Statistics
| Branch: | Revision:

root / cpu-exec.c @ d64477af

History | View | Annotate | Download (29.2 kB)

1
/*
2
 *  i386 emulator main execution loop
3
 * 
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "config.h"
21
#include "exec.h"
22
#include "disas.h"
23

    
24
int tb_invalidated_flag;
25

    
26
//#define DEBUG_EXEC
27
//#define DEBUG_SIGNAL
28

    
29
#if defined(TARGET_ARM) || defined(TARGET_SPARC)
30
/* XXX: unify with i386 target */
31
void cpu_loop_exit(void)
32
{
33
    longjmp(env->jmp_env, 1);
34
}
35
#endif
36

    
37
/* main execution loop */
38

    
39
int cpu_exec(CPUState *env1)
40
{
41
    int saved_T0, saved_T1, saved_T2;
42
    CPUState *saved_env;
43
#ifdef reg_EAX
44
    int saved_EAX;
45
#endif
46
#ifdef reg_ECX
47
    int saved_ECX;
48
#endif
49
#ifdef reg_EDX
50
    int saved_EDX;
51
#endif
52
#ifdef reg_EBX
53
    int saved_EBX;
54
#endif
55
#ifdef reg_ESP
56
    int saved_ESP;
57
#endif
58
#ifdef reg_EBP
59
    int saved_EBP;
60
#endif
61
#ifdef reg_ESI
62
    int saved_ESI;
63
#endif
64
#ifdef reg_EDI
65
    int saved_EDI;
66
#endif
67
#ifdef __sparc__
68
    int saved_i7, tmp_T0;
69
#endif
70
    int code_gen_size, ret, interrupt_request;
71
    void (*gen_func)(void);
72
    TranslationBlock *tb, **ptb;
73
    uint8_t *tc_ptr, *cs_base, *pc;
74
    unsigned int flags;
75

    
76
    /* first we save global registers */
77
    saved_T0 = T0;
78
    saved_T1 = T1;
79
    saved_T2 = T2;
80
    saved_env = env;
81
    env = env1;
82
#ifdef __sparc__
83
    /* we also save i7 because longjmp may not restore it */
84
    asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
85
#endif
86

    
87
#if defined(TARGET_I386)
88
#ifdef reg_EAX
89
    saved_EAX = EAX;
90
    EAX = env->regs[R_EAX];
91
#endif
92
#ifdef reg_ECX
93
    saved_ECX = ECX;
94
    ECX = env->regs[R_ECX];
95
#endif
96
#ifdef reg_EDX
97
    saved_EDX = EDX;
98
    EDX = env->regs[R_EDX];
99
#endif
100
#ifdef reg_EBX
101
    saved_EBX = EBX;
102
    EBX = env->regs[R_EBX];
103
#endif
104
#ifdef reg_ESP
105
    saved_ESP = ESP;
106
    ESP = env->regs[R_ESP];
107
#endif
108
#ifdef reg_EBP
109
    saved_EBP = EBP;
110
    EBP = env->regs[R_EBP];
111
#endif
112
#ifdef reg_ESI
113
    saved_ESI = ESI;
114
    ESI = env->regs[R_ESI];
115
#endif
116
#ifdef reg_EDI
117
    saved_EDI = EDI;
118
    EDI = env->regs[R_EDI];
119
#endif
120
    
121
    /* put eflags in CPU temporary format */
122
    CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
123
    DF = 1 - (2 * ((env->eflags >> 10) & 1));
124
    CC_OP = CC_OP_EFLAGS;
125
    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
126
#elif defined(TARGET_ARM)
127
    {
128
        unsigned int psr;
129
        psr = env->cpsr;
130
        env->CF = (psr >> 29) & 1;
131
        env->NZF = (psr & 0xc0000000) ^ 0x40000000;
132
        env->VF = (psr << 3) & 0x80000000;
133
        env->cpsr = psr & ~0xf0000000;
134
    }
135
#elif defined(TARGET_SPARC)
136
#elif defined(TARGET_PPC)
137
#else
138
#error unsupported target CPU
139
#endif
140
    env->exception_index = -1;
141

