Statistics
| Branch: | Revision:

root / hw / intel-hda.c @ d33ea50a

History | View | Annotate | Download (37.5 kB)

1
/*
2
 * Copyright (C) 2010 Red Hat, Inc.
3
 *
4
 * written by Gerd Hoffmann <kraxel@redhat.com>
5
 *
6
 * This program is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU General Public License as
8
 * published by the Free Software Foundation; either version 2 or
9
 * (at your option) version 3 of the License.
10
 *
11
 * This program is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
 * GNU General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU General Public License
17
 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18
 */
19

    
20
#include "hw.h"
21
#include "pci.h"
22
#include "qemu-timer.h"
23
#include "audiodev.h"
24
#include "intel-hda.h"
25
#include "intel-hda-defs.h"
26

    
27
/* --------------------------------------------------------------------- */
28
/* hda bus                                                               */
29

    
30
static struct BusInfo hda_codec_bus_info = {
31
    .name      = "HDA",
32
    .size      = sizeof(HDACodecBus),
33
    .props     = (Property[]) {
34
        DEFINE_PROP_UINT32("cad", HDACodecDevice, cad, -1),
35
        DEFINE_PROP_END_OF_LIST()
36
    }
37
};
38

    
39
void hda_codec_bus_init(DeviceState *dev, HDACodecBus *bus,
40
                        hda_codec_response_func response,
41
                        hda_codec_xfer_func xfer)
42
{
43
    qbus_create_inplace(&bus->qbus, &hda_codec_bus_info, dev, NULL);
44
    bus->response = response;
45
    bus->xfer = xfer;
46
}
47

    
48
static int hda_codec_dev_init(DeviceState *qdev, DeviceInfo *base)
49
{
50
    HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, qdev->parent_bus);
51
    HDACodecDevice *dev = DO_UPCAST(HDACodecDevice, qdev, qdev);
52
    HDACodecDeviceInfo *info = DO_UPCAST(HDACodecDeviceInfo, qdev, base);
53

    
54
    dev->info = info;
55
    if (dev->cad == -1) {
56
        dev->cad = bus->next_cad;
57
    }
58
    if (dev->cad > 15)
59
        return -1;
60
    bus->next_cad = dev->cad + 1;
61
    return info->init(dev);
62
}
63

    
64
void hda_codec_register(HDACodecDeviceInfo *info)
65
{
66
    info->qdev.init = hda_codec_dev_init;
67
    info->qdev.bus_info = &hda_codec_bus_info;
68
    qdev_register(&info->qdev);
69
}
70

    
71
HDACodecDevice *hda_codec_find(HDACodecBus *bus, uint32_t cad)
72
{
73
    DeviceState *qdev;
74
    HDACodecDevice *cdev;
75

    
76
    QLIST_FOREACH(qdev, &bus->qbus.children, sibling) {
77
        cdev = DO_UPCAST(HDACodecDevice, qdev, qdev);
78
        if (cdev->cad == cad) {
79
            return cdev;
80
        }
81
    }
82
    return NULL;
83
}
84

    
85
void hda_codec_response(HDACodecDevice *dev, bool solicited, uint32_t response)
86
{
87
    HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, dev->qdev.parent_bus);
88
    bus->response(dev, solicited, response);
89
}
90

    
91
bool hda_codec_xfer(HDACodecDevice *dev, uint32_t stnr, bool output,
92
                    uint8_t *buf, uint32_t len)
93
{
94
    HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, dev->qdev.parent_bus);
95
    return bus->xfer(dev, stnr, output, buf, len);
96
}
97

    
98
/* --------------------------------------------------------------------- */
99
/* intel hda emulation                                                   */
100

    
101
typedef struct IntelHDAStream IntelHDAStream;
102
typedef struct IntelHDAState IntelHDAState;
103
typedef struct IntelHDAReg IntelHDAReg;
104

    
105
typedef struct bpl {
106
    uint64_t addr;
107
    uint32_t len;
108
    uint32_t flags;
109
} bpl;
110

    
111
struct IntelHDAStream {
112
    /* registers */
113
    uint32_t ctl;
114
    uint32_t lpib;
115
    uint32_t cbl;
116
    uint32_t lvi;
117
    uint32_t fmt;
118
    uint32_t bdlp_lbase;
119
    uint32_t bdlp_ubase;
120

    
121
    /* state */
122
    bpl      *bpl;
123
    uint32_t bentries;
124
    uint32_t bsize, be, bp;
125
};
126

    
127
struct IntelHDAState {
128
    PCIDevice pci;
129
    const char *name;
130
    HDACodecBus codecs;
131

    
132
    /* registers */
133
    uint32_t g_ctl;
134
    uint32_t wake_en;
135
    uint32_t state_sts;
136
    uint32_t int_ctl;
137
    uint32_t int_sts;
138
    uint32_t wall_clk;
139

    
140
    uint32_t corb_lbase;
141
    uint32_t corb_ubase;
142
    uint32_t corb_rp;
143
    uint32_t corb_wp;
144
    uint32_t corb_ctl;
145
    uint32_t corb_sts;
146
    uint32_t corb_size;
147

    
148
    uint32_t rirb_lbase;
149
    uint32_t rirb_ubase;
150
    uint32_t rirb_wp;
151
    uint32_t rirb_cnt;
152
    uint32_t rirb_ctl;
153
    uint32_t rirb_sts;
154
    uint32_t rirb_size;
155

    
156
    uint32_t dp_lbase;
157
    uint32_t dp_ubase;
158

    
159
    uint32_t icw;
160
    uint32_t irr;
161
    uint32_t ics;
162

    
163
    /* streams */
164
    IntelHDAStream st[8];
165

    
166
    /* state */
167
    int mmio_addr;
168
    uint32_t rirb_count;
169
    int64_t wall_base_ns;
170

    
171
    /* debug logging */
172
    const IntelHDAReg *last_reg;
173
    uint32_t last_val;
174
    uint32_t last_write;
175
    uint32_t last_sec;
176
    uint32_t repeat_count;
177

