Statistics
| Branch: | Revision:

root / bsd-user / qemu.h @ d2e46345

History | View | Annotate | Download (13.5 kB)

1
#ifndef QEMU_H
2
#define QEMU_H
3

    
4
#include <signal.h>
5
#include <string.h>
6

    
7
#include "cpu.h"
8

    
9
#undef DEBUG_REMAP
10
#ifdef DEBUG_REMAP
11
#include <stdlib.h>
12
#endif /* DEBUG_REMAP */
13

    
14
#include "qemu-types.h"
15

    
16
enum BSDType {
17
    target_freebsd,
18
    target_netbsd,
19
    target_openbsd,
20
};
21
extern enum BSDType bsd_type;
22

    
23
#include "syscall_defs.h"
24
#include "syscall.h"
25
#include "target_signal.h"
26
#include "gdbstub.h"
27

    
28
#if defined(CONFIG_USE_NPTL)
29
#define THREAD __thread
30
#else
31
#define THREAD
32
#endif
33

    
34
/* This struct is used to hold certain information about the image.
35
 * Basically, it replicates in user space what would be certain
36
 * task_struct fields in the kernel
37
 */
38
struct image_info {
39
    abi_ulong load_addr;
40
    abi_ulong start_code;
41
    abi_ulong end_code;
42
    abi_ulong start_data;
43
    abi_ulong end_data;
44
    abi_ulong start_brk;
45
    abi_ulong brk;
46
    abi_ulong start_mmap;
47
    abi_ulong mmap;
48
    abi_ulong rss;
49
    abi_ulong start_stack;
50
    abi_ulong entry;
51
    abi_ulong code_offset;
52
    abi_ulong data_offset;
53
    char      **host_argv;
54
    int       personality;
55
};
56

    
57
#define MAX_SIGQUEUE_SIZE 1024
58

    
59
struct sigqueue {
60
    struct sigqueue *next;
61
    //target_siginfo_t info;
62
};
63

    
64
struct emulated_sigtable {
65
    int pending; /* true if signal is pending */
66
    struct sigqueue *first;
67
    struct sigqueue info; /* in order to always have memory for the
68
                             first signal, we put it here */
69
};
70

    
71
/* NOTE: we force a big alignment so that the stack stored after is
72
   aligned too */
73
typedef struct TaskState {
74
    struct TaskState *next;
75
    int used; /* non zero if used */
76
    struct image_info *info;
77

    
78
    struct emulated_sigtable sigtab[TARGET_NSIG];
79
    struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */
80
    struct sigqueue *first_free; /* first free siginfo queue entry */
81
    int signal_pending; /* non zero if a signal may be pending */
82

    
83
    uint8_t stack[0];
84
} __attribute__((aligned(16))) TaskState;
85

    
86
void init_task_state(TaskState *ts);
87
extern const char *qemu_uname_release;
88
#if defined(CONFIG_USE_GUEST_BASE)
89
extern unsigned long mmap_min_addr;
90
#endif
91

    
92
/* ??? See if we can avoid exposing so much of the loader internals.  */
93
/*
94
 * MAX_ARG_PAGES defines the number of pages allocated for arguments
95
 * and envelope for the new program. 32 should suffice, this gives
96
 * a maximum env+arg of 128kB w/4KB pages!
97
 */
98
#define MAX_ARG_PAGES 32
99

    
100
/*
101
 * This structure is used to hold the arguments that are
102
 * used when loading binaries.
103
 */
104
struct linux_binprm {
105
        char buf[128];
106
        void *page[MAX_ARG_PAGES];
107
        abi_ulong p;
108
        int fd;
109
        int e_uid, e_gid;
110
        int argc, envc;
111
        char **argv;
112
        char **envp;
113
        char * filename;        /* Name of binary */
114
};
115

    
116
void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
117
abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
118
                              abi_ulong stringp, int push_ptr);
119
int loader_exec(const char * filename, char ** argv, char ** envp,
120
             struct target_pt_regs * regs, struct image_info *infop);
121

    
122
int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
123
                    struct image_info * info);
124
int load_flt_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
125
                    struct image_info * info);
126

