Statistics
| Branch: | Revision:

root / cpu-all.h @ d4970b07

History | View | Annotate | Download (25 kB)

1
/*
2
 * defines common to all virtual CPUs
3
 *
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18
 */
19
#ifndef CPU_ALL_H
20
#define CPU_ALL_H
21

    
22
#include "qemu-common.h"
23
#include "cpu-common.h"
24

    
25
/* some important defines:
26
 *
27
 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
28
 * memory accesses.
29
 *
30
 * HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and
31
 * otherwise little endian.
32
 *
33
 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
34
 *
35
 * TARGET_WORDS_BIGENDIAN : same for target cpu
36
 */
37

    
38
#include "softfloat.h"
39

    
40
#if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
41
#define BSWAP_NEEDED
42
#endif
43

    
44
#ifdef BSWAP_NEEDED
45

    
46
static inline uint16_t tswap16(uint16_t s)
47
{
48
    return bswap16(s);
49
}
50

    
51
static inline uint32_t tswap32(uint32_t s)
52
{
53
    return bswap32(s);
54
}
55

    
56
static inline uint64_t tswap64(uint64_t s)
57
{
58
    return bswap64(s);
59
}
60

    
61
static inline void tswap16s(uint16_t *s)
62
{
63
    *s = bswap16(*s);
64
}
65

    
66
static inline void tswap32s(uint32_t *s)
67
{
68
    *s = bswap32(*s);
69
}
70

    
71
static inline void tswap64s(uint64_t *s)
72
{
73
    *s = bswap64(*s);
74
}
75

    
76
#else
77

    
78
static inline uint16_t tswap16(uint16_t s)
79
{
80
    return s;
81
}
82

    
83
static inline uint32_t tswap32(uint32_t s)
84
{
85
    return s;
86
}
87

    
88
static inline uint64_t tswap64(uint64_t s)
89
{
90
    return s;
91
}
92

    
93
static inline void tswap16s(uint16_t *s)
94
{
95
}
96

    
97
static inline void tswap32s(uint32_t *s)
98
{
99
}
100

    
101
static inline void tswap64s(uint64_t *s)
102
{
103
}
104

    
105
#endif
106

    
107
#if TARGET_LONG_SIZE == 4
108
#define tswapl(s) tswap32(s)
109
#define tswapls(s) tswap32s((uint32_t *)(s))
110
#define bswaptls(s) bswap32s(s)
111
#else
112
#define tswapl(s) tswap64(s)
113
#define tswapls(s) tswap64s((uint64_t *)(s))
114
#define bswaptls(s) bswap64s(s)
115
#endif
116

    
117
typedef union {
118
    float32 f;
119
    uint32_t l;
120
} CPU_FloatU;
121

    
122
/* NOTE: arm FPA is horrible as double 32 bit words are stored in big
123
   endian ! */
124
typedef union {
125
    float64 d;
126
#if defined(HOST_WORDS_BIGENDIAN)
127
    struct {
128
        uint32_t upper;
129
        uint32_t lower;
130
    } l;
131
#else
132
    struct {
133
        uint32_t lower;
134
        uint32_t upper;
135
    } l;
136
#endif
137
    uint64_t ll;
138
} CPU_DoubleU;
139

    
140
typedef union {
141
     floatx80 d;
142
     struct {
143
         uint64_t lower;
144
         uint16_t upper;
145
     } l;
146
} CPU_LDoubleU;
147

    
148
typedef union {
149
    float128 q;
150
#if defined(HOST_WORDS_BIGENDIAN)
151
    struct {
152
        uint32_t upmost;
153
        uint32_t upper;
154
        uint32_t lower;
155
        uint32_t lowest;
156
    } l;
157
    struct {
158
        uint64_t upper;
159
        uint64_t lower;
160
    } ll;
161
#else
162
    struct {
163
        uint32_t lowest;
164
        uint32_t lower;
165
        uint32_t upper;
166
        uint32_t upmost;
167
    } l;
168
    struct {
169
        uint64_t lower;
170
        uint64_t upper;
171
    } ll;
172
#endif
173
} CPU_QuadU;
174