    
142
    /* prepare setjmp context for exception handling */
143
    for(;;) {
144
        if (setjmp(env->jmp_env) == 0) {
145
            env->current_tb = NULL;
146
            /* if an exception is pending, we execute it here */
147
            if (env->exception_index >= 0) {
148
                if (env->exception_index >= EXCP_INTERRUPT) {
149
                    /* exit request from the cpu execution loop */
150
                    ret = env->exception_index;
151
                    break;
152
                } else if (env->user_mode_only) {
153
                    /* if user mode only, we simulate a fake exception
154
                       which will be hanlded outside the cpu execution
155
                       loop */
156
#if defined(TARGET_I386)
157
                    do_interrupt_user(env->exception_index, 
158
                                      env->exception_is_int, 
159
                                      env->error_code, 
160
                                      env->exception_next_eip);
161
#endif
162
                    ret = env->exception_index;
163
                    break;
164
                } else {
165
#if defined(TARGET_I386)
166
                    /* simulate a real cpu exception. On i386, it can
167
                       trigger new exceptions, but we do not handle
168
                       double or triple faults yet. */
169
                    do_interrupt(env->exception_index, 
170
                                 env->exception_is_int, 
171
                                 env->error_code, 
172
                                 env->exception_next_eip, 0);
173
#elif defined(TARGET_PPC)
174
                    do_interrupt(env);
175
#endif
176
                }
177
                env->exception_index = -1;
178
            }
179
            T0 = 0; /* force lookup of first TB */
180
            for(;;) {
181
#ifdef __sparc__
182
                /* g1 can be modified by some libc? functions */ 
183
                tmp_T0 = T0;
184
#endif            
185
                interrupt_request = env->interrupt_request;
186
                if (__builtin_expect(interrupt_request, 0)) {
187
#if defined(TARGET_I386)
188
                    /* if hardware interrupt pending, we execute it */
189
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
190
                        (env->eflags & IF_MASK) && 
191
                        !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
192
                        int intno;
193
                        intno = cpu_get_pic_interrupt(env);
194
                        if (loglevel & CPU_LOG_TB_IN_ASM) {
195
                            fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
196
                        }
197
                        do_interrupt(intno, 0, 0, 0, 1);
198
                        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
199
                        /* ensure that no TB jump will be modified as
200
                           the program flow was changed */
201
#ifdef __sparc__
202
                        tmp_T0 = 0;
203
#else
204
                        T0 = 0;
205
#endif
206
                    }
207
#elif defined(TARGET_PPC)
208
                    if ((interrupt_request & CPU_INTERRUPT_HARD)) {
209
                        do_queue_exception(EXCP_EXTERNAL);
210
                        if (check_exception_state(env))
211
                            do_interrupt(env);
212
                        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
213
                    }
214
#endif
215
                    if (interrupt_request & CPU_INTERRUPT_EXITTB) {
216
                        env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
217
                        /* ensure that no TB jump will be modified as
218
                           the program flow was changed */
219
#ifdef __sparc__
220
                        tmp_T0 = 0;
221
#else
222
                        T0 = 0;
223
#endif
224
                    }
225
                    if (interrupt_request & CPU_INTERRUPT_EXIT) {
226
                        env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
227
                        env->exception_index = EXCP_INTERRUPT;
228
                        cpu_loop_exit();
229
                    }
230
                }
231
#ifdef DEBUG_EXEC
232
                if (loglevel & CPU_LOG_EXEC) {
233
#if defined(TARGET_I386)
234
                    /* restore flags in standard format */
235
                    env->regs[R_EAX] = EAX;
236
                    env->regs[R_EBX] = EBX;
237
                    env->regs[R_ECX] = ECX;
238
                    env->regs[R_EDX] = EDX;
239
                    env->regs[R_ESI] = ESI;
240
                    env->regs[R_EDI] = EDI;
241
                    env->regs[R_EBP] = EBP;
242
                    env->regs[R_ESP] = ESP;
243
                    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
244
                    cpu_x86_dump_state(env, logfile, X86_DUMP_CCOP);
245
                    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
246
#elif defined(TARGET_ARM)
247
                    env->cpsr = compute_cpsr();
248
                    cpu_arm_dump_state(env, logfile, 0);
249
                    env->cpsr &= ~0xf0000000;
250
#elif defined(TARGET_SPARC)
251
                    cpu_sparc_dump_state (env, logfile, 0);
252
#elif defined(TARGET_PPC)
253
                    cpu_ppc_dump_state(env, logfile, 0);
254
#else
255
#error unsupported target CPU 
256
#endif
257
                }
258
#endif
259
                /* we record a subset of the CPU state. It will
260
                   always be the same before a given translated block
261
                   is executed. */
262
#if defined(TARGET_I386)
263
                flags = env->hflags;
264
                flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
265
                cs_base = env->segs[R_CS].base;
266
                pc = cs_base + env->eip;
267
#elif defined(TARGET_ARM)
268
                flags = 0;
269
                cs_base = 0;
270
                pc = (uint8_t *)env->regs[15];
271
#elif defined(TARGET_SPARC)
272
                flags = 0;
273
                cs_base = (uint8_t *)env->npc;
274
                pc = (uint8_t *) env->pc;
275
#elif defined(TARGET_PPC)
276
                flags = 0;
277
                cs_base = 0;
278
                pc = (uint8_t *)env->nip;
279
#else
280
#error unsupported CPU
281
#endif
282
                tb = tb_find(&ptb, (unsigned long)pc, (unsigned long)cs_base, 
283
                             flags);
284
                if (!tb) {
285
                    TranslationBlock **ptb1;
286
                    unsigned int h;
287
                    target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
288
                    