    
178
    /* properties */
179
    uint32_t debug;
180
};
181

    
182
struct IntelHDAReg {
183
    const char *name;      /* register name */
184
    uint32_t   size;       /* size in bytes */
185
    uint32_t   reset;      /* reset value */
186
    uint32_t   wmask;      /* write mask */
187
    uint32_t   wclear;     /* write 1 to clear bits */
188
    uint32_t   offset;     /* location in IntelHDAState */
189
    uint32_t   shift;      /* byte access entries for dwords */
190
    uint32_t   stream;
191
    void       (*whandler)(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old);
192
    void       (*rhandler)(IntelHDAState *d, const IntelHDAReg *reg);
193
};
194

    
195
static void intel_hda_reset(DeviceState *dev);
196

    
197
/* --------------------------------------------------------------------- */
198

    
199
static target_phys_addr_t intel_hda_addr(uint32_t lbase, uint32_t ubase)
200
{
201
    target_phys_addr_t addr;
202

    
203
#if TARGET_PHYS_ADDR_BITS == 32
204
    addr = lbase;
205
#else
206
    addr = ubase;
207
    addr <<= 32;
208
    addr |= lbase;
209
#endif
210
    return addr;
211
}
212

    
213
static void stl_phys_le(target_phys_addr_t addr, uint32_t value)
214
{
215
    uint32_t value_le = cpu_to_le32(value);
216
    cpu_physical_memory_write(addr, (uint8_t*)(&value_le), sizeof(value_le));
217
}
218

    
219
static uint32_t ldl_phys_le(target_phys_addr_t addr)
220
{
221
    uint32_t value_le;
222
    cpu_physical_memory_read(addr, (uint8_t*)(&value_le), sizeof(value_le));
223
    return le32_to_cpu(value_le);
224
}
225

    
226
static void intel_hda_update_int_sts(IntelHDAState *d)
227
{
228
    uint32_t sts = 0;
229
    uint32_t i;
230

    
231
    /* update controller status */
232
    if (d->rirb_sts & ICH6_RBSTS_IRQ) {
233
        sts |= (1 << 30);
234
    }
235
    if (d->rirb_sts & ICH6_RBSTS_OVERRUN) {
236
        sts |= (1 << 30);
237
    }
238
    if (d->state_sts) {
239
        sts |= (1 << 30);
240
    }
241

    
242
    /* update stream status */
243
    for (i = 0; i < 8; i++) {
244
        /* buffer completion interrupt */
245
        if (d->st[i].ctl & (1 << 26)) {
246
            sts |= (1 << i);
247
        }
248
    }
249

    
250
    /* update global status */
251
    if (sts & d->int_ctl) {
252
        sts |= (1 << 31);
253
    }
254

    
255
    d->int_sts = sts;
256
}
257

    
258
static void intel_hda_update_irq(IntelHDAState *d)
259
{
260
    int level;
261

    
262
    intel_hda_update_int_sts(d);
263
    if (d->int_sts & (1 << 31) && d->int_ctl & (1 << 31)) {
264
        level = 1;
265
    } else {
266
        level = 0;
267
    }
268
    dprint(d, 2, "%s: level %d\n", __FUNCTION__, level);
269
    qemu_set_irq(d->pci.irq[0], level);
270
}
271

    
272
static int intel_hda_send_command(IntelHDAState *d, uint32_t verb)
273
{
274
    uint32_t cad, nid, data;
275
    HDACodecDevice *codec;
276

    
277
    cad = (verb >> 28) & 0x0f;
278
    if (verb & (1 << 27)) {
279
        /* indirect node addressing, not specified in HDA 1.0 */
280
        dprint(d, 1, "%s: indirect node addressing (guest bug?)\n", __FUNCTION__);
281
        return -1;
282
    }
283
    nid = (verb >> 20) & 0x7f;
284
    data = verb & 0xfffff;
285

    
286
    codec = hda_codec_find(&d->codecs, cad);
287
    if (codec == NULL) {
288
        dprint(d, 1, "%s: addressed non-existing codec\n", __FUNCTION__);
289
        return -1;
290
    }
291
    codec->info->command(codec, nid, data);
292
    return 0;
293
}
294

    
295
static void intel_hda_corb_run(IntelHDAState *d)
296
{
297
    target_phys_addr_t addr;
298
    uint32_t rp, verb;
299

    
300
    if (d->ics & ICH6_IRS_BUSY) {
301
        dprint(d, 2, "%s: [icw] verb 0x%08x\n", __FUNCTION__, d->icw);
302
        intel_hda_send_command(d, d->icw);
303
        return;
304
    }
305

    
306
    for (;;) {
307
        if (!(d->corb_ctl & ICH6_CORBCTL_RUN)) {
308
            dprint(d, 2, "%s: !run\n", __FUNCTION__);
309
            return;
310
        }
311
        if ((d->corb_rp & 0xff) == d->corb_wp) {
312
            dprint(d, 2, "%s: corb ring empty\n", __FUNCTION__);
313
            return;
314
        }
315
        if (d->rirb_count == d->rirb_cnt) {
316
            dprint(d, 2, "%s: rirb count reached\n", __FUNCTION__);
317
            return;
318
        }
319

    
320
        rp = (d->corb_rp + 1) & 0xff;
321
        addr = intel_hda_addr(d->corb_lbase, d->corb_ubase);
322
        verb = ldl_phys_le(addr + 4*rp);
323
        d->corb_rp = rp;
324

    
325
        dprint(d, 2, "%s: [rp 0x%x] verb 0x%08x\n", __FUNCTION__, rp, verb);
326
        intel_hda_send_command(d, verb);
327
    }
328
}
329

    
330
static void intel_hda_response(HDACodecDevice *dev, bool solicited, uint32_t response)
331
{
332
    HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, dev->qdev.parent_bus);
333
    IntelHDAState *d = container_of(bus, IntelHDAState, codecs);
334
    target_phys_addr_t addr;
335
    uint32_t wp, ex;
336

    
337
    if (d->ics & ICH6_IRS_BUSY) {
338
        dprint(d, 2, "%s: [irr] response 0x%x, cad 0x%x\n",
339
               __FUNCTION__, response, dev->cad);
340
        d->irr = response;
341
        d->ics &= ~(ICH6_IRS_BUSY | 0xf0);
342
        d->ics |= (ICH6_IRS_VALID | (dev->cad << 4));
343
        return;
344
    }
345

