Statistics
| Branch: | Revision:

root / kvm-all.c @ d1a0cf73

History | View | Annotate | Download (51.1 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright IBM, Corp. 2008
5
 *           Red Hat, Inc. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *  Glauber Costa     <gcosta@redhat.com>
10
 *
11
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12
 * See the COPYING file in the top-level directory.
13
 *
14
 */
15

    
16
#include <sys/types.h>
17
#include <sys/ioctl.h>
18
#include <sys/mman.h>
19
#include <stdarg.h>
20

    
21
#include <linux/kvm.h>
22

    
23
#include "qemu-common.h"
24
#include "qemu/atomic.h"
25
#include "qemu/option.h"
26
#include "qemu/config-file.h"
27
#include "sysemu/sysemu.h"
28
#include "hw/hw.h"
29
#include "hw/pci/msi.h"
30
#include "exec/gdbstub.h"
31
#include "sysemu/kvm.h"
32
#include "qemu/bswap.h"
33
#include "exec/memory.h"
34
#include "exec/address-spaces.h"
35
#include "qemu/event_notifier.h"
36

    
37
/* This check must be after config-host.h is included */
38
#ifdef CONFIG_EVENTFD
39
#include <sys/eventfd.h>
40
#endif
41

    
42
#ifdef CONFIG_VALGRIND_H
43
#include <valgrind/memcheck.h>
44
#endif
45

    
46
/* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
47
#define PAGE_SIZE TARGET_PAGE_SIZE
48

    
49
//#define DEBUG_KVM
50

    
51
#ifdef DEBUG_KVM
52
#define DPRINTF(fmt, ...) \
53
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
54
#else
55
#define DPRINTF(fmt, ...) \
56
    do { } while (0)
57
#endif
58

    
59
#define KVM_MSI_HASHTAB_SIZE    256
60

    
61
typedef struct KVMSlot
62
{
63
    hwaddr start_addr;
64
    ram_addr_t memory_size;
65
    void *ram;
66
    int slot;
67
    int flags;
68
} KVMSlot;
69

    
70
typedef struct kvm_dirty_log KVMDirtyLog;
71

    
72
struct KVMState
73
{
74
    KVMSlot slots[32];
75
    int fd;
76
    int vmfd;
77
    int coalesced_mmio;
78
    struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
79
    bool coalesced_flush_in_progress;
80
    int broken_set_mem_region;
81
    int migration_log;
82
    int vcpu_events;
83
    int robust_singlestep;
84
    int debugregs;
85
#ifdef KVM_CAP_SET_GUEST_DEBUG
86
    struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
87
#endif
88
    int pit_state2;
89
    int xsave, xcrs;
90
    int many_ioeventfds;
91
    int intx_set_mask;
92
    /* The man page (and posix) say ioctl numbers are signed int, but
93
     * they're not.  Linux, glibc and *BSD all treat ioctl numbers as
94
     * unsigned, and treating them as signed here can break things */
95
    unsigned irq_set_ioctl;
96
#ifdef KVM_CAP_IRQ_ROUTING
97
    struct kvm_irq_routing *irq_routes;
98
    int nr_allocated_irq_routes;
99
    uint32_t *used_gsi_bitmap;
100
    unsigned int gsi_count;
101
    QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
102
    bool direct_msi;
103
#endif
104
};
105

    
106
KVMState *kvm_state;
107
bool kvm_kernel_irqchip;
108
bool kvm_async_interrupts_allowed;
109
bool kvm_irqfds_allowed;
110
bool kvm_msi_via_irqfd_allowed;
111
bool kvm_gsi_routing_allowed;
112

    
113
static const KVMCapabilityInfo kvm_required_capabilites[] = {
114
    KVM_CAP_INFO(USER_MEMORY),
115
    KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
116
    KVM_CAP_LAST_INFO
117
};
118

    
119
static KVMSlot *kvm_alloc_slot(KVMState *s)
120
{
121
    int i;
122

    
123
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
124
        if (s->slots[i].memory_size == 0) {
125
            return &s->slots[i];
126
        }
127
    }
128

    
129
    fprintf(stderr, "%s: no free slot available\n", __func__);
130
    abort();
131
}
132

    
133
static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
134
                                         hwaddr start_addr,
135
                                         hwaddr end_addr)
136
{
137
    int i;
138

    
139
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
140
        KVMSlot *mem = &s->slots[i];
141

    
142
        if (start_addr == mem->start_addr &&
143
            end_addr == mem->start_addr + mem->memory_size) {
144
            return mem;
145
        }
146
    }
147

    
148
    return NULL;
149
}
150

    
151
/*
152
 * Find overlapping slot with lowest start address
153
 */
154
static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
155
                                            hwaddr start_addr,
156
                                            hwaddr end_addr)
157
{
158
    KVMSlot *found = NULL;
159
    int i;
160

    
161
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
162
        KVMSlot *mem = &s->slots[i];
163

    
164
        if (mem->memory_size == 0 ||
165
            (found && found->start_addr < mem->start_addr)) {
166
            continue;
167
        }
168

    
169
        if (end_addr > mem->start_addr &&
170
            start_addr < mem->start_addr + mem->memory_size) {
171
            found = mem;
172
        }
173
    }
174

    
175
    return found;
176
}
177

    
178
int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
179
                                       hwaddr *phys_addr)
180
{
181
    int i;
182

    
183
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
184
        KVMSlot *mem = &s->slots[i];
185

    
186
        if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
187
            *phys_addr = mem->start_addr + (ram - mem->ram);
188
            return 1;
189
        }
190
    }
191

    
192
    return 0;
193
}
194

    
195
static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
196
{
197
    struct kvm_userspace_memory_region mem;
198

    
199
    mem.slot = slot->slot;
200
    mem.guest_phys_addr = slot->start_addr;
201
    mem.memory_size = slot->memory_size;
202
    mem.userspace_addr = (unsigned long)slot->ram;
203
    mem.flags = slot->flags;
204
    if (s->migration_log) {
205
        mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
206
    }
207
    return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
208
}
209

    
210
static void kvm_reset_vcpu(void *opaque)
211
{
212
    CPUState *cpu = opaque;
213

    
214
    kvm_arch_reset_vcpu(cpu);
215
}
216

    
217
int kvm_init_vcpu(CPUState *cpu)
218
{
219
    KVMState *s = kvm_state;
220
    long mmap_size;
221
    int ret;
222

    
223
    DPRINTF("kvm_init_vcpu\n");
224

    
225
    ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu));
226
    if (ret < 0) {
227
        DPRINTF("kvm_create_vcpu failed\n");
228
        goto err;
229
    }
230

    
231
    cpu->kvm_fd = ret;
232
    cpu->kvm_state = s;
233
    cpu->kvm_vcpu_dirty = true;
234

    
235
    mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
236
    if (mmap_size < 0) {
237
        ret = mmap_size;
238
        DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
239
        goto err;
240
    }
241

    
242
    cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
243
                        cpu->kvm_fd, 0);
244
    if (cpu->kvm_run == MAP_FAILED) {
245
        ret = -errno;
246
        DPRINTF("mmap'ing vcpu state failed\n");
247
        goto err;
248
    }
249

    
250
    if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
251
        s->coalesced_mmio_ring =
252
            (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
253
    }
254

    
255
    ret = kvm_arch_init_vcpu(cpu);
256
    if (ret == 0) {
257
        qemu_register_reset(kvm_reset_vcpu, cpu);
258
        kvm_arch_reset_vcpu(cpu);
259
    }
260
err:
261
    return ret;
262
}
263

    
264
/*
265
 * dirty pages logging control
266
 */
267

    
268
static int kvm_mem_flags(KVMState *s, bool log_dirty)
269
{
270
    return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
271
}
272