    
175
/* CPU memory access without any memory or io remapping */
176

    
177
/*
178
 * the generic syntax for the memory accesses is:
179
 *
180
 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
181
 *
182
 * store: st{type}{size}{endian}_{access_type}(ptr, val)
183
 *
184
 * type is:
185
 * (empty): integer access
186
 *   f    : float access
187
 *
188
 * sign is:
189
 * (empty): for floats or 32 bit size
190
 *   u    : unsigned
191
 *   s    : signed
192
 *
193
 * size is:
194
 *   b: 8 bits
195
 *   w: 16 bits
196
 *   l: 32 bits
197
 *   q: 64 bits
198
 *
199
 * endian is:
200
 * (empty): target cpu endianness or 8 bit access
201
 *   r    : reversed target cpu endianness (not implemented yet)
202
 *   be   : big endian (not implemented yet)
203
 *   le   : little endian (not implemented yet)
204
 *
205
 * access_type is:
206
 *   raw    : host memory access
207
 *   user   : user mode access using soft MMU
208
 *   kernel : kernel mode access using soft MMU
209
 */
210
static inline int ldub_p(const void *ptr)
211
{
212
    return *(uint8_t *)ptr;
213
}
214

    
215
static inline int ldsb_p(const void *ptr)
216
{
217
    return *(int8_t *)ptr;
218
}
219

    
220
static inline void stb_p(void *ptr, int v)
221
{
222
    *(uint8_t *)ptr = v;
223
}
224

    
225
/* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
226
   kernel handles unaligned load/stores may give better results, but
227
   it is a system wide setting : bad */
228
#if defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
229

    
230
/* conservative code for little endian unaligned accesses */
231
static inline int lduw_le_p(const void *ptr)
232
{
233
#ifdef _ARCH_PPC
234
    int val;
235
    __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
236
    return val;
237
#else
238
    const uint8_t *p = ptr;
239
    return p[0] | (p[1] << 8);
240
#endif
241
}
242

    
243
static inline int ldsw_le_p(const void *ptr)
244
{
245
#ifdef _ARCH_PPC
246
    int val;
247
    __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
248
    return (int16_t)val;
249
#else
250
    const uint8_t *p = ptr;
251
    return (int16_t)(p[0] | (p[1] << 8));
252
#endif
253
}
254

    
255
static inline int ldl_le_p(const void *ptr)
256
{
257
#ifdef _ARCH_PPC
258
    int val;
259
    __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
260
    return val;
261
#else
262
    const uint8_t *p = ptr;
263
    return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
264
#endif
265
}
266

    
267
static inline uint64_t ldq_le_p(const void *ptr)
268
{
269
    const uint8_t *p = ptr;
270
    uint32_t v1, v2;
271
    v1 = ldl_le_p(p);
272
    v2 = ldl_le_p(p + 4);
273
    return v1 | ((uint64_t)v2 << 32);
274
}
275

    
276
static inline void stw_le_p(void *ptr, int v)
277
{
278
#ifdef _ARCH_PPC
279
    __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
280
#else
281
    uint8_t *p = ptr;
282
    p[0] = v;
283
    p[1] = v >> 8;
284
#endif
285
}
286

    
287
static inline void stl_le_p(void *ptr, int v)
288
{
289
#ifdef _ARCH_PPC
290
    __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
291
#else
292
    uint8_t *p = ptr;
293
    p[0] = v;
294
    p[1] = v >> 8;
295
    p[2] = v >> 16;
296
    p[3] = v >> 24;
297
#endif
298
}
299

    
300
static inline void stq_le_p(void *ptr, uint64_t v)
301
{
302
    uint8_t *p = ptr;
303
    stl_le_p(p, (uint32_t)v);
304
    stl_le_p(p + 4, v >> 32);
305
}
306

    
307
/* float access */
308

    
309
static inline float32 ldfl_le_p(const void *ptr)
310
{
311
    union {
312
        float32 f;
313
        uint32_t i;
314
    } u;
315
    u.i = ldl_le_p(ptr);
316
    return u.f;
317
}
318

    
319
static inline void stfl_le_p(void *ptr, float32 v)
320
{
321
    union {
322
        float32 f;
323
        uint32_t i;
324
    } u;
325
    u.f = v;
326
    stl_le_p(ptr, u.i);
327
}
328

    
329
static inline float64 ldfq_le_p(const void *ptr)
330
{
331
    CPU_DoubleU u;
332
    u.l.lower = ldl_le_p(ptr);
333
    u.l.upper = ldl_le_p(ptr + 4);
334
    return u.d;
335
}
336