    
346
    if (!(d->rirb_ctl & ICH6_RBCTL_DMA_EN)) {
347
        dprint(d, 1, "%s: rirb dma disabled, drop codec response\n", __FUNCTION__);
348
        return;
349
    }
350

    
351
    ex = (solicited ? 0 : (1 << 4)) | dev->cad;
352
    wp = (d->rirb_wp + 1) & 0xff;
353
    addr = intel_hda_addr(d->rirb_lbase, d->rirb_ubase);
354
    stl_phys_le(addr + 8*wp, response);
355
    stl_phys_le(addr + 8*wp + 4, ex);
356
    d->rirb_wp = wp;
357

    
358
    dprint(d, 2, "%s: [wp 0x%x] response 0x%x, extra 0x%x\n",
359
           __FUNCTION__, wp, response, ex);
360

    
361
    d->rirb_count++;
362
    if (d->rirb_count == d->rirb_cnt) {
363
        dprint(d, 2, "%s: rirb count reached (%d)\n", __FUNCTION__, d->rirb_count);
364
        if (d->rirb_ctl & ICH6_RBCTL_IRQ_EN) {
365
            d->rirb_sts |= ICH6_RBSTS_IRQ;
366
            intel_hda_update_irq(d);
367
        }
368
    } else if ((d->corb_rp & 0xff) == d->corb_wp) {
369
        dprint(d, 2, "%s: corb ring empty (%d/%d)\n", __FUNCTION__,
370
               d->rirb_count, d->rirb_cnt);
371
        if (d->rirb_ctl & ICH6_RBCTL_IRQ_EN) {
372
            d->rirb_sts |= ICH6_RBSTS_IRQ;
373
            intel_hda_update_irq(d);
374
        }
375
    }
376
}
377

    
378
static bool intel_hda_xfer(HDACodecDevice *dev, uint32_t stnr, bool output,
379
                           uint8_t *buf, uint32_t len)
380
{
381
    HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, dev->qdev.parent_bus);
382
    IntelHDAState *d = container_of(bus, IntelHDAState, codecs);
383
    IntelHDAStream *st = NULL;
384
    target_phys_addr_t addr;
385
    uint32_t s, copy, left;
386
    bool irq = false;
387

    
388
    for (s = 0; s < ARRAY_SIZE(d->st); s++) {
389
        if (stnr == ((d->st[s].ctl >> 20) & 0x0f)) {
390
            st = d->st + s;
391
            break;
392
        }
393
    }
394
    if (st == NULL) {
395
        return false;
396
    }
397
    if (st->bpl == NULL) {
398
        return false;
399
    }
400
    if (st->ctl & (1 << 26)) {
401
        /*
402
         * Wait with the next DMA xfer until the guest
403
         * has acked the buffer completion interrupt
404
         */
405
        return false;
406
    }
407

    
408
    left = len;
409
    while (left > 0) {
410
        copy = left;
411
        if (copy > st->bsize - st->lpib)
412
            copy = st->bsize - st->lpib;
413
        if (copy > st->bpl[st->be].len - st->bp)
414
            copy = st->bpl[st->be].len - st->bp;
415

    
416
        dprint(d, 3, "dma: entry %d, pos %d/%d, copy %d\n",
417
               st->be, st->bp, st->bpl[st->be].len, copy);
418

    
419
        cpu_physical_memory_rw(st->bpl[st->be].addr + st->bp,
420
                               buf, copy, !output);
421
        st->lpib += copy;
422
        st->bp += copy;
423
        buf += copy;
424
        left -= copy;
425

    
426
        if (st->bpl[st->be].len == st->bp) {
427
            /* bpl entry filled */
428
            if (st->bpl[st->be].flags & 0x01) {
429
                irq = true;
430
            }
431
            st->bp = 0;
432
            st->be++;
433
            if (st->be == st->bentries) {
434
                /* bpl wrap around */
435
                st->be = 0;
436
                st->lpib = 0;
437
            }
438
        }
439
    }
440
    if (d->dp_lbase & 0x01) {
441
        addr = intel_hda_addr(d->dp_lbase & ~0x01, d->dp_ubase);
442
        stl_phys_le(addr + 8*s, st->lpib);
443
    }
444
    dprint(d, 3, "dma: --\n");
445

    
446
    if (irq) {
447
        st->ctl |= (1 << 26); /* buffer completion interrupt */
448
        intel_hda_update_irq(d);
449
    }
450
    return true;
451
}
452

    
453
static void intel_hda_parse_bdl(IntelHDAState *d, IntelHDAStream *st)
454
{
455
    target_phys_addr_t addr;
456
    uint8_t buf[16];
457
    uint32_t i;
458

    
459
    addr = intel_hda_addr(st->bdlp_lbase, st->bdlp_ubase);
460
    st->bentries = st->lvi +1;
461
    qemu_free(st->bpl);
462
    st->bpl = qemu_malloc(sizeof(bpl) * st->bentries);
463
    for (i = 0; i < st->bentries; i++, addr += 16) {
464
        cpu_physical_memory_read(addr, buf, 16);
465
        st->bpl[i].addr  = le64_to_cpu(*(uint64_t *)buf);
466
        st->bpl[i].len   = le32_to_cpu(*(uint32_t *)(buf + 8));
467
        st->bpl[i].flags = le32_to_cpu(*(uint32_t *)(buf + 12));
468
        dprint(d, 1, "bdl/%d: 0x%" PRIx64 " +0x%x, 0x%x\n",
469
               i, st->bpl[i].addr, st->bpl[i].len, st->bpl[i].flags);
470
    }
471

    
472
    st->bsize = st->cbl;
473
    st->lpib  = 0;
474
    st->be    = 0;
475
    st->bp    = 0;
476
}
477

    
478
static void intel_hda_notify_codecs(IntelHDAState *d, uint32_t stream, bool running)
479
{
480
    DeviceState *qdev;
481
    HDACodecDevice *cdev;
482

    
483
    QLIST_FOREACH(qdev, &d->codecs.qbus.children, sibling) {
484
        cdev = DO_UPCAST(HDACodecDevice, qdev, qdev);
485
        if (cdev->info->stream) {
486
            cdev->info->stream(cdev, stream, running);
487
        }
488
    }
489
}
490

    
491
/* --------------------------------------------------------------------- */
492

