                /* see if we can patch the calling TB. XXX: remove TF test */
307
                if (T0 != 0
308
#if defined(TARGET_I386)
309
                    && !(env->eflags & TF_MASK)
310
#endif
311
                    ) {
312
                    spin_lock(&tb_lock);
313
                    tb_add_jump((TranslationBlock *)(T0 & ~3), T0 & 3, tb);
314
                    spin_unlock(&tb_lock);
315
                }
316
                tc_ptr = tb->tc_ptr;
317
                env->current_tb = tb;
318
                /* execute the generated code */
319
                gen_func = (void *)tc_ptr;
320
#if defined(__sparc__)
321
                __asm__ __volatile__("call        %0\n\t"
322
                                     "mov        %%o7,%%i0"
323
                                     : /* no outputs */
324
                                     : "r" (gen_func) 
325
                                     : "i0", "i1", "i2", "i3", "i4", "i5");
326
#elif defined(__arm__)
327
                asm volatile ("mov pc, %0\n\t"
328
                              ".global exec_loop\n\t"
329
                              "exec_loop:\n\t"
330
                              : /* no outputs */
331
                              : "r" (gen_func)
332
                              : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
333
#else
334
                gen_func();
335
#endif
336
                env->current_tb = NULL;
337
                /* reset soft MMU for next block (it can currently
338
                   only be set by a memory fault) */
339
#if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
340
                if (env->soft_mmu) {
341
                    env->soft_mmu = 0;
342
                    /* do not allow linking to another block */
343
                    T0 = 0;
344
                }
345
#endif
346
            }
347
        } else {
348
        }
349
    } /* for(;;) */
350

    
351

    
352
#if defined(TARGET_I386)
353
    /* restore flags in standard format */
354
    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
355

    
356
    /* restore global registers */
357
#ifdef reg_EAX
358
    EAX = saved_EAX;
359
#endif
360
#ifdef reg_ECX
361
    ECX = saved_ECX;
362
#endif
363
#ifdef reg_EDX
364
    EDX = saved_EDX;
365
#endif
366
#ifdef reg_EBX
367
    EBX = saved_EBX;
368
#endif
369
#ifdef reg_ESP
370
    ESP = saved_ESP;
371
#endif
372
#ifdef reg_EBP
373
    EBP = saved_EBP;
374
#endif
375
#ifdef reg_ESI
376
    ESI = saved_ESI;
377
#endif
378
#ifdef reg_EDI
379
    EDI = saved_EDI;
380
#endif
381
#elif defined(TARGET_ARM)
382
    env->cpsr = compute_cpsr();
383
#else
384
#error unsupported target CPU
385
#endif
386
#ifdef __sparc__
387
    asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
388
#endif
389
    T0 = saved_T0;
390
    T1 = saved_T1;
391
    T2 = saved_T2;
392
    env = saved_env;
393
    return ret;
394
}
395

    
396
#if defined(TARGET_I386)
397

    
398
void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
399
{
400
    CPUX86State *saved_env;
401

    
402
    saved_env = env;
403
    env = s;
404
    if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
405
        SegmentCache *sc;
406
        selector &= 0xffff;
407
        sc = &env->segs[seg_reg];
408
        sc->base = (void *)(selector << 4);
409
        sc->limit = 0xffff;
410
        sc->flags = 0;
411
        sc->selector = selector;
412
    } else {
413
        load_seg(seg_reg, selector, 0);
414
    }
415
    env = saved_env;
416
}
417

    
418
void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
419
{
420
    CPUX86State *saved_env;
421

    
422
    saved_env = env;
423
    env = s;
424
    
425
    helper_fsave(ptr, data32);
426

    
427
    env = saved_env;
428
}
429

    
430
void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
431
{
432
    CPUX86State *saved_env;
433

    
434
    saved_env = env;
435
    env = s;
436
    
437
    helper_frstor(ptr, data32);
438

    
439
    env = saved_env;
440
}
441

    
442
#endif /* TARGET_I386 */
443

    
444
#undef EAX
445
#undef ECX
446
#undef EDX
447
#undef EBX
448
#undef ESP
449
#undef EBP
450
#undef ESI
451
#undef EDI
452
#undef EIP
453
#include <signal.h>
454
#include <sys/ucontext.h>
455

    
456
#if defined(TARGET_I386)
457

    
458
/* 'pc' is the host PC at which the exception was raised. 'address' is
459
   the effective address of the memory exception. 'is_write' is 1 if a
460
   write caused the exception and otherwise 0'. 'old_set' is the
461
   signal set which should be restored */
462
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
463
                                    int is_write, sigset_t *old_set)
464
{
465
    TranslationBlock *tb;
466
    int ret;
467

    
468
    if (cpu_single_env)
469
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
470
#if defined(DEBUG_SIGNAL)
471
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
472
           pc, address, is_write, *(unsigned long *)old_set);
473
#endif
474
    /* XXX: locking issue */
475
    if (is_write && page_unprotect(address)) {
476
        return 1;
477
    }
478
    /* see if it is an MMU fault */
479
    ret = cpu_x86_handle_mmu_fault(env, address, is_write);
480
    if (ret < 0)
481
        return 0; /* not an MMU fault */
482
    if (ret == 0)
483
        return 1; /* the MMU fault was handled without causing real CPU fault */
484
    /* now we have a real cpu fault */
485
    tb = tb_find_pc(pc);
486
    if (tb) {
487
        /* the PC is inside the translated code. It means that we have
488
           a virtual CPU fault */
489
        cpu_restore_state(tb, env, pc);
490
    }
491
    if (ret == 1) {
492
#if 0
493
        printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n", 
494
               env->eip, env->cr[2], env->error_code);
495
#endif
496
        /* we restore the process signal mask as the sigreturn should
497
           do it (XXX: use sigsetjmp) */
498
        sigprocmask(SIG_SETMASK, old_set, NULL);
499
        raise_exception_err(EXCP0E_PAGE, env->error_code);
500
    } else {
501
        /* activate soft MMU for this block */
502
        env->soft_mmu = 1;
503
        sigprocmask(SIG_SETMASK, old_set, NULL);
504
        cpu_loop_exit();
505
    }
506
    /* never comes here */
507
    return 1;
508
}
509