    
127
abi_long memcpy_to_target(abi_ulong dest, const void *src,
128
                          unsigned long len);
129
void target_set_brk(abi_ulong new_brk);
130
abi_long do_brk(abi_ulong new_brk);
131
void syscall_init(void);
132
abi_long do_freebsd_syscall(void *cpu_env, int num, abi_long arg1,
133
                            abi_long arg2, abi_long arg3, abi_long arg4,
134
                            abi_long arg5, abi_long arg6, abi_long arg7,
135
                            abi_long arg8);
136
abi_long do_netbsd_syscall(void *cpu_env, int num, abi_long arg1,
137
                           abi_long arg2, abi_long arg3, abi_long arg4,
138
                           abi_long arg5, abi_long arg6);
139
abi_long do_openbsd_syscall(void *cpu_env, int num, abi_long arg1,
140
                            abi_long arg2, abi_long arg3, abi_long arg4,
141
                            abi_long arg5, abi_long arg6);
142
void gemu_log(const char *fmt, ...) __attribute__((format(printf,1,2)));
143
extern THREAD CPUState *thread_env;
144
void cpu_loop(CPUState *env);
145
char *target_strerror(int err);
146
int get_osversion(void);
147
void fork_start(void);
148
void fork_end(int child);
149

    
150
#include "qemu-log.h"
151

    
152
/* strace.c */
153
void
154
print_freebsd_syscall(int num,
155
                      abi_long arg1, abi_long arg2, abi_long arg3,
156
                      abi_long arg4, abi_long arg5, abi_long arg6);
157
void print_freebsd_syscall_ret(int num, abi_long ret);
158
void
159
print_netbsd_syscall(int num,
160
                     abi_long arg1, abi_long arg2, abi_long arg3,
161
                     abi_long arg4, abi_long arg5, abi_long arg6);
162
void print_netbsd_syscall_ret(int num, abi_long ret);
163
void
164
print_openbsd_syscall(int num,
165
                      abi_long arg1, abi_long arg2, abi_long arg3,
166
                      abi_long arg4, abi_long arg5, abi_long arg6);
167
void print_openbsd_syscall_ret(int num, abi_long ret);
168
extern int do_strace;
169

    
170
/* signal.c */
171
void process_pending_signals(CPUState *cpu_env);
172
void signal_init(void);
173
//int queue_signal(CPUState *env, int sig, target_siginfo_t *info);
174
//void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
175
//void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
176
long do_sigreturn(CPUState *env);
177
long do_rt_sigreturn(CPUState *env);
178
abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
179

    
180
/* mmap.c */
181
int target_mprotect(abi_ulong start, abi_ulong len, int prot);
182
abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
183
                     int flags, int fd, abi_ulong offset);
184
int target_munmap(abi_ulong start, abi_ulong len);
185
abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
186
                       abi_ulong new_size, unsigned long flags,
187
                       abi_ulong new_addr);
188
int target_msync(abi_ulong start, abi_ulong len, int flags);
189
extern unsigned long last_brk;
190
void mmap_lock(void);
191
void mmap_unlock(void);
192
void cpu_list_lock(void);
193
void cpu_list_unlock(void);
194
#if defined(CONFIG_USE_NPTL)
195
void mmap_fork_start(void);
196
void mmap_fork_end(int child);
197
#endif
198

    
199
/* main.c */
200
extern unsigned long x86_stack_size;
201

    
202
/* user access */
203

    
204
#define VERIFY_READ 0
205
#define VERIFY_WRITE 1 /* implies read access */
206

    
207
static inline int access_ok(int type, abi_ulong addr, abi_ulong size)
208
{
209
    return page_check_range((target_ulong)addr, size,
210
                            (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0;
211
}
212

    
213
/* NOTE __get_user and __put_user use host pointers and don't check access. */
214
/* These are usually used to access struct data members once the
215
 * struct has been locked - usually with lock_user_struct().
216
 */
217
#define __put_user(x, hptr)\
218
({\
219
    int size = sizeof(*hptr);\
220
    switch(size) {\
221
    case 1:\
222
        *(uint8_t *)(hptr) = (uint8_t)(typeof(*hptr))(x);\
223
        break;\
224
    case 2:\
225
        *(uint16_t *)(hptr) = tswap16((typeof(*hptr))(x));\
226
        break;\
227
    case 4:\
228
        *(uint32_t *)(hptr) = tswap32((typeof(*hptr))(x));\
229
        break;\
230
    case 8:\
231
        *(uint64_t *)(hptr) = tswap64((typeof(*hptr))(x));\
232
        break;\
233
    default:\
234
        abort();\
235
    }\
236
    0;\
237
})
238

    
239
#define __get_user(x, hptr) \
240
({\
241
    int size = sizeof(*hptr);\
242
    switch(size) {\
243
    case 1:\
244
        x = (typeof(*hptr))*(uint8_t *)(hptr);\
245
        break;\
246
    case 2:\
247
        x = (typeof(*hptr))tswap16(*(uint16_t *)(hptr));\
248
        break;\
249
    case 4:\
250
        x = (typeof(*hptr))tswap32(*(uint32_t *)(hptr));\
251
        break;\
252
    case 8:\
253
        x = (typeof(*hptr))tswap64(*(uint64_t *)(hptr));\
254
        break;\
255
    default:\
256
        /* avoid warning */\
257
        x = 0;\
258
        abort();\
259
    }\
260
    0;\
261
})
262

