Statistics
| Branch: | Revision:

root / target-arm / cpu.h @ d356312f

History | View | Annotate | Download (34.1 kB)

1
/*
2
 * ARM virtual CPU header
3
 *
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18
 */
19
#ifndef CPU_ARM_H
20
#define CPU_ARM_H
21

    
22
#include "config.h"
23

    
24
#include "kvm-consts.h"
25

    
26
#if defined(TARGET_AARCH64)
27
  /* AArch64 definitions */
28
#  define TARGET_LONG_BITS 64
29
#  define ELF_MACHINE EM_AARCH64
30
#else
31
#  define TARGET_LONG_BITS 32
32
#  define ELF_MACHINE EM_ARM
33
#endif
34

    
35
#define CPUArchState struct CPUARMState
36

    
37
#include "qemu-common.h"
38
#include "exec/cpu-defs.h"
39

    
40
#include "fpu/softfloat.h"
41

    
42
#define TARGET_HAS_ICE 1
43

    
44
#define EXCP_UDEF            1   /* undefined instruction */
45
#define EXCP_SWI             2   /* software interrupt */
46
#define EXCP_PREFETCH_ABORT  3
47
#define EXCP_DATA_ABORT      4
48
#define EXCP_IRQ             5
49
#define EXCP_FIQ             6
50
#define EXCP_BKPT            7
51
#define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
52
#define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
53
#define EXCP_STREX          10
54

    
55
#define ARMV7M_EXCP_RESET   1
56
#define ARMV7M_EXCP_NMI     2
57
#define ARMV7M_EXCP_HARD    3
58
#define ARMV7M_EXCP_MEM     4
59
#define ARMV7M_EXCP_BUS     5
60
#define ARMV7M_EXCP_USAGE   6
61
#define ARMV7M_EXCP_SVC     11
62
#define ARMV7M_EXCP_DEBUG   12
63
#define ARMV7M_EXCP_PENDSV  14
64
#define ARMV7M_EXCP_SYSTICK 15
65

    
66
/* ARM-specific interrupt pending bits.  */
67
#define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
68

    
69
/* Meanings of the ARMCPU object's two inbound GPIO lines */
70
#define ARM_CPU_IRQ 0
71
#define ARM_CPU_FIQ 1
72

    
73
typedef void ARMWriteCPFunc(void *opaque, int cp_info,
74
                            int srcreg, int operand, uint32_t value);
75
typedef uint32_t ARMReadCPFunc(void *opaque, int cp_info,
76
                               int dstreg, int operand);
77

    
78
struct arm_boot_info;
79

    
80
#define NB_MMU_MODES 2
81

    
82
/* We currently assume float and double are IEEE single and double
83
   precision respectively.
84
   Doing runtime conversions is tricky because VFP registers may contain
85
   integer values (eg. as the result of a FTOSI instruction).
86
   s<2n> maps to the least significant half of d<n>
87
   s<2n+1> maps to the most significant half of d<n>
88
 */
89

    
90
/* CPU state for each instance of a generic timer (in cp15 c14) */
91
typedef struct ARMGenericTimer {
92
    uint64_t cval; /* Timer CompareValue register */
93
    uint32_t ctl; /* Timer Control register */
94
} ARMGenericTimer;
95

    
96
#define GTIMER_PHYS 0
97
#define GTIMER_VIRT 1
98
#define NUM_GTIMERS 2
99

    
100
/* Scale factor for generic timers, ie number of ns per tick.
101
 * This gives a 62.5MHz timer.
102
 */
103
#define GTIMER_SCALE 16
104

    
105
typedef struct CPUARMState {
106
    /* Regs for current mode.  */
107
    uint32_t regs[16];
108

    
109
    /* 32/64 switch only happens when taking and returning from
110
     * exceptions so the overlap semantics are taken care of then
111
     * instead of having a complicated union.
112
     */
113
    /* Regs for A64 mode.  */
114
    uint64_t xregs[32];
115
    uint64_t pc;
116
    /* PSTATE isn't an architectural register for ARMv8. However, it is
117
     * convenient for us to assemble the underlying state into a 32 bit format
118
     * identical to the architectural format used for the SPSR. (This is also
119
     * what the Linux kernel's 'pstate' field in signal handlers and KVM's
120
     * 'pstate' register are.) Of the PSTATE bits:
121
     *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
122
     *    semantics as for AArch32, as described in the comments on each field)
123
     *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
124
     *  all other bits are stored in their correct places in env->pstate
125
     */
126
    uint32_t pstate;
127
    uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
128

    
129
    /* Frequently accessed CPSR bits are stored separately for efficiency.
130
       This contains all the other bits.  Use cpsr_{read,write} to access
131
       the whole CPSR.  */
132
    uint32_t uncached_cpsr;
133
    uint32_t spsr;
134