    
337
static inline void stfq_le_p(void *ptr, float64 v)
338
{
339
    CPU_DoubleU u;
340
    u.d = v;
341
    stl_le_p(ptr, u.l.lower);
342
    stl_le_p(ptr + 4, u.l.upper);
343
}
344

    
345
#else
346

    
347
static inline int lduw_le_p(const void *ptr)
348
{
349
    return *(uint16_t *)ptr;
350
}
351

    
352
static inline int ldsw_le_p(const void *ptr)
353
{
354
    return *(int16_t *)ptr;
355
}
356

    
357
static inline int ldl_le_p(const void *ptr)
358
{
359
    return *(uint32_t *)ptr;
360
}
361

    
362
static inline uint64_t ldq_le_p(const void *ptr)
363
{
364
    return *(uint64_t *)ptr;
365
}
366

    
367
static inline void stw_le_p(void *ptr, int v)
368
{
369
    *(uint16_t *)ptr = v;
370
}
371

    
372
static inline void stl_le_p(void *ptr, int v)
373
{
374
    *(uint32_t *)ptr = v;
375
}
376

    
377
static inline void stq_le_p(void *ptr, uint64_t v)
378
{
379
    *(uint64_t *)ptr = v;
380
}
381

    
382
/* float access */
383

    
384
static inline float32 ldfl_le_p(const void *ptr)
385
{
386
    return *(float32 *)ptr;
387
}
388

    
389
static inline float64 ldfq_le_p(const void *ptr)
390
{
391
    return *(float64 *)ptr;
392
}
393

    
394
static inline void stfl_le_p(void *ptr, float32 v)
395
{
396
    *(float32 *)ptr = v;
397
}
398

    
399
static inline void stfq_le_p(void *ptr, float64 v)
400
{
401
    *(float64 *)ptr = v;
402
}
403
#endif
404

    
405
#if !defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
406

    
407
static inline int lduw_be_p(const void *ptr)
408
{
409
#if defined(__i386__)
410
    int val;
411
    asm volatile ("movzwl %1, %0\n"
412
                  "xchgb %b0, %h0\n"
413
                  : "=q" (val)
414
                  : "m" (*(uint16_t *)ptr));
415
    return val;
416
#else
417
    const uint8_t *b = ptr;
418
    return ((b[0] << 8) | b[1]);
419
#endif
420
}
421

    
422
static inline int ldsw_be_p(const void *ptr)
423
{
424
#if defined(__i386__)
425
    int val;
426
    asm volatile ("movzwl %1, %0\n"
427
                  "xchgb %b0, %h0\n"
428
                  : "=q" (val)
429
                  : "m" (*(uint16_t *)ptr));
430
    return (int16_t)val;
431
#else
432
    const uint8_t *b = ptr;
433
    return (int16_t)((b[0] << 8) | b[1]);
434
#endif
435
}
436

    
437
static inline int ldl_be_p(const void *ptr)
438
{
439
#if defined(__i386__) || defined(__x86_64__)
440
    int val;
441
    asm volatile ("movl %1, %0\n"
442
                  "bswap %0\n"
443
                  : "=r" (val)
444
                  : "m" (*(uint32_t *)ptr));
445
    return val;
446
#else
447
    const uint8_t *b = ptr;
448
    return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
449
#endif
450
}
451

    
452
static inline uint64_t ldq_be_p(const void *ptr)
453
{
454
    uint32_t a,b;
455
    a = ldl_be_p(ptr);
456
    b = ldl_be_p((uint8_t *)ptr + 4);
457
    return (((uint64_t)a<<32)|b);
458
}
459

    
460
static inline void stw_be_p(void *ptr, int v)
461
{
462
#if defined(__i386__)
463
    asm volatile ("xchgb %b0, %h0\n"
464
                  "movw %w0, %1\n"
465
                  : "=q" (v)
466
                  : "m" (*(uint16_t *)ptr), "0" (v));
467
#else
468
    uint8_t *d = (uint8_t *) ptr;
469
    d[0] = v >> 8;
470
    d[1] = v;
471
#endif
472
}
473

    
474
static inline void stl_be_p(void *ptr, int v)
475
{
476
#if defined(__i386__) || defined(__x86_64__)
477
    asm volatile ("bswap %0\n"
478
                  "movl %0, %1\n"
479
                  : "=r" (v)
480
                  : "m" (*(uint32_t *)ptr), "0" (v));
481
#else
482
    uint8_t *d = (uint8_t *) ptr;
483
    d[0] = v >> 24;
484
    d[1] = v >> 16;
485
    d[2] = v >> 8;
486
    d[3] = v;
487
#endif
488
}
489