    
263
/* put_user()/get_user() take a guest address and check access */
264
/* These are usually used to access an atomic data type, such as an int,
265
 * that has been passed by address.  These internally perform locking
266
 * and unlocking on the data type.
267
 */
268
#define put_user(x, gaddr, target_type)                                 \
269
({                                                                      \
270
    abi_ulong __gaddr = (gaddr);                                        \
271
    target_type *__hptr;                                                \
272
    abi_long __ret;                                                     \
273
    if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
274
        __ret = __put_user((x), __hptr);                                \
275
        unlock_user(__hptr, __gaddr, sizeof(target_type));              \
276
    } else                                                              \
277
        __ret = -TARGET_EFAULT;                                         \
278
    __ret;                                                              \
279
})
280

    
281
#define get_user(x, gaddr, target_type)                                 \
282
({                                                                      \
283
    abi_ulong __gaddr = (gaddr);                                        \
284
    target_type *__hptr;                                                \
285
    abi_long __ret;                                                     \
286
    if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
287
        __ret = __get_user((x), __hptr);                                \
288
        unlock_user(__hptr, __gaddr, 0);                                \
289
    } else {                                                            \
290
        /* avoid warning */                                             \
291
        (x) = 0;                                                        \
292
        __ret = -TARGET_EFAULT;                                         \
293
    }                                                                   \
294
    __ret;                                                              \
295
})
296

    
297
#define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
298
#define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
299
#define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
300
#define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
301
#define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
302
#define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
303
#define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
304
#define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
305
#define put_user_u8(x, gaddr)  put_user((x), (gaddr), uint8_t)
306
#define put_user_s8(x, gaddr)  put_user((x), (gaddr), int8_t)
307

    
308
#define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
309
#define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
310
#define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
311
#define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
312
#define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
313
#define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
314
#define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
315
#define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
316
#define get_user_u8(x, gaddr)  get_user((x), (gaddr), uint8_t)
317
#define get_user_s8(x, gaddr)  get_user((x), (gaddr), int8_t)
318

    
319
/* copy_from_user() and copy_to_user() are usually used to copy data
320
 * buffers between the target and host.  These internally perform
321
 * locking/unlocking of the memory.
322
 */
323
abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
324
abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
325

    
326
/* Functions for accessing guest memory.  The tget and tput functions
327
   read/write single values, byteswapping as neccessary.  The lock_user
328
   gets a pointer to a contiguous area of guest memory, but does not perform
329
   and byteswapping.  lock_user may return either a pointer to the guest
330
   memory, or a temporary buffer.  */
331

    
332
/* Lock an area of guest memory into the host.  If copy is true then the
333
   host area will have the same contents as the guest.  */
334
static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy)
335
{
336
    if (!access_ok(type, guest_addr, len))
337
        return NULL;
338
#ifdef DEBUG_REMAP
339
    {
340
        void *addr;
341
        addr = malloc(len);
342
        if (copy)
343
            memcpy(addr, g2h(guest_addr), len);
344
        else
345
            memset(addr, 0, len);
346
        return addr;
347
    }
348
#else
349
    return g2h(guest_addr);
350
#endif
351
}
352

    
353
/* Unlock an area of guest memory.  The first LEN bytes must be
354
   flushed back to guest memory. host_ptr = NULL is explicitly
355
   allowed and does nothing. */
356
static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
357
                               long len)
358
{
359

    
360
#ifdef DEBUG_REMAP
361
    if (!host_ptr)
362
        return;
363
    if (host_ptr == g2h(guest_addr))
364
        return;
365
    if (len > 0)
366
        memcpy(g2h(guest_addr), host_ptr, len);
367
    free(host_ptr);
368
#endif
369
}
370

    
371
/* Return the length of a string in target memory or -TARGET_EFAULT if
372
   access error. */
373
abi_long target_strlen(abi_ulong gaddr);
374

    
375
/* Like lock_user but for null terminated strings.  */
376
static inline void *lock_user_string(abi_ulong guest_addr)
377
{
378
    abi_long len;
379
    len = target_strlen(guest_addr);
380
    if (len < 0)
381
        return NULL;
382
    return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
383
}
384

    
385
/* Helper macros for locking/ulocking a target struct.  */
386
#define lock_user_struct(type, host_ptr, guest_addr, copy)      \
387
    (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
388
#define unlock_user_struct(host_ptr, guest_addr, copy)          \
389
    unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
390

    
391
#if defined(CONFIG_USE_NPTL)
392
#include <pthread.h>
393
#endif
394

    
395
#endif /* QEMU_H */