    
135
    /* Banked registers.  */
136
    uint32_t banked_spsr[6];
137
    uint32_t banked_r13[6];
138
    uint32_t banked_r14[6];
139

    
140
    /* These hold r8-r12.  */
141
    uint32_t usr_regs[5];
142
    uint32_t fiq_regs[5];
143

    
144
    /* cpsr flag cache for faster execution */
145
    uint32_t CF; /* 0 or 1 */
146
    uint32_t VF; /* V is the bit 31. All other bits are undefined */
147
    uint32_t NF; /* N is bit 31. All other bits are undefined.  */
148
    uint32_t ZF; /* Z set if zero.  */
149
    uint32_t QF; /* 0 or 1 */
150
    uint32_t GE; /* cpsr[19:16] */
151
    uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
152
    uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
153

    
154
    /* System control coprocessor (cp15) */
155
    struct {
156
        uint32_t c0_cpuid;
157
        uint32_t c0_cssel; /* Cache size selection.  */
158
        uint32_t c1_sys; /* System control register.  */
159
        uint32_t c1_coproc; /* Coprocessor access register.  */
160
        uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
161
        uint32_t c1_scr; /* secure config register.  */
162
        uint32_t c2_base0; /* MMU translation table base 0.  */
163
        uint32_t c2_base0_hi; /* MMU translation table base 0, high 32 bits */
164
        uint32_t c2_base1; /* MMU translation table base 0.  */
165
        uint32_t c2_base1_hi; /* MMU translation table base 1, high 32 bits */
166
        uint32_t c2_control; /* MMU translation table base control.  */
167
        uint32_t c2_mask; /* MMU translation table base selection mask.  */
168
        uint32_t c2_base_mask; /* MMU translation table base 0 mask. */
169
        uint32_t c2_data; /* MPU data cachable bits.  */
170
        uint32_t c2_insn; /* MPU instruction cachable bits.  */
171
        uint32_t c3; /* MMU domain access control register
172
                        MPU write buffer control.  */
173
        uint32_t c5_insn; /* Fault status registers.  */
174
        uint32_t c5_data;
175
        uint32_t c6_region[8]; /* MPU base/size registers.  */
176
        uint32_t c6_insn; /* Fault address registers.  */
177
        uint32_t c6_data;
178
        uint32_t c7_par;  /* Translation result. */
179
        uint32_t c7_par_hi;  /* Translation result, high 32 bits */
180
        uint32_t c9_insn; /* Cache lockdown registers.  */
181
        uint32_t c9_data;
182
        uint32_t c9_pmcr; /* performance monitor control register */
183
        uint32_t c9_pmcnten; /* perf monitor counter enables */
184
        uint32_t c9_pmovsr; /* perf monitor overflow status */
185
        uint32_t c9_pmxevtyper; /* perf monitor event type */
186
        uint32_t c9_pmuserenr; /* perf monitor user enable */
187
        uint32_t c9_pminten; /* perf monitor interrupt enables */
188
        uint32_t c12_vbar; /* vector base address register */
189
        uint32_t c13_fcse; /* FCSE PID.  */
190
        uint32_t c13_context; /* Context ID.  */
191
        uint32_t c13_tls1; /* User RW Thread register.  */
192
        uint32_t c13_tls2; /* User RO Thread register.  */
193
        uint32_t c13_tls3; /* Privileged Thread register.  */
194
        uint32_t c14_cntfrq; /* Counter Frequency register */
195
        uint32_t c14_cntkctl; /* Timer Control register */
196
        ARMGenericTimer c14_timer[NUM_GTIMERS];
197
        uint32_t c15_cpar; /* XScale Coprocessor Access Register */
198
        uint32_t c15_ticonfig; /* TI925T configuration byte.  */
199
        uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
200
        uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
201
        uint32_t c15_threadid; /* TI debugger thread-ID.  */
202
        uint32_t c15_config_base_address; /* SCU base address.  */
203
        uint32_t c15_diagnostic; /* diagnostic register */
204
        uint32_t c15_power_diagnostic;
205
        uint32_t c15_power_control; /* power control */
206
    } cp15;
207

    
208
    /* System registers (AArch64) */
209
    struct {
210
        uint64_t tpidr_el0;
211
    } sr;
212

    
213
    struct {
214
        uint32_t other_sp;
215
        uint32_t vecbase;
216
        uint32_t basepri;
217
        uint32_t control;
218
        int current_sp;
219
        int exception;
220
        int pending_exception;
221
    } v7m;
222

    
223
    /* Thumb-2 EE state.  */
224
    uint32_t teecr;
225
    uint32_t teehbr;
226