    
490
static inline void stq_be_p(void *ptr, uint64_t v)
491
{
492
    stl_be_p(ptr, v >> 32);
493
    stl_be_p((uint8_t *)ptr + 4, v);
494
}
495

    
496
/* float access */
497

    
498
static inline float32 ldfl_be_p(const void *ptr)
499
{
500
    union {
501
        float32 f;
502
        uint32_t i;
503
    } u;
504
    u.i = ldl_be_p(ptr);
505
    return u.f;
506
}
507

    
508
static inline void stfl_be_p(void *ptr, float32 v)
509
{
510
    union {
511
        float32 f;
512
        uint32_t i;
513
    } u;
514
    u.f = v;
515
    stl_be_p(ptr, u.i);
516
}
517

    
518
static inline float64 ldfq_be_p(const void *ptr)
519
{
520
    CPU_DoubleU u;
521
    u.l.upper = ldl_be_p(ptr);
522
    u.l.lower = ldl_be_p((uint8_t *)ptr + 4);
523
    return u.d;
524
}
525

    
526
static inline void stfq_be_p(void *ptr, float64 v)
527
{
528
    CPU_DoubleU u;
529
    u.d = v;
530
    stl_be_p(ptr, u.l.upper);
531
    stl_be_p((uint8_t *)ptr + 4, u.l.lower);
532
}
533

    
534
#else
535

    
536
static inline int lduw_be_p(const void *ptr)
537
{
538
    return *(uint16_t *)ptr;
539
}
540

    
541
static inline int ldsw_be_p(const void *ptr)
542
{
543
    return *(int16_t *)ptr;
544
}
545

    
546
static inline int ldl_be_p(const void *ptr)
547
{
548
    return *(uint32_t *)ptr;
549
}
550

    
551
static inline uint64_t ldq_be_p(const void *ptr)
552
{
553
    return *(uint64_t *)ptr;
554
}
555

    
556
static inline void stw_be_p(void *ptr, int v)
557
{
558
    *(uint16_t *)ptr = v;
559
}
560

    
561
static inline void stl_be_p(void *ptr, int v)
562
{
563
    *(uint32_t *)ptr = v;
564
}
565

    
566
static inline void stq_be_p(void *ptr, uint64_t v)
567
{
568
    *(uint64_t *)ptr = v;
569
}
570

    
571
/* float access */
572

    
573
static inline float32 ldfl_be_p(const void *ptr)
574
{
575
    return *(float32 *)ptr;
576
}
577

    
578
static inline float64 ldfq_be_p(const void *ptr)
579
{
580
    return *(float64 *)ptr;
581
}
582

    
583
static inline void stfl_be_p(void *ptr, float32 v)
584
{
585
    *(float32 *)ptr = v;
586
}
587

    
588
static inline void stfq_be_p(void *ptr, float64 v)
589
{
590
    *(float64 *)ptr = v;
591
}
592

    
593
#endif
594

    
595
/* target CPU memory access functions */
596
#if defined(TARGET_WORDS_BIGENDIAN)
597
#define lduw_p(p) lduw_be_p(p)
598
#define ldsw_p(p) ldsw_be_p(p)
599
#define ldl_p(p) ldl_be_p(p)
600
#define ldq_p(p) ldq_be_p(p)
601
#define ldfl_p(p) ldfl_be_p(p)
602
#define ldfq_p(p) ldfq_be_p(p)
603
#define stw_p(p, v) stw_be_p(p, v)
604
#define stl_p(p, v) stl_be_p(p, v)
605
#define stq_p(p, v) stq_be_p(p, v)
606
#define stfl_p(p, v) stfl_be_p(p, v)
607
#define stfq_p(p, v) stfq_be_p(p, v)
608
#else
609
#define lduw_p(p) lduw_le_p(p)
610
#define ldsw_p(p) ldsw_le_p(p)
611
#define ldl_p(p) ldl_le_p(p)
612
#define ldq_p(p) ldq_le_p(p)
613
#define ldfl_p(p) ldfl_le_p(p)
614
#define ldfq_p(p) ldfq_le_p(p)
615
#define stw_p(p, v) stw_le_p(p, v)
616
#define stl_p(p, v) stl_le_p(p, v)
617
#define stq_p(p, v) stq_le_p(p, v)
618
#define stfl_p(p, v) stfl_le_p(p, v)
619
#define stfq_p(p, v) stfq_le_p(p, v)
620
#endif
621