    
273
static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
274
{
275
    KVMState *s = kvm_state;
276
    int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
277
    int old_flags;
278

    
279
    old_flags = mem->flags;
280

    
281
    flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty);
282
    mem->flags = flags;
283

    
284
    /* If nothing changed effectively, no need to issue ioctl */
285
    if (s->migration_log) {
286
        flags |= KVM_MEM_LOG_DIRTY_PAGES;
287
    }
288

    
289
    if (flags == old_flags) {
290
        return 0;
291
    }
292

    
293
    return kvm_set_user_memory_region(s, mem);
294
}
295

    
296
static int kvm_dirty_pages_log_change(hwaddr phys_addr,
297
                                      ram_addr_t size, bool log_dirty)
298
{
299
    KVMState *s = kvm_state;
300
    KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
301

    
302
    if (mem == NULL)  {
303
        fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
304
                TARGET_FMT_plx "\n", __func__, phys_addr,
305
                (hwaddr)(phys_addr + size - 1));
306
        return -EINVAL;
307
    }
308
    return kvm_slot_dirty_pages_log_change(mem, log_dirty);
309
}
310

    
311
static void kvm_log_start(MemoryListener *listener,
312
                          MemoryRegionSection *section)
313
{
314
    int r;
315

    
316
    r = kvm_dirty_pages_log_change(section->offset_within_address_space,
317
                                   section->size, true);
318
    if (r < 0) {
319
        abort();
320
    }
321
}
322

    
323
static void kvm_log_stop(MemoryListener *listener,
324
                          MemoryRegionSection *section)
325
{
326
    int r;
327

    
328
    r = kvm_dirty_pages_log_change(section->offset_within_address_space,
329
                                   section->size, false);
330
    if (r < 0) {
331
        abort();
332
    }
333
}
334

    
335
static int kvm_set_migration_log(int enable)
336
{
337
    KVMState *s = kvm_state;
338
    KVMSlot *mem;
339
    int i, err;
340

    
341
    s->migration_log = enable;
342

    
343
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
344
        mem = &s->slots[i];
345

    
346
        if (!mem->memory_size) {
347
            continue;
348
        }
349
        if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
350
            continue;
351
        }
352
        err = kvm_set_user_memory_region(s, mem);
353
        if (err) {
354
            return err;
355
        }
356
    }
357
    return 0;
358
}
359

    
360
/* get kvm's dirty pages bitmap and update qemu's */
361
static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
362
                                         unsigned long *bitmap)
363
{
364
    unsigned int i, j;
365
    unsigned long page_number, c;
366
    hwaddr addr, addr1;
367
    unsigned int len = ((section->size / getpagesize()) + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
368
    unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
369

    
370
    /*
371
     * bitmap-traveling is faster than memory-traveling (for addr...)
372
     * especially when most of the memory is not dirty.
373
     */
374
    for (i = 0; i < len; i++) {
375
        if (bitmap[i] != 0) {
376
            c = leul_to_cpu(bitmap[i]);
377
            do {
378
                j = ffsl(c) - 1;
379
                c &= ~(1ul << j);
380
                page_number = (i * HOST_LONG_BITS + j) * hpratio;
381
                addr1 = page_number * TARGET_PAGE_SIZE;
382
                addr = section->offset_within_region + addr1;
383
                memory_region_set_dirty(section->mr, addr,
384
                                        TARGET_PAGE_SIZE * hpratio);
385
            } while (c != 0);
386
        }
387
    }
388
    return 0;
389
}
390

    
391
#define ALIGN(x, y)  (((x)+(y)-1) & ~((y)-1))
392

    
393
/**
394
 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
395
 * This function updates qemu's dirty bitmap using
396
 * memory_region_set_dirty().  This means all bits are set
397
 * to dirty.
398
 *
399
 * @start_add: start of logged region.
400
 * @end_addr: end of logged region.
401
 */
402
static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
403
{
404
    KVMState *s = kvm_state;
405
    unsigned long size, allocated_size = 0;
406
    KVMDirtyLog d;
407
    KVMSlot *mem;
408
    int ret = 0;
409
    hwaddr start_addr = section->offset_within_address_space;
410
    hwaddr end_addr = start_addr + section->size;
411

    
412
    d.dirty_bitmap = NULL;
413
    while (start_addr < end_addr) {
414
        mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
415
        if (mem == NULL) {
416
            break;
417
        }
418

    
419
        /* XXX bad kernel interface alert
420
         * For dirty bitmap, kernel allocates array of size aligned to
421
         * bits-per-long.  But for case when the kernel is 64bits and
422
         * the userspace is 32bits, userspace can't align to the same
423
         * bits-per-long, since sizeof(long) is different between kernel
424
         * and user space.  This way, userspace will provide buffer which
425
         * may be 4 bytes less than the kernel will use, resulting in
426
         * userspace memory corruption (which is not detectable by valgrind
427
         * too, in most cases).
428
         * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
429
         * a hope that sizeof(long) wont become >8 any time soon.
430
         */
431
        size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
432
                     /*HOST_LONG_BITS*/ 64) / 8;
433
        if (!d.dirty_bitmap) {
434
            d.dirty_bitmap = g_malloc(size);
435
        } else if (size > allocated_size) {
436
            d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
437
        }
438
        allocated_size = size;
439
        memset(d.dirty_bitmap, 0, allocated_size);
440

    
441
        d.slot = mem->slot;
442

    
443
        if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
444
            DPRINTF("ioctl failed %d\n", errno);
445
            ret = -1;
446
            break;
447
        }
448

    
449
        kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
450
        start_addr = mem->start_addr + mem->memory_size;
451
    }
452
    g_free(d.dirty_bitmap);
453

    
454
    return ret;
455
}
456

    
457
static void kvm_coalesce_mmio_region(MemoryListener *listener,
458
                                     MemoryRegionSection *secion,
459
                                     hwaddr start, hwaddr size)
460
{
461
    KVMState *s = kvm_state;
462

    
463
    if (s->coalesced_mmio) {
464
        struct kvm_coalesced_mmio_zone zone;
465

    
466
        zone.addr = start;
467
        zone.size = size;
468
        zone.pad = 0;
469

    
470
        (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
471
    }
472
}
473

    
474
static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
475
                                       MemoryRegionSection *secion,
476
                                       hwaddr start, hwaddr size)
477
{
478
    KVMState *s = kvm_state;
479

    
480
    if (s->coalesced_mmio) {
481
        struct kvm_coalesced_mmio_zone zone;
482

    
483
        zone.addr = start;
484
        zone.size = size;
485
        zone.pad = 0;
486

    
487
        (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
488
    }
489
}
490

    
491
int kvm_check_extension(KVMState *s, unsigned int extension)
492
{
493
    int ret;
494

    
495
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
496
    if (ret < 0) {
497
        ret = 0;
498
    }
499

    
500
    return ret;
501
}
502

    
503
static int kvm_check_many_ioeventfds(void)
504
{
505
    /* Userspace can use ioeventfd for io notification.  This requires a host
506
     * that supports eventfd(2) and an I/O thread; since eventfd does not
507
     * support SIGIO it cannot interrupt the vcpu.
508
     *
509
     * Older kernels have a 6 device limit on the KVM io bus.  Find out so we
510
     * can avoid creating too many ioeventfds.
511
     */
512
#if defined(CONFIG_EVENTFD)
513
    int ioeventfds[7];
514
    int i, ret = 0;
515
    for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
516
        ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
517
        if (ioeventfds[i] < 0) {
518
            break;
519
        }
520
        ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
521
        if (ret < 0) {
522
            close(ioeventfds[i]);
523
            break;
524
        }
525
    }
526