289
                    
290
                    spin_lock(&tb_lock);
291

    
292
                    tb_invalidated_flag = 0;
293

    
294
                    /* find translated block using physical mappings */
295
                    phys_pc = get_phys_addr_code(env, (unsigned long)pc);
296
                    phys_page1 = phys_pc & TARGET_PAGE_MASK;
297
                    phys_page2 = -1;
298
                    h = tb_phys_hash_func(phys_pc);
299
                    ptb1 = &tb_phys_hash[h];
300
                    for(;;) {
301
                        tb = *ptb1;
302
                        if (!tb)
303
                            goto not_found;
304
                        if (tb->pc == (unsigned long)pc && 
305
                            tb->page_addr[0] == phys_page1 &&
306
                            tb->cs_base == (unsigned long)cs_base && 
307
                            tb->flags == flags) {
308
                            /* check next page if needed */
309
                            if (tb->page_addr[1] != -1) {
310
                                virt_page2 = ((unsigned long)pc & TARGET_PAGE_MASK) + 
311
                                    TARGET_PAGE_SIZE;
312
                                phys_page2 = get_phys_addr_code(env, virt_page2);
313
                                if (tb->page_addr[1] == phys_page2)
314
                                    goto found;
315
                            } else {
316
                                goto found;
317
                            }
318
                        }
319
                        ptb1 = &tb->phys_hash_next;
320
                    }
321
                not_found:
322
                    /* if no translated code available, then translate it now */
323
                    tb = tb_alloc((unsigned long)pc);
324
                    if (!tb) {
325
                        /* flush must be done */
326
                        tb_flush(env);
327
                        /* cannot fail at this point */
328
                        tb = tb_alloc((unsigned long)pc);
329
                        /* don't forget to invalidate previous TB info */
330
                        ptb = &tb_hash[tb_hash_func((unsigned long)pc)];
331
                        T0 = 0;
332
                    }
333
                    tc_ptr = code_gen_ptr;
334
                    tb->tc_ptr = tc_ptr;
335
                    tb->cs_base = (unsigned long)cs_base;
336
                    tb->flags = flags;
337
                    cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
338
                    code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
339
                    