    
493
static void intel_hda_set_g_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
494
{
495
    if ((d->g_ctl & ICH6_GCTL_RESET) == 0) {
496
        intel_hda_reset(&d->pci.qdev);
497
    }
498
}
499

    
500
static void intel_hda_set_state_sts(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
501
{
502
    intel_hda_update_irq(d);
503
}
504

    
505
static void intel_hda_set_int_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
506
{
507
    intel_hda_update_irq(d);
508
}
509

    
510
static void intel_hda_get_wall_clk(IntelHDAState *d, const IntelHDAReg *reg)
511
{
512
    int64_t ns;
513

    
514
    ns = qemu_get_clock_ns(vm_clock) - d->wall_base_ns;
515
    d->wall_clk = (uint32_t)(ns * 24 / 1000);  /* 24 MHz */
516
}
517

    
518
static void intel_hda_set_corb_wp(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
519
{
520
    intel_hda_corb_run(d);
521
}
522

    
523
static void intel_hda_set_corb_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
524
{
525
    intel_hda_corb_run(d);
526
}
527

    
528
static void intel_hda_set_rirb_wp(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
529
{
530
    if (d->rirb_wp & ICH6_RIRBWP_RST) {
531
        d->rirb_wp = 0;
532
    }
533
}
534

    
535
static void intel_hda_set_rirb_sts(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
536
{
537
    intel_hda_update_irq(d);
538

    
539
    if ((old & ICH6_RBSTS_IRQ) && !(d->rirb_sts & ICH6_RBSTS_IRQ)) {
540
        /* cleared ICH6_RBSTS_IRQ */
541
        d->rirb_count = 0;
542
        intel_hda_corb_run(d);
543
    }
544
}
545

    
546
static void intel_hda_set_ics(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
547
{
548
    if (d->ics & ICH6_IRS_BUSY) {
549
        intel_hda_corb_run(d);
550
    }
551
}
552

    
553
static void intel_hda_set_st_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
554
{
555
    IntelHDAStream *st = d->st + reg->stream;
556

    
557
    if (st->ctl & 0x01) {
558
        /* reset */
559
        dprint(d, 1, "st #%d: reset\n", reg->stream);
560
        st->ctl = 0;
561
    }
562
    if ((st->ctl & 0x02) != (old & 0x02)) {
563
        uint32_t stnr = (st->ctl >> 20) & 0x0f;
564
        /* run bit flipped */
565
        if (st->ctl & 0x02) {
566
            /* start */
567
            dprint(d, 1, "st #%d: start %d (ring buf %d bytes)\n",
568
                   reg->stream, stnr, st->cbl);
569
            intel_hda_parse_bdl(d, st);
570
            intel_hda_notify_codecs(d, stnr, true);
571
        } else {
572
            /* stop */
573
            dprint(d, 1, "st #%d: stop %d\n", reg->stream, stnr);
574
            intel_hda_notify_codecs(d, stnr, false);
575
        }
576
    }
577
    intel_hda_update_irq(d);
578
}
579

    
580
/* --------------------------------------------------------------------- */
581

    
582
#define ST_REG(_n, _o) (0x80 + (_n) * 0x20 + (_o))
583

    
584
static const struct IntelHDAReg regtab[] = {
585
    /* global */
586
    [ ICH6_REG_GCAP ] = {
587
        .name     = "GCAP",
588
        .size     = 2,
589
        .reset    = 0x4401,
590
    },
591
    [ ICH6_REG_VMIN ] = {
592
        .name     = "VMIN",
593
        .size     = 1,
594
    },
595
    [ ICH6_REG_VMAJ ] = {
596
        .name     = "VMAJ",
597
        .size     = 1,
598
        .reset    = 1,
599
    },
600
    [ ICH6_REG_OUTPAY ] = {
601
        .name     = "OUTPAY",
602
        .size     = 2,
603
        .reset    = 0x3c,
604
    },
605
    [ ICH6_REG_INPAY ] = {
606
        .name     = "INPAY",
607
        .size     = 2,
608
        .reset    = 0x1d,
609
    },
610
    [ ICH6_REG_GCTL ] = {
611
        .name     = "GCTL",
612
        .size     = 4,
613
        .wmask    = 0x0103,
614
        .offset   = offsetof(IntelHDAState, g_ctl),
615
        .whandler = intel_hda_set_g_ctl,
616
    },
617
    [ ICH6_REG_WAKEEN ] = {
618
        .name     = "WAKEEN",
619
        .size     = 2,
620
        .offset   = offsetof(IntelHDAState, wake_en),
621
    },
622
    [ ICH6_REG_STATESTS ] = {
623
        .name     = "STATESTS",
624
        .size     = 2,
625
        .wmask    = 0x3fff,
626
        .wclear   = 0x3fff,
627
        .offset   = offsetof(IntelHDAState, state_sts),
628
        .whandler = intel_hda_set_state_sts,
629
    },
630

    
631
    /* interrupts */
632
    [ ICH6_REG_INTCTL ] = {
633
        .name     = "INTCTL",
634
        .size     = 4,
635
        .wmask    = 0xc00000ff,
636
        .offset   = offsetof(IntelHDAState, int_ctl),
637
        .whandler = intel_hda_set_int_ctl,
638
    },
639
    [ ICH6_REG_INTSTS ] = {
640
        .name     = "INTSTS",
641
        .size     = 4,
642
        .wmask    = 0xc00000ff,
643
        .wclear   = 0xc00000ff,
644
        .offset   = offsetof(IntelHDAState, int_sts),
645
    },
646

    
647
    /* misc */
648
    [ ICH6_REG_WALLCLK ] = {
649
        .name     = "WALLCLK",
650
        .size     = 4,
651
        .offset   = offsetof(IntelHDAState, wall_clk),
652
        .rhandler = intel_hda_get_wall_clk,
653
    },
654
    [ ICH6_REG_WALLCLK + 0x2000 ] = {
655
        .name     = "WALLCLK(alias)",
656
        .size     = 4,
657
        .offset   = offsetof(IntelHDAState, wall_clk),
658
        .rhandler = intel_hda_get_wall_clk,
659
    },
660