    
527
    /* Decide whether many devices are supported or not */
528
    ret = i == ARRAY_SIZE(ioeventfds);
529

    
530
    while (i-- > 0) {
531
        kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
532
        close(ioeventfds[i]);
533
    }
534
    return ret;
535
#else
536
    return 0;
537
#endif
538
}
539

    
540
static const KVMCapabilityInfo *
541
kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
542
{
543
    while (list->name) {
544
        if (!kvm_check_extension(s, list->value)) {
545
            return list;
546
        }
547
        list++;
548
    }
549
    return NULL;
550
}
551

    
552
static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
553
{
554
    KVMState *s = kvm_state;
555
    KVMSlot *mem, old;
556
    int err;
557
    MemoryRegion *mr = section->mr;
558
    bool log_dirty = memory_region_is_logging(mr);
559
    hwaddr start_addr = section->offset_within_address_space;
560
    ram_addr_t size = section->size;
561
    void *ram = NULL;
562
    unsigned delta;
563

    
564
    /* kvm works in page size chunks, but the function may be called
565
       with sub-page size and unaligned start address. */
566
    delta = TARGET_PAGE_ALIGN(size) - size;
567
    if (delta > size) {
568
        return;
569
    }
570
    start_addr += delta;
571
    size -= delta;
572
    size &= TARGET_PAGE_MASK;
573
    if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
574
        return;
575
    }
576

    
577
    if (!memory_region_is_ram(mr)) {
578
        return;
579
    }
580

    
581
    ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
582

    
583
    while (1) {
584
        mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
585
        if (!mem) {
586
            break;
587
        }
588

    
589
        if (add && start_addr >= mem->start_addr &&
590
            (start_addr + size <= mem->start_addr + mem->memory_size) &&
591
            (ram - start_addr == mem->ram - mem->start_addr)) {
592
            /* The new slot fits into the existing one and comes with
593
             * identical parameters - update flags and done. */
594
            kvm_slot_dirty_pages_log_change(mem, log_dirty);
595
            return;
596
        }
597

    
598
        old = *mem;
599

    
600
        if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
601
            kvm_physical_sync_dirty_bitmap(section);
602
        }
603

    
604
        /* unregister the overlapping slot */
605
        mem->memory_size = 0;
606
        err = kvm_set_user_memory_region(s, mem);
607
        if (err) {
608
            fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
609
                    __func__, strerror(-err));
610
            abort();
611
        }
612

    
613
        /* Workaround for older KVM versions: we can't join slots, even not by
614
         * unregistering the previous ones and then registering the larger
615
         * slot. We have to maintain the existing fragmentation. Sigh.
616
         *
617
         * This workaround assumes that the new slot starts at the same
618
         * address as the first existing one. If not or if some overlapping
619
         * slot comes around later, we will fail (not seen in practice so far)
620
         * - and actually require a recent KVM version. */
621
        if (s->broken_set_mem_region &&
622
            old.start_addr == start_addr && old.memory_size < size && add) {
623
            mem = kvm_alloc_slot(s);
624
            mem->memory_size = old.memory_size;
625
            mem->start_addr = old.start_addr;
626
            mem->ram = old.ram;
627
            mem->flags = kvm_mem_flags(s, log_dirty);
628

    
629
            err = kvm_set_user_memory_region(s, mem);
630
            if (err) {
631
                fprintf(stderr, "%s: error updating slot: %s\n", __func__,
632
                        strerror(-err));
633
                abort();
634
            }
635

    
636
            start_addr += old.memory_size;
637
            ram += old.memory_size;
638
            size -= old.memory_size;
639
            continue;
640
        }
641

    
642
        /* register prefix slot */
643
        if (old.start_addr < start_addr) {
644
            mem = kvm_alloc_slot(s);
645
            mem->memory_size = start_addr - old.start_addr;
646
            mem->start_addr = old.start_addr;
647
            mem->ram = old.ram;
648
            mem->flags =  kvm_mem_flags(s, log_dirty);
649

    
650
            err = kvm_set_user_memory_region(s, mem);
651
            if (err) {
652
                fprintf(stderr, "%s: error registering prefix slot: %s\n",
653
                        __func__, strerror(-err));
654
#ifdef TARGET_PPC
655
                fprintf(stderr, "%s: This is probably because your kernel's " \
656
                                "PAGE_SIZE is too big. Please try to use 4k " \
657
                                "PAGE_SIZE!\n", __func__);
658
#endif
659
                abort();
660
            }
661
        }
662

    
663
        /* register suffix slot */
664
        if (old.start_addr + old.memory_size > start_addr + size) {
665
            ram_addr_t size_delta;
666

    
667
            mem = kvm_alloc_slot(s);
668
            mem->start_addr = start_addr + size;
669
            size_delta = mem->start_addr - old.start_addr;
670
            mem->memory_size = old.memory_size - size_delta;
671
            mem->ram = old.ram + size_delta;
672
            mem->flags = kvm_mem_flags(s, log_dirty);
673

    
674
            err = kvm_set_user_memory_region(s, mem);
675
            if (err) {
676
                fprintf(stderr, "%s: error registering suffix slot: %s\n",
677
                        __func__, strerror(-err));
678
                abort();
679
            }
680
        }
681
    }
682

    
683
    /* in case the KVM bug workaround already "consumed" the new slot */
684
    if (!size) {
685
        return;
686
    }
687
    if (!add) {
688
        return;
689
    }
690
    mem = kvm_alloc_slot(s);
691
    mem->memory_size = size;
692
    mem->start_addr = start_addr;
693
    mem->ram = ram;
694
    mem->flags = kvm_mem_flags(s, log_dirty);
695

    
696
    err = kvm_set_user_memory_region(s, mem);
697
    if (err) {
698
        fprintf(stderr, "%s: error registering slot: %s\n", __func__,
699
                strerror(-err));
700
        abort();
701
    }
702
}
703

    
704
static void kvm_region_add(MemoryListener *listener,
705
                           MemoryRegionSection *section)
706
{
707
    kvm_set_phys_mem(section, true);
708
}
709

    
710
static void kvm_region_del(MemoryListener *listener,
711
                           MemoryRegionSection *section)
712
{
713
    kvm_set_phys_mem(section, false);
714
}
715

    
716
static void kvm_log_sync(MemoryListener *listener,
717
                         MemoryRegionSection *section)
718
{
719
    int r;
720

    
721
    r = kvm_physical_sync_dirty_bitmap(section);
722
    if (r < 0) {
723
        abort();
724
    }
725
}
726

    
727
static void kvm_log_global_start(struct MemoryListener *listener)
728
{
729
    int r;
730

    
731
    r = kvm_set_migration_log(1);
732
    assert(r >= 0);
733
}
734

    
735
static void kvm_log_global_stop(struct MemoryListener *listener)
736
{
737
    int r;
738

    
739
    r = kvm_set_migration_log(0);
740
    assert(r >= 0);
741
}
742

    
743
static void kvm_mem_ioeventfd_add(MemoryListener *listener,
744
                                  MemoryRegionSection *section,
745
                                  bool match_data, uint64_t data,
746
                                  EventNotifier *e)
747
{
748
    int fd = event_notifier_get_fd(e);
749
    int r;
750

    
751
    assert(match_data && section->size <= 8);
752

    
753
    r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
754
                               data, true, section->size);
755
    if (r < 0) {
756
        abort();
757
    }
758
}
759

    
760
static void kvm_mem_ioeventfd_del(MemoryListener *listener,
761
                                  MemoryRegionSection *section,
762
                                  bool match_data, uint64_t data,
763
                                  EventNotifier *e)
764
{
765
    int fd = event_notifier_get_fd(e);
766
    int r;
767

    
768
    r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
769
                               data, false, section->size);
770
    if (r < 0) {
771
        abort();
772
    }
773
}
774