340
                    /* check next page if needed */
341
                    virt_page2 = ((unsigned long)pc + tb->size - 1) & TARGET_PAGE_MASK;
342
                    phys_page2 = -1;
343
                    if (((unsigned long)pc & TARGET_PAGE_MASK) != virt_page2) {
344
                        phys_page2 = get_phys_addr_code(env, virt_page2);
345
                    }
346
                    tb_link_phys(tb, phys_pc, phys_page2);
347

    
348
                found:
349
                    if (tb_invalidated_flag) {
350
                        /* as some TB could have been invalidated because
351
                           of memory exceptions while generating the code, we
352
                           must recompute the hash index here */
353
                        ptb = &tb_hash[tb_hash_func((unsigned long)pc)];
354
                        while (*ptb != NULL)
355
                            ptb = &(*ptb)->hash_next;
356
                        T0 = 0;
357
                    }
358
                    /* we add the TB in the virtual pc hash table */
359
                    *ptb = tb;
360
                    tb->hash_next = NULL;
361
                    tb_link(tb);
362
                    spin_unlock(&tb_lock);
363
                }
364
#ifdef DEBUG_EXEC
365
                if (loglevel & CPU_LOG_EXEC) {
366
                    fprintf(logfile, "Trace 0x%08lx [0x%08lx] %s\n",
367
                            (long)tb->tc_ptr, (long)tb->pc,
368
                            lookup_symbol((void *)tb->pc));
369
                }
370
#endif
371
#ifdef __sparc__
372
                T0 = tmp_T0;
373
#endif            
374
                /* see if we can patch the calling TB. */
375
                if (T0 != 0
376
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
377
                    && (tb->cflags & CF_CODE_COPY) == 
378
                    (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
379
#endif
380
                    ) {
381
                    spin_lock(&tb_lock);
382
                    tb_add_jump((TranslationBlock *)(T0 & ~3), T0 & 3, tb);
383
#if defined(USE_CODE_COPY)
384
                    /* propagates the FP use info */
385
                    ((TranslationBlock *)(T0 & ~3))->cflags |= 
386
                        (tb->cflags & CF_FP_USED);
387
#endif
388
                    spin_unlock(&tb_lock);
389
                }
390
                tc_ptr = tb->tc_ptr;
391
                env->current_tb = tb;
392
                /* execute the generated code */
393
                gen_func = (void *)tc_ptr;
394
#if defined(__sparc__)
395
                __asm__ __volatile__("call        %0\n\t"
396
                                     "mov        %%o7,%%i0"
397
                                     : /* no outputs */
398
                                     : "r" (gen_func) 
399
                                     : "i0", "i1", "i2", "i3", "i4", "i5");
400
#elif defined(__arm__)
401
                asm volatile ("mov pc, %0\n\t"
402
                              ".global exec_loop\n\t"
403
                              "exec_loop:\n\t"
404
                              : /* no outputs */
405
                              : "r" (gen_func)
406
                              : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
407
#elif defined(TARGET_I386) && defined(USE_CODE_COPY)
408
{
409
    if (!(tb->cflags & CF_CODE_COPY)) {
410
        if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) {
411
            save_native_fp_state(env);
412
        }
413
        gen_func();
414
    } else {
415
        if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) {
416
            restore_native_fp_state(env);
417
        }
418
        /* we work with native eflags */
419
        CC_SRC = cc_table[CC_OP].compute_all();
420
        CC_OP = CC_OP_EFLAGS;
421
        asm(".globl exec_loop\n"
422
            "\n"
423
            "debug1:\n"
424
            "    pushl %%ebp\n"
425
            "    fs movl %10, %9\n"
426
            "    fs movl %11, %%eax\n"
427
            "    andl $0x400, %%eax\n"
428
            "    fs orl %8, %%eax\n"
429
            "    pushl %%eax\n"
430
            "    popf\n"
431
            "    fs movl %%esp, %12\n"
432
            "    fs movl %0, %%eax\n"
433
            "    fs movl %1, %%ecx\n"
434
            "    fs movl %2, %%edx\n"
435
            "    fs movl %3, %%ebx\n"
436
            "    fs movl %4, %%esp\n"
437
            "    fs movl %5, %%ebp\n"
438
            "    fs movl %6, %%esi\n"
439
            "    fs movl %7, %%edi\n"
440
            "    fs jmp *%9\n"
441
            "exec_loop:\n"
442
            "    fs movl %%esp, %4\n"
443
            "    fs movl %12, %%esp\n"
444
            "    fs movl %%eax, %0\n"
445
            "    fs movl %%ecx, %1\n"
446
            "    fs movl %%edx, %2\n"
447
            "    fs movl %%ebx, %3\n"
448
            "    fs movl %%ebp, %5\n"
449
            "    fs movl %%esi, %6\n"
450
            "    fs movl %%edi, %7\n"
451
            "    pushf\n"
452
            "    popl %%eax\n"
453
            "    movl %%eax, %%ecx\n"
454
            "    andl $0x400, %%ecx\n"
455
            "    shrl $9, %%ecx\n"
456
            "    andl $0x8d5, %%eax\n"
457
            "    fs movl %%eax, %8\n"
458
            "    movl $1, %%eax\n"
459
            "    subl %%ecx, %%eax\n"
460
            "    fs movl %%eax, %11\n"
461
            "    fs movl %9, %%ebx\n" /* get T0 value */
462
            "    popl %%ebp\n"
463
            :
464
            : "m" (*(uint8_t *)offsetof(CPUState, regs[0])),
465
            "m" (*(uint8_t *)offsetof(CPUState, regs[1])),
466
            "m" (*(uint8_t *)offsetof(CPUState, regs[2])),
467
            "m" (*(uint8_t *)offsetof(CPUState, regs[3])),
468
            "m" (*(uint8_t *)offsetof(CPUState, regs[4])),
469
            "m" (*(uint8_t *)offsetof(CPUState, regs[5])),
470
            "m" (*(uint8_t *)offsetof(CPUState, regs[6])),
471
            "m" (*(uint8_t *)offsetof(CPUState, regs[7])),
472
            "m" (*(uint8_t *)offsetof(CPUState, cc_src)),
473
            "m" (*(uint8_t *)offsetof(CPUState, tmp0)),
474
            "a" (gen_func),
475
            "m" (*(uint8_t *)offsetof(CPUState, df)),
476
            "m" (*(uint8_t *)offsetof(CPUState, saved_esp))
477
            : "%ecx", "%edx"
478
            );
479
    }
480
}
481
#else
482
                gen_func();
483
#endif
484
                env->current_tb = NULL;
485
                /* reset soft MMU for next block (it can currently
486
                   only be set by a memory fault) */
487
#if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
488
                if (env->hflags & HF_SOFTMMU_MASK) {
489
                    env->hflags &= ~HF_SOFTMMU_MASK;
490
                    /* do not allow linking to another block */
491
                    T0 = 0;
492
                }
493
#endif
494
            }
495
        } else {
496
        }
497
    } /* for(;;) */
498