    
227
    /* VFP coprocessor state.  */
228
    struct {
229
        /* VFP/Neon register state. Note that the mapping between S, D and Q
230
         * views of the register bank differs between AArch64 and AArch32:
231
         * In AArch32:
232
         *  Qn = regs[2n+1]:regs[2n]
233
         *  Dn = regs[n]
234
         *  Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
235
         * (and regs[32] to regs[63] are inaccessible)
236
         * In AArch64:
237
         *  Qn = regs[2n+1]:regs[2n]
238
         *  Dn = regs[2n]
239
         *  Sn = regs[2n] bits 31..0
240
         * This corresponds to the architecturally defined mapping between
241
         * the two execution states, and means we do not need to explicitly
242
         * map these registers when changing states.
243
         */
244
        float64 regs[64];
245

    
246
        uint32_t xregs[16];
247
        /* We store these fpcsr fields separately for convenience.  */
248
        int vec_len;
249
        int vec_stride;
250

    
251
        /* scratch space when Tn are not sufficient.  */
252
        uint32_t scratch[8];
253

    
254
        /* fp_status is the "normal" fp status. standard_fp_status retains
255
         * values corresponding to the ARM "Standard FPSCR Value", ie
256
         * default-NaN, flush-to-zero, round-to-nearest and is used by
257
         * any operations (generally Neon) which the architecture defines
258
         * as controlled by the standard FPSCR value rather than the FPSCR.
259
         *
260
         * To avoid having to transfer exception bits around, we simply
261
         * say that the FPSCR cumulative exception flags are the logical
262
         * OR of the flags in the two fp statuses. This relies on the
263
         * only thing which needs to read the exception flags being
264
         * an explicit FPSCR read.
265
         */
266
        float_status fp_status;
267
        float_status standard_fp_status;
268
    } vfp;
269
    uint32_t exclusive_addr;
270
    uint32_t exclusive_val;
271
    uint32_t exclusive_high;
272
#if defined(CONFIG_USER_ONLY)
273
    uint32_t exclusive_test;
274
    uint32_t exclusive_info;
275
#endif
276

    
277
    /* iwMMXt coprocessor state.  */
278
    struct {
279
        uint64_t regs[16];
280
        uint64_t val;
281

    
282
        uint32_t cregs[16];
283
    } iwmmxt;
284

    
285
    /* For mixed endian mode.  */
286
    bool bswap_code;
287

    
288
#if defined(CONFIG_USER_ONLY)
289
    /* For usermode syscall translation.  */
290
    int eabi;
291
#endif
292

    
293
    CPU_COMMON
294

    
295
    /* These fields after the common ones so they are preserved on reset.  */
296

    
297
    /* Internal CPU feature flags.  */
298
    uint64_t features;
299

    
300
    void *nvic;
301
    const struct arm_boot_info *boot_info;
302
} CPUARMState;
303

    
304
#include "cpu-qom.h"
305

    
306
ARMCPU *cpu_arm_init(const char *cpu_model);
307
void arm_translate_init(void);
308
void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
309
int cpu_arm_exec(CPUARMState *s);
310
int bank_number(int mode);
311
void switch_mode(CPUARMState *, int);
312
uint32_t do_arm_semihosting(CPUARMState *env);
313

    
314
static inline bool is_a64(CPUARMState *env)
315
{
316
    return env->aarch64;
317
}
318

    
319
/* you can call this signal handler from your SIGBUS and SIGSEGV
320
   signal handlers to inform the virtual CPU of exceptions. non zero
321
   is returned if the signal was handled by the virtual CPU.  */
322
int cpu_arm_signal_handler(int host_signum, void *pinfo,
323
                           void *puc);
324
int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
325
                              int mmu_idx);
326
#define cpu_handle_mmu_fault cpu_arm_handle_mmu_fault
327

    
328
#define CPSR_M (0x1fU)
329
#define CPSR_T (1U << 5)
330
#define CPSR_F (1U << 6)
331
#define CPSR_I (1U << 7)
332
#define CPSR_A (1U << 8)
333
#define CPSR_E (1U << 9)
334
#define CPSR_IT_2_7 (0xfc00U)
335
#define CPSR_GE (0xfU << 16)
336
#define CPSR_RESERVED (0xfU << 20)
337
#define CPSR_J (1U << 24)
338
#define CPSR_IT_0_1 (3U << 25)
339
#define CPSR_Q (1U << 27)
340
#define CPSR_V (1U << 28)
341
#define CPSR_C (1U << 29)
342
#define CPSR_Z (1U << 30)
343
#define CPSR_N (1U << 31)
344
#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
345

    
346
#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
347
#define CACHED_CPSR_BITS (CPSR_T | CPSR_GE | CPSR_IT | CPSR_Q | CPSR_NZCV)
348
/* Bits writable in user mode.  */
349
#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
350
/* Execution state bits.  MRS read as zero, MSR writes ignored.  */
351
#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J)
352