    
775
static void kvm_io_ioeventfd_add(MemoryListener *listener,
776
                                 MemoryRegionSection *section,
777
                                 bool match_data, uint64_t data,
778
                                 EventNotifier *e)
779
{
780
    int fd = event_notifier_get_fd(e);
781
    int r;
782

    
783
    assert(match_data && section->size == 2);
784

    
785
    r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
786
                                   data, true);
787
    if (r < 0) {
788
        abort();
789
    }
790
}
791

    
792
static void kvm_io_ioeventfd_del(MemoryListener *listener,
793
                                 MemoryRegionSection *section,
794
                                 bool match_data, uint64_t data,
795
                                 EventNotifier *e)
796

    
797
{
798
    int fd = event_notifier_get_fd(e);
799
    int r;
800

    
801
    r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
802
                                   data, false);
803
    if (r < 0) {
804
        abort();
805
    }
806
}
807

    
808
static MemoryListener kvm_memory_listener = {
809
    .region_add = kvm_region_add,
810
    .region_del = kvm_region_del,
811
    .log_start = kvm_log_start,
812
    .log_stop = kvm_log_stop,
813
    .log_sync = kvm_log_sync,
814
    .log_global_start = kvm_log_global_start,
815
    .log_global_stop = kvm_log_global_stop,
816
    .eventfd_add = kvm_mem_ioeventfd_add,
817
    .eventfd_del = kvm_mem_ioeventfd_del,
818
    .coalesced_mmio_add = kvm_coalesce_mmio_region,
819
    .coalesced_mmio_del = kvm_uncoalesce_mmio_region,
820
    .priority = 10,
821
};
822

    
823
static MemoryListener kvm_io_listener = {
824
    .eventfd_add = kvm_io_ioeventfd_add,
825
    .eventfd_del = kvm_io_ioeventfd_del,
826
    .priority = 10,
827
};
828

    
829
static void kvm_handle_interrupt(CPUArchState *env, int mask)
830
{
831
    CPUState *cpu = ENV_GET_CPU(env);
832

    
833
    env->interrupt_request |= mask;
834

    
835
    if (!qemu_cpu_is_self(cpu)) {
836
        qemu_cpu_kick(cpu);
837
    }
838
}
839

    
840
int kvm_set_irq(KVMState *s, int irq, int level)
841
{
842
    struct kvm_irq_level event;
843
    int ret;
844

    
845
    assert(kvm_async_interrupts_enabled());
846

    
847
    event.level = level;
848
    event.irq = irq;
849
    ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
850
    if (ret < 0) {
851
        perror("kvm_set_irq");
852
        abort();
853
    }
854

    
855
    return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
856
}
857

    
858
#ifdef KVM_CAP_IRQ_ROUTING
859
typedef struct KVMMSIRoute {
860
    struct kvm_irq_routing_entry kroute;
861
    QTAILQ_ENTRY(KVMMSIRoute) entry;
862
} KVMMSIRoute;
863

    
864
static void set_gsi(KVMState *s, unsigned int gsi)
865
{
866
    s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
867
}
868

    
869
static void clear_gsi(KVMState *s, unsigned int gsi)
870
{
871
    s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
872
}
873

    
874
static void kvm_init_irq_routing(KVMState *s)
875
{
876
    int gsi_count, i;
877

    
878
    gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING);
879
    if (gsi_count > 0) {
880
        unsigned int gsi_bits, i;
881

    
882
        /* Round up so we can search ints using ffs */
883
        gsi_bits = ALIGN(gsi_count, 32);
884
        s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
885
        s->gsi_count = gsi_count;
886

    
887
        /* Mark any over-allocated bits as already in use */
888
        for (i = gsi_count; i < gsi_bits; i++) {
889
            set_gsi(s, i);
890
        }
891
    }
892

    
893
    s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
894
    s->nr_allocated_irq_routes = 0;
895

    
896
    if (!s->direct_msi) {
897
        for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
898
            QTAILQ_INIT(&s->msi_hashtab[i]);
899
        }
900
    }
901

    
902
    kvm_arch_init_irq_routing(s);
903
}
904

    
905
static void kvm_irqchip_commit_routes(KVMState *s)
906
{
907
    int ret;
908

    
909
    s->irq_routes->flags = 0;
910
    ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
911
    assert(ret == 0);
912
}
913

    
914
static void kvm_add_routing_entry(KVMState *s,
915
                                  struct kvm_irq_routing_entry *entry)
916
{
917
    struct kvm_irq_routing_entry *new;
918
    int n, size;
919

    
920
    if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
921
        n = s->nr_allocated_irq_routes * 2;
922
        if (n < 64) {
923
            n = 64;
924
        }
925
        size = sizeof(struct kvm_irq_routing);
926
        size += n * sizeof(*new);
927
        s->irq_routes = g_realloc(s->irq_routes, size);
928
        s->nr_allocated_irq_routes = n;
929
    }
930
    n = s->irq_routes->nr++;
931
    new = &s->irq_routes->entries[n];
932
    memset(new, 0, sizeof(*new));
933
    new->gsi = entry->gsi;
934
    new->type = entry->type;
935
    new->flags = entry->flags;
936
    new->u = entry->u;
937

    
938
    set_gsi(s, entry->gsi);
939

    
940
    kvm_irqchip_commit_routes(s);
941
}
942

    
943
static int kvm_update_routing_entry(KVMState *s,
944
                                    struct kvm_irq_routing_entry *new_entry)
945
{
946
    struct kvm_irq_routing_entry *entry;
947
    int n;
948

    
949
    for (n = 0; n < s->irq_routes->nr; n++) {
950
        entry = &s->irq_routes->entries[n];
951
        if (entry->gsi != new_entry->gsi) {
952
            continue;
953
        }
954

    
955
        entry->type = new_entry->type;
956
        entry->flags = new_entry->flags;
957
        entry->u = new_entry->u;
958

    
959
        kvm_irqchip_commit_routes(s);
960

    
961
        return 0;
962
    }
963

    
964
    return -ESRCH;
965
}
966

    
967
void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
968
{
969
    struct kvm_irq_routing_entry e;
970

    
971
    assert(pin < s->gsi_count);
972

    
973
    e.gsi = irq;
974
    e.type = KVM_IRQ_ROUTING_IRQCHIP;
975
    e.flags = 0;
976
    e.u.irqchip.irqchip = irqchip;
977
    e.u.irqchip.pin = pin;
978
    kvm_add_routing_entry(s, &e);
979
}
980

    
981
void kvm_irqchip_release_virq(KVMState *s, int virq)
982
{
983
    struct kvm_irq_routing_entry *e;
984
    int i;
985

    
986
    for (i = 0; i < s->irq_routes->nr; i++) {
987
        e = &s->irq_routes->entries[i];
988
        if (e->gsi == virq) {
989
            s->irq_routes->nr--;
990
            *e = s->irq_routes->entries[s->irq_routes->nr];
991
        }
992
    }
993
    clear_gsi(s, virq);
994
}
995

    
996
static unsigned int kvm_hash_msi(uint32_t data)
997
{
998
    /* This is optimized for IA32 MSI layout. However, no other arch shall
999
     * repeat the mistake of not providing a direct MSI injection API. */
1000
    return data & 0xff;
1001
}
1002

    
1003
static void kvm_flush_dynamic_msi_routes(KVMState *s)
1004
{
1005
    KVMMSIRoute *route, *next;
1006
    unsigned int hash;
1007

    
1008
    for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1009
        QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1010
            kvm_irqchip_release_virq(s, route->kroute.gsi);
1011
            QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1012
            g_free(route);
1013
        }
1014
    }
1015
}
1016