    
622
/* MMU memory access macros */
623

    
624
#if defined(CONFIG_USER_ONLY)
625
#include <assert.h>
626
#include "qemu-types.h"
627

    
628
/* On some host systems the guest address space is reserved on the host.
629
 * This allows the guest address space to be offset to a convenient location.
630
 */
631
#if defined(CONFIG_USE_GUEST_BASE)
632
extern unsigned long guest_base;
633
extern int have_guest_base;
634
extern unsigned long reserved_va;
635
#define GUEST_BASE guest_base
636
#define RESERVED_VA reserved_va
637
#else
638
#define GUEST_BASE 0ul
639
#define RESERVED_VA 0ul
640
#endif
641

    
642
/* All direct uses of g2h and h2g need to go away for usermode softmmu.  */
643
#define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
644

    
645
#if HOST_LONG_BITS <= TARGET_VIRT_ADDR_SPACE_BITS
646
#define h2g_valid(x) 1
647
#else
648
#define h2g_valid(x) ({ \
649
    unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
650
    __guest < (1ul << TARGET_VIRT_ADDR_SPACE_BITS); \
651
})
652
#endif
653

    
654
#define h2g(x) ({ \
655
    unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
656
    /* Check if given address fits target address space */ \
657
    assert(h2g_valid(x)); \
658
    (abi_ulong)__ret; \
659
})
660

    
661
#define saddr(x) g2h(x)
662
#define laddr(x) g2h(x)
663

    
664
#else /* !CONFIG_USER_ONLY */
665
/* NOTE: we use double casts if pointers and target_ulong have
666
   different sizes */
667
#define saddr(x) (uint8_t *)(long)(x)
668
#define laddr(x) (uint8_t *)(long)(x)
669
#endif
670

    
671
#define ldub_raw(p) ldub_p(laddr((p)))
672
#define ldsb_raw(p) ldsb_p(laddr((p)))
673
#define lduw_raw(p) lduw_p(laddr((p)))
674
#define ldsw_raw(p) ldsw_p(laddr((p)))
675
#define ldl_raw(p) ldl_p(laddr((p)))
676
#define ldq_raw(p) ldq_p(laddr((p)))
677
#define ldfl_raw(p) ldfl_p(laddr((p)))
678
#define ldfq_raw(p) ldfq_p(laddr((p)))
679
#define stb_raw(p, v) stb_p(saddr((p)), v)
680
#define stw_raw(p, v) stw_p(saddr((p)), v)
681
#define stl_raw(p, v) stl_p(saddr((p)), v)
682
#define stq_raw(p, v) stq_p(saddr((p)), v)
683
#define stfl_raw(p, v) stfl_p(saddr((p)), v)
684
#define stfq_raw(p, v) stfq_p(saddr((p)), v)
685

    
686

    
687
#if defined(CONFIG_USER_ONLY)
688

    
689
/* if user mode, no other memory access functions */
690
#define ldub(p) ldub_raw(p)
691
#define ldsb(p) ldsb_raw(p)
692
#define lduw(p) lduw_raw(p)
693
#define ldsw(p) ldsw_raw(p)
694
#define ldl(p) ldl_raw(p)
695
#define ldq(p) ldq_raw(p)
696
#define ldfl(p) ldfl_raw(p)
697
#define ldfq(p) ldfq_raw(p)
698
#define stb(p, v) stb_raw(p, v)
699
#define stw(p, v) stw_raw(p, v)
700
#define stl(p, v) stl_raw(p, v)
701
#define stq(p, v) stq_raw(p, v)
702
#define stfl(p, v) stfl_raw(p, v)
703
#define stfq(p, v) stfq_raw(p, v)
704

    
705
#define ldub_code(p) ldub_raw(p)
706
#define ldsb_code(p) ldsb_raw(p)
707
#define lduw_code(p) lduw_raw(p)
708
#define ldsw_code(p) ldsw_raw(p)
709
#define ldl_code(p) ldl_raw(p)
710
#define ldq_code(p) ldq_raw(p)
711