    
661
    /* dma engine */
662
    [ ICH6_REG_CORBLBASE ] = {
663
        .name     = "CORBLBASE",
664
        .size     = 4,
665
        .wmask    = 0xffffff80,
666
        .offset   = offsetof(IntelHDAState, corb_lbase),
667
    },
668
    [ ICH6_REG_CORBUBASE ] = {
669
        .name     = "CORBUBASE",
670
        .size     = 4,
671
        .wmask    = 0xffffffff,
672
        .offset   = offsetof(IntelHDAState, corb_ubase),
673
    },
674
    [ ICH6_REG_CORBWP ] = {
675
        .name     = "CORBWP",
676
        .size     = 2,
677
        .wmask    = 0xff,
678
        .offset   = offsetof(IntelHDAState, corb_wp),
679
        .whandler = intel_hda_set_corb_wp,
680
    },
681
    [ ICH6_REG_CORBRP ] = {
682
        .name     = "CORBRP",
683
        .size     = 2,
684
        .wmask    = 0x80ff,
685
        .offset   = offsetof(IntelHDAState, corb_rp),
686
    },
687
    [ ICH6_REG_CORBCTL ] = {
688
        .name     = "CORBCTL",
689
        .size     = 1,
690
        .wmask    = 0x03,
691
        .offset   = offsetof(IntelHDAState, corb_ctl),
692
        .whandler = intel_hda_set_corb_ctl,
693
    },
694
    [ ICH6_REG_CORBSTS ] = {
695
        .name     = "CORBSTS",
696
        .size     = 1,
697
        .wmask    = 0x01,
698
        .wclear   = 0x01,
699
        .offset   = offsetof(IntelHDAState, corb_sts),
700
    },
701
    [ ICH6_REG_CORBSIZE ] = {
702
        .name     = "CORBSIZE",
703
        .size     = 1,
704
        .reset    = 0x42,
705
        .offset   = offsetof(IntelHDAState, corb_size),
706
    },
707
    [ ICH6_REG_RIRBLBASE ] = {
708
        .name     = "RIRBLBASE",
709
        .size     = 4,
710
        .wmask    = 0xffffff80,
711
        .offset   = offsetof(IntelHDAState, rirb_lbase),
712
    },
713
    [ ICH6_REG_RIRBUBASE ] = {
714
        .name     = "RIRBUBASE",
715
        .size     = 4,
716
        .wmask    = 0xffffffff,
717
        .offset   = offsetof(IntelHDAState, rirb_ubase),
718
    },
719
    [ ICH6_REG_RIRBWP ] = {
720
        .name     = "RIRBWP",
721
        .size     = 2,
722
        .wmask    = 0x8000,
723
        .offset   = offsetof(IntelHDAState, rirb_wp),
724
        .whandler = intel_hda_set_rirb_wp,
725
    },
726
    [ ICH6_REG_RINTCNT ] = {
727
        .name     = "RINTCNT",
728
        .size     = 2,
729
        .wmask    = 0xff,
730
        .offset   = offsetof(IntelHDAState, rirb_cnt),
731
    },
732
    [ ICH6_REG_RIRBCTL ] = {
733
        .name     = "RIRBCTL",
734
        .size     = 1,
735
        .wmask    = 0x07,
736
        .offset   = offsetof(IntelHDAState, rirb_ctl),
737
    },
738
    [ ICH6_REG_RIRBSTS ] = {
739
        .name     = "RIRBSTS",
740
        .size     = 1,
741
        .wmask    = 0x05,
742
        .wclear   = 0x05,
743
        .offset   = offsetof(IntelHDAState, rirb_sts),
744
        .whandler = intel_hda_set_rirb_sts,
745
    },
746
    [ ICH6_REG_RIRBSIZE ] = {
747
        .name     = "RIRBSIZE",
748
        .size     = 1,
749
        .reset    = 0x42,
750
        .offset   = offsetof(IntelHDAState, rirb_size),
751
    },
752

    
753
    [ ICH6_REG_DPLBASE ] = {
754
        .name     = "DPLBASE",
755
        .size     = 4,
756
        .wmask    = 0xffffff81,
757
        .offset   = offsetof(IntelHDAState, dp_lbase),
758
    },
759
    [ ICH6_REG_DPUBASE ] = {
760
        .name     = "DPUBASE",
761
        .size     = 4,
762
        .wmask    = 0xffffffff,
763
        .offset   = offsetof(IntelHDAState, dp_ubase),
764
    },
765

    
766
    [ ICH6_REG_IC ] = {
767
        .name     = "ICW",
768
        .size     = 4,
769
        .wmask    = 0xffffffff,
770
        .offset   = offsetof(IntelHDAState, icw),
771
    },
772
    [ ICH6_REG_IR ] = {
773
        .name     = "IRR",
774
        .size     = 4,
775
        .offset   = offsetof(IntelHDAState, irr),
776
    },
777
    [ ICH6_REG_IRS ] = {
778
        .name     = "ICS",
779
        .size     = 2,
780
        .wmask    = 0x0003,
781
        .wclear   = 0x0002,
782
        .offset   = offsetof(IntelHDAState, ics),
783
        .whandler = intel_hda_set_ics,
784
    },
785