    
353
/* Bit definitions for ARMv8 SPSR (PSTATE) format.
354
 * Only these are valid when in AArch64 mode; in
355
 * AArch32 mode SPSRs are basically CPSR-format.
356
 */
357
#define PSTATE_M (0xFU)
358
#define PSTATE_nRW (1U << 4)
359
#define PSTATE_F (1U << 6)
360
#define PSTATE_I (1U << 7)
361
#define PSTATE_A (1U << 8)
362
#define PSTATE_D (1U << 9)
363
#define PSTATE_IL (1U << 20)
364
#define PSTATE_SS (1U << 21)
365
#define PSTATE_V (1U << 28)
366
#define PSTATE_C (1U << 29)
367
#define PSTATE_Z (1U << 30)
368
#define PSTATE_N (1U << 31)
369
#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
370
#define CACHED_PSTATE_BITS (PSTATE_NZCV)
371
/* Mode values for AArch64 */
372
#define PSTATE_MODE_EL3h 13
373
#define PSTATE_MODE_EL3t 12
374
#define PSTATE_MODE_EL2h 9
375
#define PSTATE_MODE_EL2t 8
376
#define PSTATE_MODE_EL1h 5
377
#define PSTATE_MODE_EL1t 4
378
#define PSTATE_MODE_EL0t 0
379

    
380
/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
381
 * interprocessing, so we don't attempt to sync with the cpsr state used by
382
 * the 32 bit decoder.
383
 */
384
static inline uint32_t pstate_read(CPUARMState *env)
385
{
386
    int ZF;
387

    
388
    ZF = (env->ZF == 0);
389
    return (env->NF & 0x80000000) | (ZF << 30)
390
        | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
391
        | env->pstate;
392
}
393

    
394
static inline void pstate_write(CPUARMState *env, uint32_t val)
395
{
396
    env->ZF = (~val) & PSTATE_Z;
397
    env->NF = val;
398
    env->CF = (val >> 29) & 1;
399
    env->VF = (val << 3) & 0x80000000;
400
    env->pstate = val & ~CACHED_PSTATE_BITS;
401
}
402

    
403
/* Return the current CPSR value.  */
404
uint32_t cpsr_read(CPUARMState *env);
405
/* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.  */
406
void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
407

    
408
/* Return the current xPSR value.  */
409
static inline uint32_t xpsr_read(CPUARMState *env)
410
{
411
    int ZF;
412
    ZF = (env->ZF == 0);
413
    return (env->NF & 0x80000000) | (ZF << 30)
414
        | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
415
        | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
416
        | ((env->condexec_bits & 0xfc) << 8)
417
        | env->v7m.exception;
418
}
419

    
420
/* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
421
static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
422
{
423
    if (mask & CPSR_NZCV) {
424
        env->ZF = (~val) & CPSR_Z;
425
        env->NF = val;
426
        env->CF = (val >> 29) & 1;
427
        env->VF = (val << 3) & 0x80000000;
428
    }
429
    if (mask & CPSR_Q)
430
        env->QF = ((val & CPSR_Q) != 0);
431
    if (mask & (1 << 24))
432
        env->thumb = ((val & (1 << 24)) != 0);
433
    if (mask & CPSR_IT_0_1) {
434
        env->condexec_bits &= ~3;
435
        env->condexec_bits |= (val >> 25) & 3;
436
    }
437
    if (mask & CPSR_IT_2_7) {
438
        env->condexec_bits &= 3;
439
        env->condexec_bits |= (val >> 8) & 0xfc;
440
    }
441
    if (mask & 0x1ff) {
442
        env->v7m.exception = val & 0x1ff;
443
    }
444
}
445

    
446
/* Return the current FPSCR value.  */
447
uint32_t vfp_get_fpscr(CPUARMState *env);
448
void vfp_set_fpscr(CPUARMState *env, uint32_t val);
449

    
450
enum arm_cpu_mode {
451
  ARM_CPU_MODE_USR = 0x10,
452
  ARM_CPU_MODE_FIQ = 0x11,
453
  ARM_CPU_MODE_IRQ = 0x12,
454
  ARM_CPU_MODE_SVC = 0x13,
455
  ARM_CPU_MODE_ABT = 0x17,
456
  ARM_CPU_MODE_UND = 0x1b,
457
  ARM_CPU_MODE_SYS = 0x1f
458
};
459

    
460
/* VFP system registers.  */
461
#define ARM_VFP_FPSID   0
462
#define ARM_VFP_FPSCR   1
463
#define ARM_VFP_MVFR1   6
464
#define ARM_VFP_MVFR0   7
465
#define ARM_VFP_FPEXC   8
466
#define ARM_VFP_FPINST  9
467
#define ARM_VFP_FPINST2 10
468

    
469
/* iwMMXt coprocessor control registers.  */
470
#define ARM_IWMMXT_wCID                0
471
#define ARM_IWMMXT_wCon                1
472
#define ARM_IWMMXT_wCSSF        2
473
#define ARM_IWMMXT_wCASF        3
474
#define ARM_IWMMXT_wCGR0        8
475
#define ARM_IWMMXT_wCGR1        9
476
#define ARM_IWMMXT_wCGR2        10
477
#define ARM_IWMMXT_wCGR3        11
478