    
712
#define ldub_kernel(p) ldub_raw(p)
713
#define ldsb_kernel(p) ldsb_raw(p)
714
#define lduw_kernel(p) lduw_raw(p)
715
#define ldsw_kernel(p) ldsw_raw(p)
716
#define ldl_kernel(p) ldl_raw(p)
717
#define ldq_kernel(p) ldq_raw(p)
718
#define ldfl_kernel(p) ldfl_raw(p)
719
#define ldfq_kernel(p) ldfq_raw(p)
720
#define stb_kernel(p, v) stb_raw(p, v)
721
#define stw_kernel(p, v) stw_raw(p, v)
722
#define stl_kernel(p, v) stl_raw(p, v)
723
#define stq_kernel(p, v) stq_raw(p, v)
724
#define stfl_kernel(p, v) stfl_raw(p, v)
725
#define stfq_kernel(p, vt) stfq_raw(p, v)
726

    
727
#endif /* defined(CONFIG_USER_ONLY) */
728

    
729
/* page related stuff */
730

    
731
#define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
732
#define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
733
#define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
734

    
735
/* ??? These should be the larger of unsigned long and target_ulong.  */
736
extern unsigned long qemu_real_host_page_size;
737
extern unsigned long qemu_host_page_bits;
738
extern unsigned long qemu_host_page_size;
739
extern unsigned long qemu_host_page_mask;
740

    
741
#define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
742

    
743
/* same as PROT_xxx */
744
#define PAGE_READ      0x0001
745
#define PAGE_WRITE     0x0002
746
#define PAGE_EXEC      0x0004
747
#define PAGE_BITS      (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
748
#define PAGE_VALID     0x0008
749
/* original state of the write flag (used when tracking self-modifying
750
   code */
751
#define PAGE_WRITE_ORG 0x0010
752
#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
753
/* FIXME: Code that sets/uses this is broken and needs to go away.  */
754
#define PAGE_RESERVED  0x0020
755
#endif
756

    
757
#if defined(CONFIG_USER_ONLY)
758
void page_dump(FILE *f);
759

    
760
typedef int (*walk_memory_regions_fn)(void *, abi_ulong,
761
                                      abi_ulong, unsigned long);
762
int walk_memory_regions(void *, walk_memory_regions_fn);
763

    
764
int page_get_flags(target_ulong address);
765
void page_set_flags(target_ulong start, target_ulong end, int flags);
766
int page_check_range(target_ulong start, target_ulong len, int flags);
767
#endif
768

    
769
CPUState *cpu_copy(CPUState *env);
770
CPUState *qemu_get_cpu(int cpu);
771

    
772
#define CPU_DUMP_CODE 0x00010000
773

    
774
void cpu_dump_state(CPUState *env, FILE *f, fprintf_function cpu_fprintf,
775
                    int flags);
776
void cpu_dump_statistics(CPUState *env, FILE *f, fprintf_function cpu_fprintf,
777
                         int flags);
778

    
779
void QEMU_NORETURN cpu_abort(CPUState *env, const char *fmt, ...)
780
    GCC_FMT_ATTR(2, 3);
781
extern CPUState *first_cpu;
782
extern CPUState *cpu_single_env;
783

    
784
/* Flags for use in ENV->INTERRUPT_PENDING.
785

786
   The numbers assigned here are non-sequential in order to preserve
787
   binary compatibility with the vmstate dump.  Bit 0 (0x0001) was
788
   previously used for CPU_INTERRUPT_EXIT, and is cleared when loading
789
   the vmstate dump.  */
790

    
791
/* External hardware interrupt pending.  This is typically used for
792
   interrupts from devices.  */
793
#define CPU_INTERRUPT_HARD        0x0002
794

    
795
/* Exit the current TB.  This is typically used when some system-level device
796
   makes some change to the memory mapping.  E.g. the a20 line change.  */
797
#define CPU_INTERRUPT_EXITTB      0x0004
798

    
799
/* Halt the CPU.  */
800
#define CPU_INTERRUPT_HALT        0x0020
801

    
802
/* Debug event pending.  */
803
#define CPU_INTERRUPT_DEBUG       0x0080
804

    
805
/* Several target-specific external hardware interrupts.  Each target/cpu.h
806
   should define proper names based on these defines.  */
807
#define CPU_INTERRUPT_TGT_EXT_0   0x0008
808
#define CPU_INTERRUPT_TGT_EXT_1   0x0010
809
#define CPU_INTERRUPT_TGT_EXT_2   0x0040
810
#define CPU_INTERRUPT_TGT_EXT_3   0x0200
811
#define CPU_INTERRUPT_TGT_EXT_4   0x1000
812