    
510
#elif defined(TARGET_ARM)
511
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
512
                                    int is_write, sigset_t *old_set)
513
{
514
    /* XXX: do more */
515
    return 0;
516
}
517
#else
518
#error unsupported target CPU
519
#endif
520

    
521
#if defined(__i386__)
522

    
523
int cpu_signal_handler(int host_signum, struct siginfo *info, 
524
                       void *puc)
525
{
526
    struct ucontext *uc = puc;
527
    unsigned long pc;
528
    
529
#ifndef REG_EIP
530
/* for glibc 2.1 */
531
#define REG_EIP    EIP
532
#define REG_ERR    ERR
533
#define REG_TRAPNO TRAPNO
534
#endif
535
    pc = uc->uc_mcontext.gregs[REG_EIP];
536
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
537
                             uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ? 
538
                             (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
539
                             &uc->uc_sigmask);
540
}
541

    
542
#elif defined(__powerpc)
543

    
544
int cpu_signal_handler(int host_signum, struct siginfo *info, 
545
                       void *puc)
546
{
547
    struct ucontext *uc = puc;
548
    struct pt_regs *regs = uc->uc_mcontext.regs;
549
    unsigned long pc;
550
    int is_write;
551

    
552
    pc = regs->nip;
553
    is_write = 0;
554
#if 0
555
    /* ppc 4xx case */
556
    if (regs->dsisr & 0x00800000)
557
        is_write = 1;
558
#else
559
    if (regs->trap != 0x400 && (regs->dsisr & 0x02000000))
560
        is_write = 1;
561
#endif
562
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
563
                             is_write, &uc->uc_sigmask);
564
}
565

    
566
#elif defined(__alpha__)
567

    
568
int cpu_signal_handler(int host_signum, struct siginfo *info, 
569
                           void *puc)
570
{
571
    struct ucontext *uc = puc;
572
    uint32_t *pc = uc->uc_mcontext.sc_pc;
573
    uint32_t insn = *pc;
574
    int is_write = 0;
575

    
576
    /* XXX: need kernel patch to get write flag faster */
577
    switch (insn >> 26) {
578
    case 0x0d: // stw
579
    case 0x0e: // stb
580
    case 0x0f: // stq_u
581
    case 0x24: // stf
582
    case 0x25: // stg
583
    case 0x26: // sts
584
    case 0x27: // stt
585
    case 0x2c: // stl
586
    case 0x2d: // stq
587
    case 0x2e: // stl_c
588
    case 0x2f: // stq_c
589
        is_write = 1;
590
    }
591

    
592
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
593
                             is_write, &uc->uc_sigmask);
594
}
595
#elif defined(__sparc__)
596

    
597
int cpu_signal_handler(int host_signum, struct siginfo *info, 
598
                       void *puc)
599
{
600
    uint32_t *regs = (uint32_t *)(info + 1);
601
    void *sigmask = (regs + 20);
602
    unsigned long pc;
603
    int is_write;
604
    uint32_t insn;
605
    
606
    /* XXX: is there a standard glibc define ? */
607
    pc = regs[1];
608
    /* XXX: need kernel patch to get write flag faster */
609
    is_write = 0;
610
    insn = *(uint32_t *)pc;
611
    if ((insn >> 30) == 3) {
612
      switch((insn >> 19) & 0x3f) {
613
      case 0x05: // stb
614
      case 0x06: // sth
615
      case 0x04: // st
616
      case 0x07: // std
617
      case 0x24: // stf
618
      case 0x27: // stdf
619
      case 0x25: // stfsr
620
        is_write = 1;
621
        break;
622
      }
623
    }
624
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
625
                             is_write, sigmask);
626
}
627

    
628
#elif defined(__arm__)
629

    
630
int cpu_signal_handler(int host_signum, struct siginfo *info, 
631
                       void *puc)
632
{
633
    struct ucontext *uc = puc;
634
    unsigned long pc;
635
    int is_write;
636
    
637
    pc = uc->uc_mcontext.gregs[R15];
638
    /* XXX: compute is_write */
639
    is_write = 0;
640
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
641
                             is_write,
642
                             &uc->uc_sigmask);
643
}
644

    
645
#elif defined(__mc68000)
646

    
647
int cpu_signal_handler(int host_signum, struct siginfo *info, 
648
                       void *puc)
649
{
650
    struct ucontext *uc = puc;
651
    unsigned long pc;
652
    int is_write;
653
    
654
    pc = uc->uc_mcontext.gregs[16];
655
    /* XXX: compute is_write */
656
    is_write = 0;
657
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
658
                             is_write,
659
                             &uc->uc_sigmask);
660
}
661

    
662
#else
663

    
664
#error host CPU specific signal handler needed
665

    
666
#endif