    
499

    
500
#if defined(TARGET_I386)
501
#if defined(USE_CODE_COPY)
502
    if (env->native_fp_regs) {
503
        save_native_fp_state(env);
504
    }
505
#endif
506
    /* restore flags in standard format */
507
    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
508

    
509
    /* restore global registers */
510
#ifdef reg_EAX
511
    EAX = saved_EAX;
512
#endif
513
#ifdef reg_ECX
514
    ECX = saved_ECX;
515
#endif
516
#ifdef reg_EDX
517
    EDX = saved_EDX;
518
#endif
519
#ifdef reg_EBX
520
    EBX = saved_EBX;
521
#endif
522
#ifdef reg_ESP
523
    ESP = saved_ESP;
524
#endif
525
#ifdef reg_EBP
526
    EBP = saved_EBP;
527
#endif
528
#ifdef reg_ESI
529
    ESI = saved_ESI;
530
#endif
531
#ifdef reg_EDI
532
    EDI = saved_EDI;
533
#endif
534
#elif defined(TARGET_ARM)
535
    env->cpsr = compute_cpsr();
536
#elif defined(TARGET_SPARC)
537
#elif defined(TARGET_PPC)
538
#else
539
#error unsupported target CPU
540
#endif
541
#ifdef __sparc__
542
    asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
543
#endif
544
    T0 = saved_T0;
545
    T1 = saved_T1;
546
    T2 = saved_T2;
547
    env = saved_env;
548
    return ret;
549
}
550