    
1017
static int kvm_irqchip_get_virq(KVMState *s)
1018
{
1019
    uint32_t *word = s->used_gsi_bitmap;
1020
    int max_words = ALIGN(s->gsi_count, 32) / 32;
1021
    int i, bit;
1022
    bool retry = true;
1023

    
1024
again:
1025
    /* Return the lowest unused GSI in the bitmap */
1026
    for (i = 0; i < max_words; i++) {
1027
        bit = ffs(~word[i]);
1028
        if (!bit) {
1029
            continue;
1030
        }
1031

    
1032
        return bit - 1 + i * 32;
1033
    }
1034
    if (!s->direct_msi && retry) {
1035
        retry = false;
1036
        kvm_flush_dynamic_msi_routes(s);
1037
        goto again;
1038
    }
1039
    return -ENOSPC;
1040

    
1041
}
1042

    
1043
static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1044
{
1045
    unsigned int hash = kvm_hash_msi(msg.data);
1046
    KVMMSIRoute *route;
1047

    
1048
    QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1049
        if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1050
            route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1051
            route->kroute.u.msi.data == msg.data) {
1052
            return route;
1053
        }
1054
    }
1055
    return NULL;
1056
}
1057

    
1058
int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1059
{
1060
    struct kvm_msi msi;
1061
    KVMMSIRoute *route;
1062

    
1063
    if (s->direct_msi) {
1064
        msi.address_lo = (uint32_t)msg.address;
1065
        msi.address_hi = msg.address >> 32;
1066
        msi.data = msg.data;
1067
        msi.flags = 0;
1068
        memset(msi.pad, 0, sizeof(msi.pad));
1069

    
1070
        return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1071
    }
1072

    
1073
    route = kvm_lookup_msi_route(s, msg);
1074
    if (!route) {
1075
        int virq;
1076

    
1077
        virq = kvm_irqchip_get_virq(s);
1078
        if (virq < 0) {
1079
            return virq;
1080
        }
1081

    
1082
        route = g_malloc(sizeof(KVMMSIRoute));
1083
        route->kroute.gsi = virq;
1084
        route->kroute.type = KVM_IRQ_ROUTING_MSI;
1085
        route->kroute.flags = 0;
1086
        route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1087
        route->kroute.u.msi.address_hi = msg.address >> 32;
1088
        route->kroute.u.msi.data = msg.data;
1089

    
1090
        kvm_add_routing_entry(s, &route->kroute);
1091

    
1092
        QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1093
                           entry);
1094
    }
1095

    
1096
    assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1097

    
1098
    return kvm_set_irq(s, route->kroute.gsi, 1);
1099
}
1100

    
1101
int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1102
{
1103
    struct kvm_irq_routing_entry kroute;
1104
    int virq;
1105

    
1106
    if (!kvm_gsi_routing_enabled()) {
1107
        return -ENOSYS;
1108
    }
1109

    
1110
    virq = kvm_irqchip_get_virq(s);
1111
    if (virq < 0) {
1112
        return virq;
1113
    }
1114

    
1115
    kroute.gsi = virq;
1116
    kroute.type = KVM_IRQ_ROUTING_MSI;
1117
    kroute.flags = 0;
1118
    kroute.u.msi.address_lo = (uint32_t)msg.address;
1119
    kroute.u.msi.address_hi = msg.address >> 32;
1120
    kroute.u.msi.data = msg.data;
1121

    
1122
    kvm_add_routing_entry(s, &kroute);
1123

    
1124
    return virq;
1125
}
1126

    
1127
int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1128
{
1129
    struct kvm_irq_routing_entry kroute;
1130

    
1131
    if (!kvm_irqchip_in_kernel()) {
1132
        return -ENOSYS;
1133
    }
1134

    
1135
    kroute.gsi = virq;
1136
    kroute.type = KVM_IRQ_ROUTING_MSI;
1137
    kroute.flags = 0;
1138
    kroute.u.msi.address_lo = (uint32_t)msg.address;
1139
    kroute.u.msi.address_hi = msg.address >> 32;
1140
    kroute.u.msi.data = msg.data;
1141

    
1142
    return kvm_update_routing_entry(s, &kroute);
1143
}
1144

    
1145
static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1146
{
1147
    struct kvm_irqfd irqfd = {
1148
        .fd = fd,
1149
        .gsi = virq,
1150
        .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1151
    };
1152

    
1153
    if (!kvm_irqfds_enabled()) {
1154
        return -ENOSYS;
1155
    }
1156

    
1157
    return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1158
}
1159

    
1160
#else /* !KVM_CAP_IRQ_ROUTING */
1161

    
1162
static void kvm_init_irq_routing(KVMState *s)
1163
{
1164
}
1165

    
1166
void kvm_irqchip_release_virq(KVMState *s, int virq)
1167
{
1168
}
1169

    
1170
int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1171
{
1172
    abort();
1173
}
1174

    
1175
int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1176
{
1177
    return -ENOSYS;
1178
}
1179

    
1180
static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1181
{
1182
    abort();
1183
}
1184

    
1185
int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1186
{
1187
    return -ENOSYS;
1188
}
1189
#endif /* !KVM_CAP_IRQ_ROUTING */
1190

    
1191
int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
1192
{
1193
    return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, true);
1194
}
1195

    
1196
int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
1197
{
1198
    return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, false);
1199
}
1200

    
1201
static int kvm_irqchip_create(KVMState *s)
1202
{
1203
    QemuOptsList *list = qemu_find_opts("machine");
1204
    int ret;
1205

    
1206
    if (QTAILQ_EMPTY(&list->head) ||
1207
        !qemu_opt_get_bool(QTAILQ_FIRST(&list->head),
1208
                           "kernel_irqchip", true) ||
1209
        !kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1210
        return 0;
1211
    }
1212

    
1213
    ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1214
    if (ret < 0) {
1215
        fprintf(stderr, "Create kernel irqchip failed\n");
1216
        return ret;
1217
    }
1218

    
1219
    kvm_kernel_irqchip = true;
1220
    /* If we have an in-kernel IRQ chip then we must have asynchronous
1221
     * interrupt delivery (though the reverse is not necessarily true)
1222
     */
1223
    kvm_async_interrupts_allowed = true;
1224

    
1225
    kvm_init_irq_routing(s);
1226

    
1227
    return 0;
1228
}
1229

    
1230
static int kvm_max_vcpus(KVMState *s)
1231
{
1232
    int ret;
1233

    
1234
    /* Find number of supported CPUs using the recommended
1235
     * procedure from the kernel API documentation to cope with
1236
     * older kernels that may be missing capabilities.
1237
     */
1238
    ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1239
    if (ret) {
1240
        return ret;
1241
    }
1242
    ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
1243
    if (ret) {
1244
        return ret;
1245
    }
1246

    
1247
    return 4;
1248
}
1249

    
1250
int kvm_init(void)
1251
{
1252
    static const char upgrade_note[] =
1253
        "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1254
        "(see http://sourceforge.net/projects/kvm).\n";
1255
    KVMState *s;
1256
    const KVMCapabilityInfo *missing_cap;
1257
    int ret;
1258
    int i;
1259
    int max_vcpus;
1260

    
1261
    s = g_malloc0(sizeof(KVMState));
1262

    
1263
    /*
1264
     * On systems where the kernel can support different base page
1265
     * sizes, host page size may be different from TARGET_PAGE_SIZE,
1266
     * even with KVM.  TARGET_PAGE_SIZE is assumed to be the minimum
1267
     * page size for the system though.
1268
     */
1269
    assert(TARGET_PAGE_SIZE <= getpagesize());
1270