    
479
/* If adding a feature bit which corresponds to a Linux ELF
480
 * HWCAP bit, remember to update the feature-bit-to-hwcap
481
 * mapping in linux-user/elfload.c:get_elf_hwcap().
482
 */
483
enum arm_features {
484
    ARM_FEATURE_VFP,
485
    ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
486
    ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
487
    ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
488
    ARM_FEATURE_V6,
489
    ARM_FEATURE_V6K,
490
    ARM_FEATURE_V7,
491
    ARM_FEATURE_THUMB2,
492
    ARM_FEATURE_MPU,    /* Only has Memory Protection Unit, not full MMU.  */
493
    ARM_FEATURE_VFP3,
494
    ARM_FEATURE_VFP_FP16,
495
    ARM_FEATURE_NEON,
496
    ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
497
    ARM_FEATURE_M, /* Microcontroller profile.  */
498
    ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
499
    ARM_FEATURE_THUMB2EE,
500
    ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
501
    ARM_FEATURE_V4T,
502
    ARM_FEATURE_V5,
503
    ARM_FEATURE_STRONGARM,
504
    ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
505
    ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
506
    ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
507
    ARM_FEATURE_GENERIC_TIMER,
508
    ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
509
    ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
510
    ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
511
    ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
512
    ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
513
    ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
514
    ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
515
    ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
516
    ARM_FEATURE_V8,
517
    ARM_FEATURE_AARCH64, /* supports 64 bit mode */
518
    ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
519
    ARM_FEATURE_CBAR, /* has cp15 CBAR */
520
};
521

    
522
static inline int arm_feature(CPUARMState *env, int feature)
523
{
524
    return (env->features & (1ULL << feature)) != 0;
525
}
526

    
527
void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
528

    
529
/* Interface between CPU and Interrupt controller.  */
530
void armv7m_nvic_set_pending(void *opaque, int irq);
531
int armv7m_nvic_acknowledge_irq(void *opaque);
532
void armv7m_nvic_complete_irq(void *opaque, int irq);
533

    
534
/* Interface for defining coprocessor registers.
535
 * Registers are defined in tables of arm_cp_reginfo structs
536
 * which are passed to define_arm_cp_regs().
537
 */
538

    
539
/* When looking up a coprocessor register we look for it
540
 * via an integer which encodes all of:
541
 *  coprocessor number
542
 *  Crn, Crm, opc1, opc2 fields
543
 *  32 or 64 bit register (ie is it accessed via MRC/MCR
544
 *    or via MRRC/MCRR?)
545
 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
546
 * (In this case crn and opc2 should be zero.)
547
 */
548
#define ENCODE_CP_REG(cp, is64, crn, crm, opc1, opc2)   \
549
    (((cp) << 16) | ((is64) << 15) | ((crn) << 11) |    \
550
     ((crm) << 7) | ((opc1) << 3) | (opc2))
551

    
552
/* Convert a full 64 bit KVM register ID to the truncated 32 bit
553
 * version used as a key for the coprocessor register hashtable
554
 */
555
static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
556
{
557
    uint32_t cpregid = kvmid;
558
    if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
559
        cpregid |= (1 << 15);
560
    }
561
    return cpregid;
562
}
563

    
564
/* Convert a truncated 32 bit hashtable key into the full
565
 * 64 bit KVM register ID.
566
 */
567
static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
568
{
569
    uint64_t kvmid = cpregid & ~(1 << 15);
570
    if (cpregid & (1 << 15)) {
571
        kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
572
    } else {
573
        kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
574
    }
575
    return kvmid;
576
}
577

    
578
/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
579
 * special-behaviour cp reg and bits [15..8] indicate what behaviour
580
 * it has. Otherwise it is a simple cp reg, where CONST indicates that
581
 * TCG can assume the value to be constant (ie load at translate time)
582
 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
583
 * indicates that the TB should not be ended after a write to this register
584
 * (the default is that the TB ends after cp writes). OVERRIDE permits
585
 * a register definition to override a previous definition for the
586
 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
587
 * old must have the OVERRIDE bit set.
588
 * NO_MIGRATE indicates that this register should be ignored for migration;
589
 * (eg because any state is accessed via some other coprocessor register).
590
 * IO indicates that this register does I/O and therefore its accesses
591
 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
592
 * registers which implement clocks or timers require this.
593
 */
594
#define ARM_CP_SPECIAL 1
595
#define ARM_CP_CONST 2
596
#define ARM_CP_64BIT 4
597
#define ARM_CP_SUPPRESS_TB_END 8
598
#define ARM_CP_OVERRIDE 16
599
#define ARM_CP_NO_MIGRATE 32
600
#define ARM_CP_IO 64
601
#define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
602
#define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
603
#define ARM_LAST_SPECIAL ARM_CP_WFI
604
/* Used only as a terminator for ARMCPRegInfo lists */
605
#define ARM_CP_SENTINEL 0xffff
606
/* Mask of only the flag bits in a type field */
607
#define ARM_CP_FLAG_MASK 0x7f
608