    
551
#if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
552

    
553
void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
554
{
555
    CPUX86State *saved_env;
556

    
557
    saved_env = env;
558
    env = s;
559
    if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
560
        selector &= 0xffff;
561
        cpu_x86_load_seg_cache(env, seg_reg, selector, 
562
                               (uint8_t *)(selector << 4), 0xffff, 0);
563
    } else {
564
        load_seg(seg_reg, selector);
565
    }
566
    env = saved_env;
567
}
568

    
569
void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
570
{
571
    CPUX86State *saved_env;
572

    
573
    saved_env = env;
574
    env = s;
575
    
576
    helper_fsave(ptr, data32);
577

    
578
    env = saved_env;
579
}
580

    
581
void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
582
{
583
    CPUX86State *saved_env;
584

    
585
    saved_env = env;
586
    env = s;
587
    
588
    helper_frstor(ptr, data32);
589

    
590
    env = saved_env;
591
}
592

    
593
#endif /* TARGET_I386 */
594

    
595
#if !defined(CONFIG_SOFTMMU)
596

    
597
#undef EAX
598
#undef ECX
599
#undef EDX
600
#undef EBX
601
#undef ESP
602
#undef EBP
603
#undef ESI
604
#undef EDI
605
#undef EIP
606
#include <signal.h>
607
#include <sys/ucontext.h>
608

    
609
#if defined(TARGET_I386)
610

    
611
/* 'pc' is the host PC at which the exception was raised. 'address' is
612
   the effective address of the memory exception. 'is_write' is 1 if a
613
   write caused the exception and otherwise 0'. 'old_set' is the
614
   signal set which should be restored */
615
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
616
                                    int is_write, sigset_t *old_set, 
617
                                    void *puc)
618
{
619
    TranslationBlock *tb;
620
    int ret;
621

    
622
    if (cpu_single_env)
623
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
624
#if defined(DEBUG_SIGNAL)
625
    qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
626
                pc, address, is_write, *(unsigned long *)old_set);
627
#endif
628
    /* XXX: locking issue */
629
    if (is_write && page_unprotect(address)) {
630
        return 1;
631
    }
632
    /* see if it is an MMU fault */
633
    ret = cpu_x86_handle_mmu_fault(env, address, is_write, 
634
                                   ((env->hflags & HF_CPL_MASK) == 3), 0);
635
    if (ret < 0)
636
        return 0; /* not an MMU fault */
637
    if (ret == 0)
638
        return 1; /* the MMU fault was handled without causing real CPU fault */
639
    /* now we have a real cpu fault */
640
    tb = tb_find_pc(pc);
641
    if (tb) {
642
        /* the PC is inside the translated code. It means that we have
643
           a virtual CPU fault */
644
        cpu_restore_state(tb, env, pc, puc);
645
    }
646
    if (ret == 1) {
647
#if 0
648
        printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n", 
649
               env->eip, env->cr[2], env->error_code);
650
#endif
651
        /* we restore the process signal mask as the sigreturn should
652
           do it (XXX: use sigsetjmp) */
653
        sigprocmask(SIG_SETMASK, old_set, NULL);
654
        raise_exception_err(EXCP0E_PAGE, env->error_code);
655
    } else {
656
        /* activate soft MMU for this block */
657
        env->hflags |= HF_SOFTMMU_MASK;
658
        sigprocmask(SIG_SETMASK, old_set, NULL);
659
        cpu_loop_exit();
660
    }
661
    /* never comes here */
662
    return 1;
663
}
664