    
1271
#ifdef KVM_CAP_SET_GUEST_DEBUG
1272
    QTAILQ_INIT(&s->kvm_sw_breakpoints);
1273
#endif
1274
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
1275
        s->slots[i].slot = i;
1276
    }
1277
    s->vmfd = -1;
1278
    s->fd = qemu_open("/dev/kvm", O_RDWR);
1279
    if (s->fd == -1) {
1280
        fprintf(stderr, "Could not access KVM kernel module: %m\n");
1281
        ret = -errno;
1282
        goto err;
1283
    }
1284

    
1285
    ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1286
    if (ret < KVM_API_VERSION) {
1287
        if (ret > 0) {
1288
            ret = -EINVAL;
1289
        }
1290
        fprintf(stderr, "kvm version too old\n");
1291
        goto err;
1292
    }
1293

    
1294
    if (ret > KVM_API_VERSION) {
1295
        ret = -EINVAL;
1296
        fprintf(stderr, "kvm version not supported\n");
1297
        goto err;
1298
    }
1299

    
1300
    max_vcpus = kvm_max_vcpus(s);
1301
    if (smp_cpus > max_vcpus) {
1302
        ret = -EINVAL;
1303
        fprintf(stderr, "Number of SMP cpus requested (%d) exceeds max cpus "
1304
                "supported by KVM (%d)\n", smp_cpus, max_vcpus);
1305
        goto err;
1306
    }
1307

    
1308
    s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
1309
    if (s->vmfd < 0) {
1310
#ifdef TARGET_S390X
1311
        fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
1312
                        "your host kernel command line\n");
1313
#endif
1314
        ret = s->vmfd;
1315
        goto err;
1316
    }
1317

    
1318
    missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1319
    if (!missing_cap) {
1320
        missing_cap =
1321
            kvm_check_extension_list(s, kvm_arch_required_capabilities);
1322
    }
1323
    if (missing_cap) {
1324
        ret = -EINVAL;
1325
        fprintf(stderr, "kvm does not support %s\n%s",
1326
                missing_cap->name, upgrade_note);
1327
        goto err;
1328
    }
1329

    
1330
    s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1331

    
1332
    s->broken_set_mem_region = 1;
1333
    ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1334
    if (ret > 0) {
1335
        s->broken_set_mem_region = 0;
1336
    }
1337

    
1338
#ifdef KVM_CAP_VCPU_EVENTS
1339
    s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1340
#endif
1341

    
1342
    s->robust_singlestep =
1343
        kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1344

    
1345
#ifdef KVM_CAP_DEBUGREGS
1346
    s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1347
#endif
1348

    
1349
#ifdef KVM_CAP_XSAVE
1350
    s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1351
#endif
1352

    
1353
#ifdef KVM_CAP_XCRS
1354
    s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1355
#endif
1356

    
1357
#ifdef KVM_CAP_PIT_STATE2
1358
    s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1359
#endif
1360

    
1361
#ifdef KVM_CAP_IRQ_ROUTING
1362
    s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1363
#endif
1364

    
1365
    s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1366

    
1367
    s->irq_set_ioctl = KVM_IRQ_LINE;
1368
    if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1369
        s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1370
    }
1371

    
1372
    ret = kvm_arch_init(s);
1373
    if (ret < 0) {
1374
        goto err;
1375
    }
1376

    
1377
    ret = kvm_irqchip_create(s);
1378
    if (ret < 0) {
1379
        goto err;
1380
    }
1381

    
1382
    kvm_state = s;
1383
    memory_listener_register(&kvm_memory_listener, &address_space_memory);
1384
    memory_listener_register(&kvm_io_listener, &address_space_io);
1385

    
1386
    s->many_ioeventfds = kvm_check_many_ioeventfds();
1387

    
1388
    cpu_interrupt_handler = kvm_handle_interrupt;
1389

    
1390
    return 0;
1391

    
1392
err:
1393
    if (s->vmfd >= 0) {
1394
        close(s->vmfd);
1395
    }
1396
    if (s->fd != -1) {
1397
        close(s->fd);
1398
    }
1399
    g_free(s);
1400

    
1401
    return ret;
1402
}
1403

    
1404
static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
1405
                          uint32_t count)
1406
{
1407
    int i;
1408
    uint8_t *ptr = data;
1409

    
1410
    for (i = 0; i < count; i++) {
1411
        if (direction == KVM_EXIT_IO_IN) {
1412
            switch (size) {
1413
            case 1:
1414
                stb_p(ptr, cpu_inb(port));
1415
                break;
1416
            case 2:
1417
                stw_p(ptr, cpu_inw(port));
1418
                break;
1419
            case 4:
1420
                stl_p(ptr, cpu_inl(port));
1421
                break;
1422
            }
1423
        } else {
1424
            switch (size) {
1425
            case 1:
1426
                cpu_outb(port, ldub_p(ptr));
1427
                break;
1428
            case 2:
1429
                cpu_outw(port, lduw_p(ptr));
1430
                break;
1431
            case 4:
1432
                cpu_outl(port, ldl_p(ptr));
1433
                break;
1434
            }
1435
        }
1436

    
1437
        ptr += size;
1438
    }
1439
}
1440

    
1441
static int kvm_handle_internal_error(CPUArchState *env, struct kvm_run *run)
1442
{
1443
    CPUState *cpu = ENV_GET_CPU(env);
1444

    
1445
    fprintf(stderr, "KVM internal error.");
1446
    if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1447
        int i;
1448

    
1449
        fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
1450
        for (i = 0; i < run->internal.ndata; ++i) {
1451
            fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1452
                    i, (uint64_t)run->internal.data[i]);
1453
        }
1454
    } else {
1455
        fprintf(stderr, "\n");
1456
    }
1457
    if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1458
        fprintf(stderr, "emulation failure\n");
1459
        if (!kvm_arch_stop_on_emulation_error(cpu)) {
1460
            cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1461
            return EXCP_INTERRUPT;
1462
        }
1463
    }
1464
    /* FIXME: Should trigger a qmp message to let management know
1465
     * something went wrong.
1466
     */
1467
    return -1;
1468
}
1469

    
1470
void kvm_flush_coalesced_mmio_buffer(void)
1471
{
1472
    KVMState *s = kvm_state;
1473

    
1474
    if (s->coalesced_flush_in_progress) {
1475
        return;
1476
    }
1477

    
1478
    s->coalesced_flush_in_progress = true;
1479

    
1480
    if (s->coalesced_mmio_ring) {
1481
        struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1482
        while (ring->first != ring->last) {
1483
            struct kvm_coalesced_mmio *ent;
1484

    
1485
            ent = &ring->coalesced_mmio[ring->first];
1486

    
1487
            cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1488
            smp_wmb();
1489
            ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1490
        }
1491
    }
1492

    
1493
    s->coalesced_flush_in_progress = false;
1494
}
1495

    
1496
static void do_kvm_cpu_synchronize_state(void *arg)
1497
{
1498
    CPUState *cpu = arg;
1499

    
1500
    if (!cpu->kvm_vcpu_dirty) {
1501
        kvm_arch_get_registers(cpu);
1502
        cpu->kvm_vcpu_dirty = true;
1503
    }
1504
}
1505

    
1506
void kvm_cpu_synchronize_state(CPUArchState *env)
1507
{
1508
    CPUState *cpu = ENV_GET_CPU(env);
1509

    
1510
    if (!cpu->kvm_vcpu_dirty) {
1511
        run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu);
1512
    }
1513
}
1514

    
1515
void kvm_cpu_synchronize_post_reset(CPUArchState *env)
1516
{
1517
    CPUState *cpu = ENV_GET_CPU(env);
1518

    
1519
    kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1520
    cpu->kvm_vcpu_dirty = false;
1521
}
1522