    
609
/* Return true if cptype is a valid type field. This is used to try to
610
 * catch errors where the sentinel has been accidentally left off the end
611
 * of a list of registers.
612
 */
613
static inline bool cptype_valid(int cptype)
614
{
615
    return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
616
        || ((cptype & ARM_CP_SPECIAL) &&
617
            ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
618
}
619

    
620
/* Access rights:
621
 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
622
 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
623
 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
624
 * (ie any of the privileged modes in Secure state, or Monitor mode).
625
 * If a register is accessible in one privilege level it's always accessible
626
 * in higher privilege levels too. Since "Secure PL1" also follows this rule
627
 * (ie anything visible in PL2 is visible in S-PL1, some things are only
628
 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
629
 * terminology a little and call this PL3.
630
 *
631
 * If access permissions for a register are more complex than can be
632
 * described with these bits, then use a laxer set of restrictions, and
633
 * do the more restrictive/complex check inside a helper function.
634
 */
635
#define PL3_R 0x80
636
#define PL3_W 0x40
637
#define PL2_R (0x20 | PL3_R)
638
#define PL2_W (0x10 | PL3_W)
639
#define PL1_R (0x08 | PL2_R)
640
#define PL1_W (0x04 | PL2_W)
641
#define PL0_R (0x02 | PL1_R)
642
#define PL0_W (0x01 | PL1_W)
643

    
644
#define PL3_RW (PL3_R | PL3_W)
645
#define PL2_RW (PL2_R | PL2_W)
646
#define PL1_RW (PL1_R | PL1_W)
647
#define PL0_RW (PL0_R | PL0_W)
648

    
649
static inline int arm_current_pl(CPUARMState *env)
650
{
651
    if ((env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_USR) {
652
        return 0;
653
    }
654
    /* We don't currently implement the Virtualization or TrustZone
655
     * extensions, so PL2 and PL3 don't exist for us.
656
     */
657
    return 1;
658
}
659

    
660
typedef struct ARMCPRegInfo ARMCPRegInfo;
661

    
662
/* Access functions for coprocessor registers. These should return
663
 * 0 on success, or one of the EXCP_* constants if access should cause
664
 * an exception (in which case *value is not written).
665
 */
666
typedef int CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque,
667
                     uint64_t *value);
668
typedef int CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
669
                      uint64_t value);
670
/* Hook function for register reset */
671
typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
672

    
673
#define CP_ANY 0xff
674

    
675
/* Definition of an ARM coprocessor register */
676
struct ARMCPRegInfo {
677
    /* Name of register (useful mainly for debugging, need not be unique) */
678
    const char *name;
679
    /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
680
     * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
681
     * 'wildcard' field -- any value of that field in the MRC/MCR insn
682
     * will be decoded to this register. The register read and write
683
     * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
684
     * used by the program, so it is possible to register a wildcard and
685
     * then behave differently on read/write if necessary.
686
     * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
687
     * must both be zero.
688
     */
689
    uint8_t cp;
690
    uint8_t crn;
691
    uint8_t crm;
692
    uint8_t opc1;
693
    uint8_t opc2;
694
    /* Register type: ARM_CP_* bits/values */
695
    int type;
696
    /* Access rights: PL*_[RW] */
697
    int access;
698
    /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
699
     * this register was defined: can be used to hand data through to the
700
     * register read/write functions, since they are passed the ARMCPRegInfo*.
701
     */
702
    void *opaque;
703
    /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
704
     * fieldoffset is non-zero, the reset value of the register.
705
     */
706
    uint64_t resetvalue;
707
    /* Offset of the field in CPUARMState for this register. This is not
708
     * needed if either:
709
     *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
710
     *  2. both readfn and writefn are specified
711
     */
712
    ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
713
    /* Function for handling reads of this register. If NULL, then reads
714
     * will be done by loading from the offset into CPUARMState specified
715
     * by fieldoffset.
716
     */
717
    CPReadFn *readfn;
718
    /* Function for handling writes of this register. If NULL, then writes
719
     * will be done by writing to the offset into CPUARMState specified
720
     * by fieldoffset.
721
     */
722
    CPWriteFn *writefn;
723
    /* Function for doing a "raw" read; used when we need to copy
724
     * coprocessor state to the kernel for KVM or out for
725
     * migration. This only needs to be provided if there is also a
726
     * readfn and it makes an access permission check.
727
     */
728
    CPReadFn *raw_readfn;
729
    /* Function for doing a "raw" write; used when we need to copy KVM
730
     * kernel coprocessor state into userspace, or for inbound
731
     * migration. This only needs to be provided if there is also a
732
     * writefn and it makes an access permission check or masks out
733
     * "unwritable" bits or has write-one-to-clear or similar behaviour.
734
     */
735
    CPWriteFn *raw_writefn;
736
    /* Function for resetting the register. If NULL, then reset will be done
737
     * by writing resetvalue to the field specified in fieldoffset. If
738
     * fieldoffset is 0 then no reset will be done.
739
     */
740
    CPResetFn *resetfn;
741
};
742