    
665
#elif defined(TARGET_ARM)
666
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
667
                                    int is_write, sigset_t *old_set,
668
                                    void *puc)
669
{
670
    /* XXX: do more */
671
    return 0;
672
}
673
#elif defined(TARGET_SPARC)
674
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
675
                                    int is_write, sigset_t *old_set,
676
                                    void *puc)
677
{
678
    /* XXX: locking issue */
679
    if (is_write && page_unprotect(address)) {
680
        return 1;
681
    }
682
    return 0;
683
}
684
#elif defined (TARGET_PPC)
685
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
686
                                    int is_write, sigset_t *old_set,
687
                                    void *puc)
688
{
689
    TranslationBlock *tb;
690
    int ret;
691
    
692
#if 1
693
    if (cpu_single_env)
694
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
695
#endif
696
#if defined(DEBUG_SIGNAL)
697
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
698
           pc, address, is_write, *(unsigned long *)old_set);
699
#endif
700
    /* XXX: locking issue */
701
    if (is_write && page_unprotect(address)) {
702
        return 1;
703
    }
704

    
705
    /* see if it is an MMU fault */
706
    ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
707
    if (ret < 0)
708
        return 0; /* not an MMU fault */
709
    if (ret == 0)
710
        return 1; /* the MMU fault was handled without causing real CPU fault */
711

    
712
    /* now we have a real cpu fault */
713
    tb = tb_find_pc(pc);
714
    if (tb) {
715
        /* the PC is inside the translated code. It means that we have
716
           a virtual CPU fault */
717
        cpu_restore_state(tb, env, pc, puc);
718
    }
719
    if (ret == 1) {
720
#if 0
721
        printf("PF exception: NIP=0x%08x error=0x%x %p\n", 
722
               env->nip, env->error_code, tb);
723
#endif
724
    /* we restore the process signal mask as the sigreturn should
725
       do it (XXX: use sigsetjmp) */
726
        sigprocmask(SIG_SETMASK, old_set, NULL);
727
        do_queue_exception_err(env->exception_index, env->error_code);
728
    } else {
729
        /* activate soft MMU for this block */
730
        sigprocmask(SIG_SETMASK, old_set, NULL);
731
        cpu_loop_exit();
732
    }
733
    /* never comes here */
734
    return 1;
735
}
736
#else
737
#error unsupported target CPU
738
#endif
739

    
740
#if defined(__i386__)
741

    
742
#if defined(USE_CODE_COPY)
743
static void cpu_send_trap(unsigned long pc, int trap, 
744
                          struct ucontext *uc)
745
{
746
    TranslationBlock *tb;
747

    
748
    if (cpu_single_env)
749
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
750
    /* now we have a real cpu fault */
751
    tb = tb_find_pc(pc);
752
    if (tb) {
753
        /* the PC is inside the translated code. It means that we have
754
           a virtual CPU fault */
755
        cpu_restore_state(tb, env, pc, uc);
756
    }
757
    sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
758
    raise_exception_err(trap, env->error_code);
759
}
760
#endif
761

    
762
int cpu_signal_handler(int host_signum, struct siginfo *info, 
763
                       void *puc)
764
{
765
    struct ucontext *uc = puc;
766
    unsigned long pc;
767
    int trapno;
768

    
769
#ifndef REG_EIP
770
/* for glibc 2.1 */
771
#define REG_EIP    EIP
772
#define REG_ERR    ERR
773
#define REG_TRAPNO TRAPNO
774
#endif
775
    pc = uc->uc_mcontext.gregs[REG_EIP];
776
    trapno = uc->uc_mcontext.gregs[REG_TRAPNO];
777
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
778
    if (trapno == 0x00 || trapno == 0x05) {
779
        /* send division by zero or bound exception */
780
        cpu_send_trap(pc, trapno, uc);
781
        return 1;
782
    } else
783
#endif
784
        return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
785
                                 trapno == 0xe ? 
786
                                 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
787
                                 &uc->uc_sigmask, puc);
788
}
789

    
790
#elif defined(__x86_64__)
791

    
792
int cpu_signal_handler(int host_signum, struct siginfo *info,
793
                       void *puc)
794
{
795
    struct ucontext *uc = puc;
796
    unsigned long pc;
797

    
798
    pc = uc->uc_mcontext.gregs[REG_RIP];
799
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
800
                             uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ? 
801
                             (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
802
                             &uc->uc_sigmask, puc);
803
}
804