    
1523
void kvm_cpu_synchronize_post_init(CPUArchState *env)
1524
{
1525
    CPUState *cpu = ENV_GET_CPU(env);
1526

    
1527
    kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1528
    cpu->kvm_vcpu_dirty = false;
1529
}
1530

    
1531
int kvm_cpu_exec(CPUArchState *env)
1532
{
1533
    CPUState *cpu = ENV_GET_CPU(env);
1534
    struct kvm_run *run = cpu->kvm_run;
1535
    int ret, run_ret;
1536

    
1537
    DPRINTF("kvm_cpu_exec()\n");
1538

    
1539
    if (kvm_arch_process_async_events(cpu)) {
1540
        cpu->exit_request = 0;
1541
        return EXCP_HLT;
1542
    }
1543

    
1544
    do {
1545
        if (cpu->kvm_vcpu_dirty) {
1546
            kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1547
            cpu->kvm_vcpu_dirty = false;
1548
        }
1549

    
1550
        kvm_arch_pre_run(cpu, run);
1551
        if (cpu->exit_request) {
1552
            DPRINTF("interrupt exit requested\n");
1553
            /*
1554
             * KVM requires us to reenter the kernel after IO exits to complete
1555
             * instruction emulation. This self-signal will ensure that we
1556
             * leave ASAP again.
1557
             */
1558
            qemu_cpu_kick_self();
1559
        }
1560
        qemu_mutex_unlock_iothread();
1561

    
1562
        run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
1563

    
1564
        qemu_mutex_lock_iothread();
1565
        kvm_arch_post_run(cpu, run);
1566

    
1567
        if (run_ret < 0) {
1568
            if (run_ret == -EINTR || run_ret == -EAGAIN) {
1569
                DPRINTF("io window exit\n");
1570
                ret = EXCP_INTERRUPT;
1571
                break;
1572
            }
1573
            fprintf(stderr, "error: kvm run failed %s\n",
1574
                    strerror(-run_ret));
1575
            abort();
1576
        }
1577

    
1578
        switch (run->exit_reason) {
1579
        case KVM_EXIT_IO:
1580
            DPRINTF("handle_io\n");
1581
            kvm_handle_io(run->io.port,
1582
                          (uint8_t *)run + run->io.data_offset,
1583
                          run->io.direction,
1584
                          run->io.size,
1585
                          run->io.count);
1586
            ret = 0;
1587
            break;
1588
        case KVM_EXIT_MMIO:
1589
            DPRINTF("handle_mmio\n");
1590
            cpu_physical_memory_rw(run->mmio.phys_addr,
1591
                                   run->mmio.data,
1592
                                   run->mmio.len,
1593
                                   run->mmio.is_write);
1594
            ret = 0;
1595
            break;
1596
        case KVM_EXIT_IRQ_WINDOW_OPEN:
1597
            DPRINTF("irq_window_open\n");
1598
            ret = EXCP_INTERRUPT;
1599
            break;
1600
        case KVM_EXIT_SHUTDOWN:
1601
            DPRINTF("shutdown\n");
1602
            qemu_system_reset_request();
1603
            ret = EXCP_INTERRUPT;
1604
            break;
1605
        case KVM_EXIT_UNKNOWN:
1606
            fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1607
                    (uint64_t)run->hw.hardware_exit_reason);
1608
            ret = -1;
1609
            break;
1610
        case KVM_EXIT_INTERNAL_ERROR:
1611
            ret = kvm_handle_internal_error(env, run);
1612
            break;
1613
        default:
1614
            DPRINTF("kvm_arch_handle_exit\n");
1615
            ret = kvm_arch_handle_exit(cpu, run);
1616
            break;
1617
        }
1618
    } while (ret == 0);
1619

    
1620
    if (ret < 0) {
1621
        cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1622
        vm_stop(RUN_STATE_INTERNAL_ERROR);
1623
    }
1624

    
1625
    cpu->exit_request = 0;
1626
    return ret;
1627
}
1628

    
1629
int kvm_ioctl(KVMState *s, int type, ...)
1630
{
1631
    int ret;
1632
    void *arg;
1633
    va_list ap;
1634

    
1635
    va_start(ap, type);
1636
    arg = va_arg(ap, void *);
1637
    va_end(ap);
1638

    
1639
    ret = ioctl(s->fd, type, arg);
1640
    if (ret == -1) {
1641
        ret = -errno;
1642
    }
1643
    return ret;
1644
}
1645

    
1646
int kvm_vm_ioctl(KVMState *s, int type, ...)
1647
{
1648
    int ret;
1649
    void *arg;
1650
    va_list ap;
1651

    
1652
    va_start(ap, type);
1653
    arg = va_arg(ap, void *);
1654
    va_end(ap);
1655

    
1656
    ret = ioctl(s->vmfd, type, arg);
1657
    if (ret == -1) {
1658
        ret = -errno;
1659
    }
1660
    return ret;
1661
}
1662

    
1663
int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
1664
{
1665
    int ret;
1666
    void *arg;
1667
    va_list ap;
1668

    
1669
    va_start(ap, type);
1670
    arg = va_arg(ap, void *);
1671
    va_end(ap);
1672

    
1673
    ret = ioctl(cpu->kvm_fd, type, arg);
1674
    if (ret == -1) {
1675
        ret = -errno;
1676
    }
1677
    return ret;
1678
}
1679

    
1680
int kvm_has_sync_mmu(void)
1681
{
1682
    return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1683
}
1684

    
1685
int kvm_has_vcpu_events(void)
1686
{
1687
    return kvm_state->vcpu_events;
1688
}
1689

    
1690
int kvm_has_robust_singlestep(void)
1691
{
1692
    return kvm_state->robust_singlestep;
1693
}
1694

    
1695
int kvm_has_debugregs(void)
1696
{
1697
    return kvm_state->debugregs;
1698
}
1699

    
1700
int kvm_has_xsave(void)
1701
{
1702
    return kvm_state->xsave;
1703
}
1704

    
1705
int kvm_has_xcrs(void)
1706
{
1707
    return kvm_state->xcrs;
1708
}
1709

    
1710
int kvm_has_pit_state2(void)
1711
{
1712
    return kvm_state->pit_state2;
1713
}
1714

    
1715
int kvm_has_many_ioeventfds(void)
1716
{
1717
    if (!kvm_enabled()) {
1718
        return 0;
1719
    }
1720
    return kvm_state->many_ioeventfds;
1721
}
1722

    
1723
int kvm_has_gsi_routing(void)
1724
{
1725
#ifdef KVM_CAP_IRQ_ROUTING
1726
    return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
1727
#else
1728
    return false;
1729
#endif
1730
}
1731

    
1732
int kvm_has_intx_set_mask(void)
1733
{
1734
    return kvm_state->intx_set_mask;
1735
}
1736

    
1737
void *kvm_vmalloc(ram_addr_t size)
1738
{
1739
#ifdef TARGET_S390X
1740
    void *mem;
1741

    
1742
    mem = kvm_arch_vmalloc(size);
1743
    if (mem) {
1744
        return mem;
1745
    }
1746
#endif
1747
    return qemu_vmalloc(size);
1748
}
1749

    
1750
void kvm_setup_guest_memory(void *start, size_t size)
1751
{
1752
#ifdef CONFIG_VALGRIND_H
1753
    VALGRIND_MAKE_MEM_DEFINED(start, size);
1754
#endif
1755
    if (!kvm_has_sync_mmu()) {
1756
        int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1757

    
1758
        if (ret) {
1759
            perror("qemu_madvise");
1760
            fprintf(stderr,
1761
                    "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1762
            exit(1);
1763
        }
1764
    }
1765
}
1766

    
1767
#ifdef KVM_CAP_SET_GUEST_DEBUG
1768
struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
1769
                                                 target_ulong pc)
1770
{
1771
    struct kvm_sw_breakpoint *bp;
1772