    
786
#define HDA_STREAM(_t, _i)                                            \
787
    [ ST_REG(_i, ICH6_REG_SD_CTL) ] = {                               \
788
        .stream   = _i,                                               \
789
        .name     = _t stringify(_i) " CTL",                          \
790
        .size     = 4,                                                \
791
        .wmask    = 0x1cff001f,                                       \
792
        .offset   = offsetof(IntelHDAState, st[_i].ctl),              \
793
        .whandler = intel_hda_set_st_ctl,                             \
794
    },                                                                \
795
    [ ST_REG(_i, ICH6_REG_SD_CTL) + 2] = {                            \
796
        .stream   = _i,                                               \
797
        .name     = _t stringify(_i) " CTL(stnr)",                    \
798
        .size     = 1,                                                \
799
        .shift    = 16,                                               \
800
        .wmask    = 0x00ff0000,                                       \
801
        .offset   = offsetof(IntelHDAState, st[_i].ctl),              \
802
        .whandler = intel_hda_set_st_ctl,                             \
803
    },                                                                \
804
    [ ST_REG(_i, ICH6_REG_SD_STS)] = {                                \
805
        .stream   = _i,                                               \
806
        .name     = _t stringify(_i) " CTL(sts)",                     \
807
        .size     = 1,                                                \
808
        .shift    = 24,                                               \
809
        .wmask    = 0x1c000000,                                       \
810
        .wclear   = 0x1c000000,                                       \
811
        .offset   = offsetof(IntelHDAState, st[_i].ctl),              \
812
        .whandler = intel_hda_set_st_ctl,                             \
813
    },                                                                \
814
    [ ST_REG(_i, ICH6_REG_SD_LPIB) ] = {                              \
815
        .stream   = _i,                                               \
816
        .name     = _t stringify(_i) " LPIB",                         \
817
        .size     = 4,                                                \
818
        .offset   = offsetof(IntelHDAState, st[_i].lpib),             \
819
    },                                                                \
820
    [ ST_REG(_i, ICH6_REG_SD_LPIB) + 0x2000 ] = {                     \
821
        .stream   = _i,                                               \
822
        .name     = _t stringify(_i) " LPIB(alias)",                  \
823
        .size     = 4,                                                \
824
        .offset   = offsetof(IntelHDAState, st[_i].lpib),             \
825
    },                                                                \
826
    [ ST_REG(_i, ICH6_REG_SD_CBL) ] = {                               \
827
        .stream   = _i,                                               \
828
        .name     = _t stringify(_i) " CBL",                          \
829
        .size     = 4,                                                \
830
        .wmask    = 0xffffffff,                                       \
831
        .offset   = offsetof(IntelHDAState, st[_i].cbl),              \
832
    },                                                                \
833
    [ ST_REG(_i, ICH6_REG_SD_LVI) ] = {                               \
834
        .stream   = _i,                                               \
835
        .name     = _t stringify(_i) " LVI",                          \
836
        .size     = 2,                                                \
837
        .wmask    = 0x00ff,                                           \
838
        .offset   = offsetof(IntelHDAState, st[_i].lvi),              \
839
    },                                                                \
840
    [ ST_REG(_i, ICH6_REG_SD_FIFOSIZE) ] = {                          \
841
        .stream   = _i,                                               \
842
        .name     = _t stringify(_i) " FIFOS",                        \
843
        .size     = 2,                                                \
844
        .reset    = HDA_BUFFER_SIZE,                                  \
845
    },                                                                \
846
    [ ST_REG(_i, ICH6_REG_SD_FORMAT) ] = {                            \
847
        .stream   = _i,                                               \
848
        .name     = _t stringify(_i) " FMT",                          \
849
        .size     = 2,                                                \
850
        .wmask    = 0x7f7f,                                           \
851
        .offset   = offsetof(IntelHDAState, st[_i].fmt),              \
852
    },                                                                \
853
    [ ST_REG(_i, ICH6_REG_SD_BDLPL) ] = {                             \
854
        .stream   = _i,                                               \
855
        .name     = _t stringify(_i) " BDLPL",                        \
856
        .size     = 4,                                                \
857
        .wmask    = 0xffffff80,                                       \
858
        .offset   = offsetof(IntelHDAState, st[_i].bdlp_lbase),       \
859
    },                                                                \
860
    [ ST_REG(_i, ICH6_REG_SD_BDLPU) ] = {                             \
861
        .stream   = _i,                                               \
862
        .name     = _t stringify(_i) " BDLPU",                        \
863
        .size     = 4,                                                \
864
        .wmask    = 0xffffffff,                                       \
865
        .offset   = offsetof(IntelHDAState, st[_i].bdlp_ubase),       \
866
    },                                                                \
867

    
868
    HDA_STREAM("IN", 0)
869
    HDA_STREAM("IN", 1)
870
    HDA_STREAM("IN", 2)
871
    HDA_STREAM("IN", 3)
872

    
873
    HDA_STREAM("OUT", 4)
874
    HDA_STREAM("OUT", 5)
875
    HDA_STREAM("OUT", 6)
876
    HDA_STREAM("OUT", 7)
877

    
878
};
879

    
880
static const IntelHDAReg *intel_hda_reg_find(IntelHDAState *d, target_phys_addr_t addr)
881
{
882
    const IntelHDAReg *reg;
883

    
884
    if (addr >= sizeof(regtab)/sizeof(regtab[0])) {
885
        goto noreg;
886
    }
887
    reg = regtab+addr;
888
    if (reg->name == NULL) {
889
        goto noreg;
890
    }
891
    return reg;
892

    
893
noreg:
894
    dprint(d, 1, "unknown register, addr 0x%x\n", (int) addr);
895
    return NULL;
896
}
897

    
898
static uint32_t *intel_hda_reg_addr(IntelHDAState *d, const IntelHDAReg *reg)
899
{
900
    uint8_t *addr = (void*)d;
901

    
902
    addr += reg->offset;
903
    return (uint32_t*)addr;
904
}
905

    
906
static void intel_hda_reg_write(IntelHDAState *d, const IntelHDAReg *reg, uint32_t val,
907
                                uint32_t wmask)
908
{
909
    uint32_t *addr;
910
    uint32_t old;
911

    
912
    if (!reg) {
913
        return;
914
    }
915

    
916
    if (d->debug) {
917
        time_t now = time(NULL);
918
        if (d->last_write && d->last_reg == reg && d->last_val == val) {
919
            d->repeat_count++;
920
            if (d->last_sec != now) {
921
                dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
922
                d->last_sec = now;
923
                d->repeat_count = 0;
924
            }
925
        } else {
926
            if (d->repeat_count) {
927
                dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
928
            }
929
            dprint(d, 2, "write %-16s: 0x%x (%x)\n", reg->name, val, wmask);
930
            d->last_write = 1;
931
            d->last_reg   = reg;
932
            d->last_val   = val;
933
            d->last_sec   = now;
934
            d->repeat_count = 0;
935
        }
936
    }
937
    assert(reg->offset != 0);
938

    
939
    addr = intel_hda_reg_addr(d, reg);
940
    old = *addr;
941

    
942
    if (reg->shift) {
943
        val <<= reg->shift;
944
        wmask <<= reg->shift;
945
    }
946
    wmask &= reg->wmask;
947
    *addr &= ~wmask;
948
    *addr |= wmask & val;
949
    *addr &= ~(val & reg->wclear);
950

    
951
    if (reg->whandler) {
952
        reg->whandler(d, reg, old);
953
    }
954
}
955