    
805
#elif defined(__powerpc)
806

    
807
int cpu_signal_handler(int host_signum, struct siginfo *info, 
808
                       void *puc)
809
{
810
    struct ucontext *uc = puc;
811
    struct pt_regs *regs = uc->uc_mcontext.regs;
812
    unsigned long pc;
813
    int is_write;
814

    
815
    pc = regs->nip;
816
    is_write = 0;
817
#if 0
818
    /* ppc 4xx case */
819
    if (regs->dsisr & 0x00800000)
820
        is_write = 1;
821
#else
822
    if (regs->trap != 0x400 && (regs->dsisr & 0x02000000))
823
        is_write = 1;
824
#endif
825
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
826
                             is_write, &uc->uc_sigmask, puc);
827
}
828

    
829
#elif defined(__alpha__)
830

    
831
int cpu_signal_handler(int host_signum, struct siginfo *info, 
832
                           void *puc)
833
{
834
    struct ucontext *uc = puc;
835
    uint32_t *pc = uc->uc_mcontext.sc_pc;
836
    uint32_t insn = *pc;
837
    int is_write = 0;
838

    
839
    /* XXX: need kernel patch to get write flag faster */
840
    switch (insn >> 26) {
841
    case 0x0d: // stw
842
    case 0x0e: // stb
843
    case 0x0f: // stq_u
844
    case 0x24: // stf
845
    case 0x25: // stg
846
    case 0x26: // sts
847
    case 0x27: // stt
848
    case 0x2c: // stl
849
    case 0x2d: // stq
850
    case 0x2e: // stl_c
851
    case 0x2f: // stq_c
852
        is_write = 1;
853
    }
854

    
855
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
856
                             is_write, &uc->uc_sigmask, puc);
857
}
858
#elif defined(__sparc__)
859

    
860
int cpu_signal_handler(int host_signum, struct siginfo *info, 
861
                       void *puc)
862
{
863
    uint32_t *regs = (uint32_t *)(info + 1);
864
    void *sigmask = (regs + 20);
865
    unsigned long pc;
866
    int is_write;
867
    uint32_t insn;
868
    
869
    /* XXX: is there a standard glibc define ? */
870
    pc = regs[1];
871
    /* XXX: need kernel patch to get write flag faster */
872
    is_write = 0;
873
    insn = *(uint32_t *)pc;
874
    if ((insn >> 30) == 3) {
875
      switch((insn >> 19) & 0x3f) {
876
      case 0x05: // stb
877
      case 0x06: // sth
878
      case 0x04: // st
879
      case 0x07: // std
880
      case 0x24: // stf
881
      case 0x27: // stdf
882
      case 0x25: // stfsr
883
        is_write = 1;
884
        break;
885
      }
886
    }
887
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
888
                             is_write, sigmask, NULL);
889
}
890

    
891
#elif defined(__arm__)
892

    
893
int cpu_signal_handler(int host_signum, struct siginfo *info, 
894
                       void *puc)
895
{
896
    struct ucontext *uc = puc;
897
    unsigned long pc;
898
    int is_write;
899
    
900
    pc = uc->uc_mcontext.gregs[R15];
901
    /* XXX: compute is_write */
902
    is_write = 0;
903
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
904
                             is_write,
905
                             &uc->uc_sigmask);
906
}
907

    
908
#elif defined(__mc68000)
909

    
910
int cpu_signal_handler(int host_signum, struct siginfo *info, 
911
                       void *puc)
912
{
913
    struct ucontext *uc = puc;
914
    unsigned long pc;
915
    int is_write;
916
    
917
    pc = uc->uc_mcontext.gregs[16];
918
    /* XXX: compute is_write */
919
    is_write = 0;
920
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
921
                             is_write,
922
                             &uc->uc_sigmask, puc);
923
}
924

    
925
#else
926

    
927
#error host CPU specific signal handler needed
928

    
929
#endif
930

    
931
#endif /* !defined(CONFIG_SOFTMMU) */