    
813
/* Several target-specific internal interrupts.  These differ from the
814
   preceeding target-specific interrupts in that they are intended to
815
   originate from within the cpu itself, typically in response to some
816
   instruction being executed.  These, therefore, are not masked while
817
   single-stepping within the debugger.  */
818
#define CPU_INTERRUPT_TGT_INT_0   0x0100
819
#define CPU_INTERRUPT_TGT_INT_1   0x0400
820
#define CPU_INTERRUPT_TGT_INT_2   0x0800
821

    
822
/* First unused bit: 0x2000.  */
823

    
824
/* The set of all bits that should be masked when single-stepping.  */
825
#define CPU_INTERRUPT_SSTEP_MASK \
826
    (CPU_INTERRUPT_HARD          \
827
     | CPU_INTERRUPT_TGT_EXT_0   \
828
     | CPU_INTERRUPT_TGT_EXT_1   \
829
     | CPU_INTERRUPT_TGT_EXT_2   \
830
     | CPU_INTERRUPT_TGT_EXT_3   \
831
     | CPU_INTERRUPT_TGT_EXT_4)
832

    
833
#ifndef CONFIG_USER_ONLY
834
typedef void (*CPUInterruptHandler)(CPUState *, int);
835

    
836
extern CPUInterruptHandler cpu_interrupt_handler;
837

    
838
static inline void cpu_interrupt(CPUState *s, int mask)
839
{
840
    cpu_interrupt_handler(s, mask);
841
}
842
#else /* USER_ONLY */
843
void cpu_interrupt(CPUState *env, int mask);
844
#endif /* USER_ONLY */
845

    
846
void cpu_reset_interrupt(CPUState *env, int mask);
847

    
848
void cpu_exit(CPUState *s);
849

    
850
int qemu_cpu_has_work(CPUState *env);
851

    
852
/* Breakpoint/watchpoint flags */
853
#define BP_MEM_READ           0x01
854
#define BP_MEM_WRITE          0x02
855
#define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
856
#define BP_STOP_BEFORE_ACCESS 0x04
857
#define BP_WATCHPOINT_HIT     0x08
858
#define BP_GDB                0x10
859
#define BP_CPU                0x20
860

    
861
int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
862
                          CPUBreakpoint **breakpoint);
863
int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags);
864
void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint);
865
void cpu_breakpoint_remove_all(CPUState *env, int mask);
866
int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
867
                          int flags, CPUWatchpoint **watchpoint);
868
int cpu_watchpoint_remove(CPUState *env, target_ulong addr,
869
                          target_ulong len, int flags);
870
void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint);
871
void cpu_watchpoint_remove_all(CPUState *env, int mask);
872

    
873
#define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
874
#define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
875
#define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
876

    
877
void cpu_single_step(CPUState *env, int enabled);
878
void cpu_reset(CPUState *s);
879
int cpu_is_stopped(CPUState *env);
880
void run_on_cpu(CPUState *env, void (*func)(void *data), void *data);
881

    
882
#define CPU_LOG_TB_OUT_ASM (1 << 0)
883
#define CPU_LOG_TB_IN_ASM  (1 << 1)
884
#define CPU_LOG_TB_OP      (1 << 2)
885
#define CPU_LOG_TB_OP_OPT  (1 << 3)
886
#define CPU_LOG_INT        (1 << 4)
887
#define CPU_LOG_EXEC       (1 << 5)
888
#define CPU_LOG_PCALL      (1 << 6)
889
#define CPU_LOG_IOPORT     (1 << 7)
890
#define CPU_LOG_TB_CPU     (1 << 8)
891
#define CPU_LOG_RESET      (1 << 9)
892

    
893
/* define log items */
894
typedef struct CPULogItem {
895
    int mask;
896
    const char *name;
897
    const char *help;
898
} CPULogItem;
899

    
900
extern const CPULogItem cpu_log_items[];
901

    
902
void cpu_set_log(int log_flags);
903
void cpu_set_log_filename(const char *filename);
904
int cpu_str_to_log_mask(const char *str);
905