    
743
/* Macros which are lvalues for the field in CPUARMState for the
744
 * ARMCPRegInfo *ri.
745
 */
746
#define CPREG_FIELD32(env, ri) \
747
    (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
748
#define CPREG_FIELD64(env, ri) \
749
    (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
750

    
751
#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
752

    
753
void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
754
                                    const ARMCPRegInfo *regs, void *opaque);
755
void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
756
                                       const ARMCPRegInfo *regs, void *opaque);
757
static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
758
{
759
    define_arm_cp_regs_with_opaque(cpu, regs, 0);
760
}
761
static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
762
{
763
    define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
764
}
765
const ARMCPRegInfo *get_arm_cp_reginfo(ARMCPU *cpu, uint32_t encoded_cp);
766

    
767
/* CPWriteFn that can be used to implement writes-ignored behaviour */
768
int arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
769
                        uint64_t value);
770
/* CPReadFn that can be used for read-as-zero behaviour */
771
int arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value);
772

    
773
static inline bool cp_access_ok(CPUARMState *env,
774
                                const ARMCPRegInfo *ri, int isread)
775
{
776
    return (ri->access >> ((arm_current_pl(env) * 2) + isread)) & 1;
777
}
778

    
779
/**
780
 * write_list_to_cpustate
781
 * @cpu: ARMCPU
782
 *
783
 * For each register listed in the ARMCPU cpreg_indexes list, write
784
 * its value from the cpreg_values list into the ARMCPUState structure.
785
 * This updates TCG's working data structures from KVM data or
786
 * from incoming migration state.
787
 *
788
 * Returns: true if all register values were updated correctly,
789
 * false if some register was unknown or could not be written.
790
 * Note that we do not stop early on failure -- we will attempt
791
 * writing all registers in the list.
792
 */
793
bool write_list_to_cpustate(ARMCPU *cpu);
794

    
795
/**
796
 * write_cpustate_to_list:
797
 * @cpu: ARMCPU
798
 *
799
 * For each register listed in the ARMCPU cpreg_indexes list, write
800
 * its value from the ARMCPUState structure into the cpreg_values list.
801
 * This is used to copy info from TCG's working data structures into
802
 * KVM or for outbound migration.
803
 *
804
 * Returns: true if all register values were read correctly,
805
 * false if some register was unknown or could not be read.
806
 * Note that we do not stop early on failure -- we will attempt
807
 * reading all registers in the list.
808
 */
809
bool write_cpustate_to_list(ARMCPU *cpu);
810

    
811
/* Does the core conform to the the "MicroController" profile. e.g. Cortex-M3.
812
   Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
813
   conventional cores (ie. Application or Realtime profile).  */
814

    
815
#define IS_M(env) arm_feature(env, ARM_FEATURE_M)
816

    
817
#define ARM_CPUID_TI915T      0x54029152
818
#define ARM_CPUID_TI925T      0x54029252
819

    
820
#if defined(CONFIG_USER_ONLY)
821
#define TARGET_PAGE_BITS 12
822
#else
823
/* The ARM MMU allows 1k pages.  */
824
/* ??? Linux doesn't actually use these, and they're deprecated in recent
825
   architecture revisions.  Maybe a configure option to disable them.  */
826
#define TARGET_PAGE_BITS 10
827
#endif
828

    
829
#if defined(TARGET_AARCH64)
830
#  define TARGET_PHYS_ADDR_SPACE_BITS 48
831
#  define TARGET_VIRT_ADDR_SPACE_BITS 64
832
#else
833
#  define TARGET_PHYS_ADDR_SPACE_BITS 40
834
#  define TARGET_VIRT_ADDR_SPACE_BITS 32
835
#endif
836

    
837
static inline CPUARMState *cpu_init(const char *cpu_model)
838
{
839
    ARMCPU *cpu = cpu_arm_init(cpu_model);
840
    if (cpu) {
841
        return &cpu->env;
842
    }
843
    return NULL;
844
}
845

    
846
#define cpu_exec cpu_arm_exec
847
#define cpu_gen_code cpu_arm_gen_code
848
#define cpu_signal_handler cpu_arm_signal_handler
849
#define cpu_list arm_cpu_list
850

    
851
/* MMU modes definitions */
852
#define MMU_MODE0_SUFFIX _kernel
853
#define MMU_MODE1_SUFFIX _user
854
#define MMU_USER_IDX 1
855
static inline int cpu_mmu_index (CPUARMState *env)
856
{
857
    return (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR ? 1 : 0;
858
}
859