    
956
static uint32_t intel_hda_reg_read(IntelHDAState *d, const IntelHDAReg *reg,
957
                                   uint32_t rmask)
958
{
959
    uint32_t *addr, ret;
960

    
961
    if (!reg) {
962
        return 0;
963
    }
964

    
965
    if (reg->rhandler) {
966
        reg->rhandler(d, reg);
967
    }
968

    
969
    if (reg->offset == 0) {
970
        /* constant read-only register */
971
        ret = reg->reset;
972
    } else {
973
        addr = intel_hda_reg_addr(d, reg);
974
        ret = *addr;
975
        if (reg->shift) {
976
            ret >>= reg->shift;
977
        }
978
        ret &= rmask;
979
    }
980
    if (d->debug) {
981
        time_t now = time(NULL);
982
        if (!d->last_write && d->last_reg == reg && d->last_val == ret) {
983
            d->repeat_count++;
984
            if (d->last_sec != now) {
985
                dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
986
                d->last_sec = now;
987
                d->repeat_count = 0;
988
            }
989
        } else {
990
            if (d->repeat_count) {
991
                dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
992
            }
993
            dprint(d, 2, "read  %-16s: 0x%x (%x)\n", reg->name, ret, rmask);
994
            d->last_write = 0;
995
            d->last_reg   = reg;
996
            d->last_val   = ret;
997
            d->last_sec   = now;
998
            d->repeat_count = 0;
999
        }
1000
    }
1001
    return ret;
1002
}
1003

    
1004
static void intel_hda_regs_reset(IntelHDAState *d)
1005
{
1006
    uint32_t *addr;
1007
    int i;
1008

    
1009
    for (i = 0; i < sizeof(regtab)/sizeof(regtab[0]); i++) {
1010
        if (regtab[i].name == NULL) {
1011
            continue;
1012
        }
1013
        if (regtab[i].offset == 0) {
1014
            continue;
1015
        }
1016
        addr = intel_hda_reg_addr(d, regtab + i);
1017
        *addr = regtab[i].reset;
1018
    }
1019
}
1020

    
1021
/* --------------------------------------------------------------------- */
1022

    
1023
static void intel_hda_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1024
{
1025
    IntelHDAState *d = opaque;
1026
    const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
1027

    
1028
    intel_hda_reg_write(d, reg, val, 0xff);
1029
}
1030

    
1031
static void intel_hda_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1032
{
1033
    IntelHDAState *d = opaque;
1034
    const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
1035

    
1036
    intel_hda_reg_write(d, reg, val, 0xffff);
1037
}
1038

    
1039
static void intel_hda_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1040
{
1041
    IntelHDAState *d = opaque;
1042
    const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
1043

    
1044
    intel_hda_reg_write(d, reg, val, 0xffffffff);
1045
}
1046

    
1047
static uint32_t intel_hda_mmio_readb(void *opaque, target_phys_addr_t addr)
1048
{
1049
    IntelHDAState *d = opaque;
1050
    const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
1051

    
1052
    return intel_hda_reg_read(d, reg, 0xff);
1053
}
1054

    
1055
static uint32_t intel_hda_mmio_readw(void *opaque, target_phys_addr_t addr)
1056
{
1057
    IntelHDAState *d = opaque;
1058
    const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
1059

    
1060
    return intel_hda_reg_read(d, reg, 0xffff);
1061
}
1062

    
1063
static uint32_t intel_hda_mmio_readl(void *opaque, target_phys_addr_t addr)
1064
{
1065
    IntelHDAState *d = opaque;
1066
    const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
1067

    
1068
    return intel_hda_reg_read(d, reg, 0xffffffff);
1069
}
1070

    
1071
static CPUReadMemoryFunc * const intel_hda_mmio_read[3] = {
1072
    intel_hda_mmio_readb,
1073
    intel_hda_mmio_readw,
1074
    intel_hda_mmio_readl,
1075
};
1076

    
1077
static CPUWriteMemoryFunc * const intel_hda_mmio_write[3] = {
1078
    intel_hda_mmio_writeb,
1079
    intel_hda_mmio_writew,
1080
    intel_hda_mmio_writel,
1081
};
1082

    
1083
static void intel_hda_map(PCIDevice *pci, int region_num,
1084
                          pcibus_t addr, pcibus_t size, int type)
1085
{
1086
    IntelHDAState *d = DO_UPCAST(IntelHDAState, pci, pci);
1087

    
1088
    cpu_register_physical_memory(addr, 0x4000, d->mmio_addr);
1089
}
1090

    
1091
/* --------------------------------------------------------------------- */
1092

    
1093
static void intel_hda_reset(DeviceState *dev)
1094
{
1095
    IntelHDAState *d = DO_UPCAST(IntelHDAState, pci.qdev, dev);
1096
    DeviceState *qdev;
1097
    HDACodecDevice *cdev;
1098

    
1099
    intel_hda_regs_reset(d);
1100
    d->wall_base_ns = qemu_get_clock(vm_clock);
1101

    
1102
    /* reset codecs */
1103
    QLIST_FOREACH(qdev, &d->codecs.qbus.children, sibling) {
1104
        cdev = DO_UPCAST(HDACodecDevice, qdev, qdev);
1105
        if (qdev->info->reset) {
1106
            qdev->info->reset(qdev);
1107
        }
1108
        d->state_sts |= (1 << cdev->cad);
1109
    }
1110
    intel_hda_update_irq(d);
1111
}
1112

    
1113
static int intel_hda_init(PCIDevice *pci)
1114
{
1115
    IntelHDAState *d = DO_UPCAST(IntelHDAState, pci, pci);
1116
    uint8_t *conf = d->pci.config;
1117

    
1118
    d->name = d->pci.qdev.info->name;
1119

    
1120
    pci_config_set_vendor_id(conf, PCI_VENDOR_ID_INTEL);
1121
    pci_config_set_device_id(conf, 0x2668);
1122
    pci_config_set_revision(conf, 1);
1123
    pci_config_set_class(conf, PCI_CLASS_MULTIMEDIA_HD_AUDIO);
1124
    pci_config_set_interrupt_pin(conf, 1);
1125

    
1126
    /* HDCTL off 0x40 bit 0 selects signaling mode (1-HDA, 0 - Ac97) 18.1.19 */
1127
    conf[0x40] = 0x01;
1128