    
1773
    QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
1774
        if (bp->pc == pc) {
1775
            return bp;
1776
        }
1777
    }
1778
    return NULL;
1779
}
1780

    
1781
int kvm_sw_breakpoints_active(CPUState *cpu)
1782
{
1783
    return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
1784
}
1785

    
1786
struct kvm_set_guest_debug_data {
1787
    struct kvm_guest_debug dbg;
1788
    CPUState *cpu;
1789
    int err;
1790
};
1791

    
1792
static void kvm_invoke_set_guest_debug(void *data)
1793
{
1794
    struct kvm_set_guest_debug_data *dbg_data = data;
1795

    
1796
    dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG,
1797
                                   &dbg_data->dbg);
1798
}
1799

    
1800
int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
1801
{
1802
    CPUState *cpu = ENV_GET_CPU(env);
1803
    struct kvm_set_guest_debug_data data;
1804

    
1805
    data.dbg.control = reinject_trap;
1806

    
1807
    if (env->singlestep_enabled) {
1808
        data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1809
    }
1810
    kvm_arch_update_guest_debug(cpu, &data.dbg);
1811
    data.cpu = cpu;
1812

    
1813
    run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data);
1814
    return data.err;
1815
}
1816

    
1817
int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
1818
                          target_ulong len, int type)
1819
{
1820
    CPUState *current_cpu = ENV_GET_CPU(current_env);
1821
    struct kvm_sw_breakpoint *bp;
1822
    CPUArchState *env;
1823
    int err;
1824

    
1825
    if (type == GDB_BREAKPOINT_SW) {
1826
        bp = kvm_find_sw_breakpoint(current_cpu, addr);
1827
        if (bp) {
1828
            bp->use_count++;
1829
            return 0;
1830
        }
1831

    
1832
        bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
1833
        if (!bp) {
1834
            return -ENOMEM;
1835
        }
1836

    
1837
        bp->pc = addr;
1838
        bp->use_count = 1;
1839
        err = kvm_arch_insert_sw_breakpoint(current_cpu, bp);
1840
        if (err) {
1841
            g_free(bp);
1842
            return err;
1843
        }
1844

    
1845
        QTAILQ_INSERT_HEAD(&current_cpu->kvm_state->kvm_sw_breakpoints,
1846
                          bp, entry);
1847
    } else {
1848
        err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1849
        if (err) {
1850
            return err;
1851
        }
1852
    }
1853

    
1854
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1855
        err = kvm_update_guest_debug(env, 0);
1856
        if (err) {
1857
            return err;
1858
        }
1859
    }
1860
    return 0;
1861
}
1862

    
1863
int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
1864
                          target_ulong len, int type)
1865
{
1866
    CPUState *current_cpu = ENV_GET_CPU(current_env);
1867
    struct kvm_sw_breakpoint *bp;
1868
    CPUArchState *env;
1869
    int err;
1870

    
1871
    if (type == GDB_BREAKPOINT_SW) {
1872
        bp = kvm_find_sw_breakpoint(current_cpu, addr);
1873
        if (!bp) {
1874
            return -ENOENT;
1875
        }
1876

    
1877
        if (bp->use_count > 1) {
1878
            bp->use_count--;
1879
            return 0;
1880
        }
1881

    
1882
        err = kvm_arch_remove_sw_breakpoint(current_cpu, bp);
1883
        if (err) {
1884
            return err;
1885
        }
1886

    
1887
        QTAILQ_REMOVE(&current_cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
1888
        g_free(bp);
1889
    } else {
1890
        err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1891
        if (err) {
1892
            return err;
1893
        }
1894
    }
1895

    
1896
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1897
        err = kvm_update_guest_debug(env, 0);
1898
        if (err) {
1899
            return err;
1900
        }
1901
    }
1902
    return 0;
1903
}
1904

    
1905
void kvm_remove_all_breakpoints(CPUArchState *current_env)
1906
{
1907
    CPUState *current_cpu = ENV_GET_CPU(current_env);
1908
    struct kvm_sw_breakpoint *bp, *next;
1909
    KVMState *s = current_cpu->kvm_state;
1910
    CPUArchState *env;
1911
    CPUState *cpu;
1912

    
1913
    QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1914
        if (kvm_arch_remove_sw_breakpoint(current_cpu, bp) != 0) {
1915
            /* Try harder to find a CPU that currently sees the breakpoint. */
1916
            for (env = first_cpu; env != NULL; env = env->next_cpu) {
1917
                cpu = ENV_GET_CPU(env);
1918
                if (kvm_arch_remove_sw_breakpoint(cpu, bp) == 0) {
1919
                    break;
1920
                }
1921
            }
1922
        }
1923
        QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
1924
        g_free(bp);
1925
    }
1926
    kvm_arch_remove_all_hw_breakpoints();
1927

    
1928
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1929
        kvm_update_guest_debug(env, 0);
1930
    }
1931
}
1932

    
1933
#else /* !KVM_CAP_SET_GUEST_DEBUG */
1934

    
1935
int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
1936
{
1937
    return -EINVAL;
1938
}
1939

    
1940
int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
1941
                          target_ulong len, int type)
1942
{
1943
    return -EINVAL;
1944
}
1945

    
1946
int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
1947
                          target_ulong len, int type)
1948
{
1949
    return -EINVAL;
1950
}
1951

    
1952
void kvm_remove_all_breakpoints(CPUArchState *current_env)
1953
{
1954
}
1955
#endif /* !KVM_CAP_SET_GUEST_DEBUG */
1956

    
1957
int kvm_set_signal_mask(CPUArchState *env, const sigset_t *sigset)
1958
{
1959
    CPUState *cpu = ENV_GET_CPU(env);
1960
    struct kvm_signal_mask *sigmask;
1961
    int r;
1962

    
1963
    if (!sigset) {
1964
        return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL);
1965
    }
1966

    
1967
    sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
1968

    
1969
    sigmask->len = 8;
1970
    memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1971
    r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
1972
    g_free(sigmask);
1973

    
1974
    return r;
1975
}
1976

    
1977
int kvm_set_ioeventfd_mmio(int fd, uint32_t addr, uint32_t val, bool assign,
1978
                           uint32_t size)
1979
{
1980
    int ret;
1981
    struct kvm_ioeventfd iofd;
1982

    
1983
    iofd.datamatch = val;
1984
    iofd.addr = addr;
1985
    iofd.len = size;
1986
    iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1987
    iofd.fd = fd;
1988

    
1989
    if (!kvm_enabled()) {
1990
        return -ENOSYS;
1991
    }
1992

    
1993
    if (!assign) {
1994
        iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1995
    }
1996

    
1997
    ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1998

    
1999
    if (ret < 0) {
2000
        return -errno;
2001
    }
2002

    
2003
    return 0;
2004
}
2005

    
2006
int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
2007
{
2008
    struct kvm_ioeventfd kick = {
2009
        .datamatch = val,
2010
        .addr = addr,
2011
        .len = 2,
2012
        .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
2013
        .fd = fd,
2014
    };
2015
    int r;
2016
    if (!kvm_enabled()) {
2017
        return -ENOSYS;
2018
    }
2019
    if (!assign) {
2020
        kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
2021
    }
2022
    r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
2023
    if (r < 0) {
2024
        return r;
2025
    }
2026
    return 0;
2027
}
2028

    
2029
int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2030
{
2031
    return kvm_arch_on_sigbus_vcpu(cpu, code, addr);
2032
}
2033

    
2034
int kvm_on_sigbus(int code, void *addr)
2035
{
2036
    return kvm_arch_on_sigbus(code, addr);
2037
}