    
906
#if !defined(CONFIG_USER_ONLY)
907

    
908
/* Return the physical page corresponding to a virtual one. Use it
909
   only for debugging because no protection checks are done. Return -1
910
   if no page found. */
911
target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
912

    
913
/* memory API */
914

    
915
extern int phys_ram_fd;
916
extern ram_addr_t ram_size;
917

    
918
/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
919
#define RAM_PREALLOC_MASK   (1 << 0)
920

    
921
typedef struct RAMBlock {
922
    uint8_t *host;
923
    ram_addr_t offset;
924
    ram_addr_t length;
925
    uint32_t flags;
926
    char idstr[256];
927
    QLIST_ENTRY(RAMBlock) next;
928
#if defined(__linux__) && !defined(TARGET_S390X)
929
    int fd;
930
#endif
931
} RAMBlock;
932

    
933
typedef struct RAMList {
934
    uint8_t *phys_dirty;
935
    QLIST_HEAD(ram, RAMBlock) blocks;
936
} RAMList;
937
extern RAMList ram_list;
938

    
939
extern const char *mem_path;
940
extern int mem_prealloc;
941

    
942
/* physical memory access */
943

    
944
/* MMIO pages are identified by a combination of an IO device index and
945
   3 flags.  The ROMD code stores the page ram offset in iotlb entry, 
946
   so only a limited number of ids are avaiable.  */
947

    
948
#define IO_MEM_NB_ENTRIES  (1 << (TARGET_PAGE_BITS  - IO_MEM_SHIFT))
949

    
950
/* Flags stored in the low bits of the TLB virtual address.  These are
951
   defined so that fast path ram access is all zeros.  */
952
/* Zero if TLB entry is valid.  */
953
#define TLB_INVALID_MASK   (1 << 3)
954
/* Set if TLB entry references a clean RAM page.  The iotlb entry will
955
   contain the page physical address.  */
956
#define TLB_NOTDIRTY    (1 << 4)
957
/* Set if TLB entry is an IO callback.  */
958
#define TLB_MMIO        (1 << 5)
959

    
960
#define VGA_DIRTY_FLAG       0x01
961
#define CODE_DIRTY_FLAG      0x02
962
#define MIGRATION_DIRTY_FLAG 0x08
963

    
964
/* read dirty bit (return 0 or 1) */
965
static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
966
{
967
    return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
968
}
969

    
970
static inline int cpu_physical_memory_get_dirty_flags(ram_addr_t addr)
971
{
972
    return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS];
973
}
974

    
975
static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
976
                                                int dirty_flags)
977
{
978
    return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
979
}
980

    
981
static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
982
{
983
    ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
984
}
985

    
986
static inline int cpu_physical_memory_set_dirty_flags(ram_addr_t addr,
987
                                                      int dirty_flags)
988
{
989
    return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] |= dirty_flags;
990
}
991

    
992
static inline void cpu_physical_memory_mask_dirty_range(ram_addr_t start,
993
                                                        int length,
994
                                                        int dirty_flags)
995
{
996
    int i, mask, len;
997
    uint8_t *p;
998

    
999
    len = length >> TARGET_PAGE_BITS;
1000
    mask = ~dirty_flags;
1001
    p = ram_list.phys_dirty + (start >> TARGET_PAGE_BITS);
1002
    for (i = 0; i < len; i++) {
1003
        p[i] &= mask;
1004
    }
1005
}
1006

    
1007
void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1008
                                     int dirty_flags);
1009
void cpu_tlb_update_dirty(CPUState *env);
1010

    
1011
int cpu_physical_memory_set_dirty_tracking(int enable);
1012

    
1013
int cpu_physical_memory_get_dirty_tracking(void);
1014

    
1015
int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
1016
                                   target_phys_addr_t end_addr);
1017

    
1018
int cpu_physical_log_start(target_phys_addr_t start_addr,
1019
                           ram_addr_t size);
1020

    
1021
int cpu_physical_log_stop(target_phys_addr_t start_addr,
1022
                          ram_addr_t size);
1023

    
1024
void dump_exec_info(FILE *f, fprintf_function cpu_fprintf);
1025
#endif /* !CONFIG_USER_ONLY */
1026

    
1027
int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
1028
                        uint8_t *buf, int len, int is_write);
1029

    
1030
#endif /* CPU_ALL_H */