    
1129
    d->mmio_addr = cpu_register_io_memory(intel_hda_mmio_read,
1130
                                          intel_hda_mmio_write, d);
1131
    pci_register_bar(&d->pci, 0, 0x4000, PCI_BASE_ADDRESS_SPACE_MEMORY,
1132
                     intel_hda_map);
1133

    
1134
    hda_codec_bus_init(&d->pci.qdev, &d->codecs,
1135
                       intel_hda_response, intel_hda_xfer);
1136

    
1137
    return 0;
1138
}
1139

    
1140
static int intel_hda_post_load(void *opaque, int version)
1141
{
1142
    IntelHDAState* d = opaque;
1143
    int i;
1144

    
1145
    dprint(d, 1, "%s\n", __FUNCTION__);
1146
    for (i = 0; i < ARRAY_SIZE(d->st); i++) {
1147
        if (d->st[i].ctl & 0x02) {
1148
            intel_hda_parse_bdl(d, &d->st[i]);
1149
        }
1150
    }
1151
    intel_hda_update_irq(d);
1152
    return 0;
1153
}
1154

    
1155
static const VMStateDescription vmstate_intel_hda_stream = {
1156
    .name = "intel-hda-stream",
1157
    .version_id = 1,
1158
    .fields = (VMStateField []) {
1159
        VMSTATE_UINT32(ctl, IntelHDAStream),
1160
        VMSTATE_UINT32(lpib, IntelHDAStream),
1161
        VMSTATE_UINT32(cbl, IntelHDAStream),
1162
        VMSTATE_UINT32(lvi, IntelHDAStream),
1163
        VMSTATE_UINT32(fmt, IntelHDAStream),
1164
        VMSTATE_UINT32(bdlp_lbase, IntelHDAStream),
1165
        VMSTATE_UINT32(bdlp_ubase, IntelHDAStream),
1166
        VMSTATE_END_OF_LIST()
1167
    }
1168
};
1169

    
1170
static const VMStateDescription vmstate_intel_hda = {
1171
    .name = "intel-hda",
1172
    .version_id = 1,
1173
    .post_load = intel_hda_post_load,
1174
    .fields = (VMStateField []) {
1175
        VMSTATE_PCI_DEVICE(pci, IntelHDAState),
1176

    
1177
        /* registers */
1178
        VMSTATE_UINT32(g_ctl, IntelHDAState),
1179
        VMSTATE_UINT32(wake_en, IntelHDAState),
1180
        VMSTATE_UINT32(state_sts, IntelHDAState),
1181
        VMSTATE_UINT32(int_ctl, IntelHDAState),
1182
        VMSTATE_UINT32(int_sts, IntelHDAState),
1183
        VMSTATE_UINT32(wall_clk, IntelHDAState),
1184
        VMSTATE_UINT32(corb_lbase, IntelHDAState),
1185
        VMSTATE_UINT32(corb_ubase, IntelHDAState),
1186
        VMSTATE_UINT32(corb_rp, IntelHDAState),
1187
        VMSTATE_UINT32(corb_wp, IntelHDAState),
1188
        VMSTATE_UINT32(corb_ctl, IntelHDAState),
1189
        VMSTATE_UINT32(corb_sts, IntelHDAState),
1190
        VMSTATE_UINT32(corb_size, IntelHDAState),
1191
        VMSTATE_UINT32(rirb_lbase, IntelHDAState),
1192
        VMSTATE_UINT32(rirb_ubase, IntelHDAState),
1193
        VMSTATE_UINT32(rirb_wp, IntelHDAState),
1194
        VMSTATE_UINT32(rirb_cnt, IntelHDAState),
1195
        VMSTATE_UINT32(rirb_ctl, IntelHDAState),
1196
        VMSTATE_UINT32(rirb_sts, IntelHDAState),
1197
        VMSTATE_UINT32(rirb_size, IntelHDAState),
1198
        VMSTATE_UINT32(dp_lbase, IntelHDAState),
1199
        VMSTATE_UINT32(dp_ubase, IntelHDAState),
1200
        VMSTATE_UINT32(icw, IntelHDAState),
1201
        VMSTATE_UINT32(irr, IntelHDAState),
1202
        VMSTATE_UINT32(ics, IntelHDAState),
1203
        VMSTATE_STRUCT_ARRAY(st, IntelHDAState, 8, 0,
1204
                             vmstate_intel_hda_stream,
1205
                             IntelHDAStream),
1206

    
1207
        /* additional state info */
1208
        VMSTATE_UINT32(rirb_count, IntelHDAState),
1209
        VMSTATE_INT64(wall_base_ns, IntelHDAState),
1210

    
1211
        VMSTATE_END_OF_LIST()
1212
    }
1213
};
1214

    
1215
static PCIDeviceInfo intel_hda_info = {
1216
    .qdev.name    = "intel-hda",
1217
    .qdev.desc    = "Intel HD Audio Controller",
1218
    .qdev.size    = sizeof(IntelHDAState),
1219
    .qdev.vmsd    = &vmstate_intel_hda,
1220
    .qdev.reset   = intel_hda_reset,
1221
    .init         = intel_hda_init,
1222
    .qdev.props   = (Property[]) {
1223
        DEFINE_PROP_UINT32("debug", IntelHDAState, debug, 0),
1224
        DEFINE_PROP_END_OF_LIST(),
1225
    }
1226
};
1227

    
1228
static void intel_hda_register(void)
1229
{
1230
    pci_qdev_register(&intel_hda_info);
1231
}
1232
device_init(intel_hda_register);
1233

    
1234
/*
1235
 * create intel hda controller with codec attached to it,
1236
 * so '-soundhw hda' works.
1237
 */
1238
int intel_hda_and_codec_init(PCIBus *bus)
1239
{
1240
    PCIDevice *controller;
1241
    BusState *hdabus;
1242
    DeviceState *codec;
1243

    
1244
    controller = pci_create_simple(bus, -1, "intel-hda");
1245
    hdabus = QLIST_FIRST(&controller->qdev.child_bus);
1246
    codec = qdev_create(hdabus, "hda-duplex");
1247
    qdev_init_nofail(codec);
1248
    return 0;
1249
}
1250