    
860
#include "exec/cpu-all.h"
861

    
862
/* Bit usage in the TB flags field: bit 31 indicates whether we are
863
 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
864
 */
865
#define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
866
#define ARM_TBFLAG_AARCH64_STATE_MASK  (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
867

    
868
/* Bit usage when in AArch32 state: */
869
#define ARM_TBFLAG_THUMB_SHIFT      0
870
#define ARM_TBFLAG_THUMB_MASK       (1 << ARM_TBFLAG_THUMB_SHIFT)
871
#define ARM_TBFLAG_VECLEN_SHIFT     1
872
#define ARM_TBFLAG_VECLEN_MASK      (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
873
#define ARM_TBFLAG_VECSTRIDE_SHIFT  4
874
#define ARM_TBFLAG_VECSTRIDE_MASK   (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
875
#define ARM_TBFLAG_PRIV_SHIFT       6
876
#define ARM_TBFLAG_PRIV_MASK        (1 << ARM_TBFLAG_PRIV_SHIFT)
877
#define ARM_TBFLAG_VFPEN_SHIFT      7
878
#define ARM_TBFLAG_VFPEN_MASK       (1 << ARM_TBFLAG_VFPEN_SHIFT)
879
#define ARM_TBFLAG_CONDEXEC_SHIFT   8
880
#define ARM_TBFLAG_CONDEXEC_MASK    (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
881
#define ARM_TBFLAG_BSWAP_CODE_SHIFT 16
882
#define ARM_TBFLAG_BSWAP_CODE_MASK  (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
883

    
884
/* Bit usage when in AArch64 state: currently no bits defined */
885

    
886
/* some convenience accessor macros */
887
#define ARM_TBFLAG_AARCH64_STATE(F) \
888
    (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
889
#define ARM_TBFLAG_THUMB(F) \
890
    (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
891
#define ARM_TBFLAG_VECLEN(F) \
892
    (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
893
#define ARM_TBFLAG_VECSTRIDE(F) \
894
    (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
895
#define ARM_TBFLAG_PRIV(F) \
896
    (((F) & ARM_TBFLAG_PRIV_MASK) >> ARM_TBFLAG_PRIV_SHIFT)
897
#define ARM_TBFLAG_VFPEN(F) \
898
    (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
899
#define ARM_TBFLAG_CONDEXEC(F) \
900
    (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
901
#define ARM_TBFLAG_BSWAP_CODE(F) \
902
    (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
903

    
904
static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
905
                                        target_ulong *cs_base, int *flags)
906
{
907
    if (is_a64(env)) {
908
        *pc = env->pc;
909
        *flags = ARM_TBFLAG_AARCH64_STATE_MASK;
910
    } else {
911
        int privmode;
912
        *pc = env->regs[15];
913
        *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
914
            | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
915
            | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
916
            | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
917
            | (env->bswap_code << ARM_TBFLAG_BSWAP_CODE_SHIFT);
918
        if (arm_feature(env, ARM_FEATURE_M)) {
919
            privmode = !((env->v7m.exception == 0) && (env->v7m.control & 1));
920
        } else {
921
            privmode = (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR;
922
        }
923
        if (privmode) {
924
            *flags |= ARM_TBFLAG_PRIV_MASK;
925
        }
926
        if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
927
            *flags |= ARM_TBFLAG_VFPEN_MASK;
928
        }
929
    }
930

    
931
    *cs_base = 0;
932
}
933

    
934
static inline bool cpu_has_work(CPUState *cpu)
935
{
936
    return cpu->interrupt_request &
937
        (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXITTB);
938
}
939

    
940
#include "exec/exec-all.h"
941

    
942
static inline void cpu_pc_from_tb(CPUARMState *env, TranslationBlock *tb)
943
{
944
    if (ARM_TBFLAG_AARCH64_STATE(tb->flags)) {
945
        env->pc = tb->pc;
946
    } else {
947
        env->regs[15] = tb->pc;
948
    }
949
}
950

    
951
/* Load an instruction and return it in the standard little-endian order */
952
static inline uint32_t arm_ldl_code(CPUARMState *env, target_ulong addr,
953
                                    bool do_swap)
954
{
955
    uint32_t insn = cpu_ldl_code(env, addr);
956
    if (do_swap) {
957
        return bswap32(insn);
958
    }
959
    return insn;
960
}
961

    
962
/* Ditto, for a halfword (Thumb) instruction */
963
static inline uint16_t arm_lduw_code(CPUARMState *env, target_ulong addr,
964
                                     bool do_swap)
965
{
966
    uint16_t insn = cpu_lduw_code(env, addr);
967
    if (do_swap) {
968
        return bswap16(insn);
969
    }
970
    return insn;
971
}
972

    
973
#endif