Statistics
| Branch: | Revision:

root / vl.c @ d64477af

History | View | Annotate | Download (58.6 kB)

1
/*
2
 * QEMU System Emulator
3
 * 
4
 * Copyright (c) 2003-2004 Fabrice Bellard
5
 * 
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "vl.h"
25

    
26
#include <getopt.h>
27
#include <unistd.h>
28
#include <fcntl.h>
29
#include <signal.h>
30
#include <time.h>
31
#include <malloc.h>
32
#include <errno.h>
33
#include <sys/time.h>
34

    
35
#ifndef _WIN32
36
#include <sys/times.h>
37
#include <sys/wait.h>
38
#include <pty.h>
39
#include <termios.h>
40
#include <sys/poll.h>
41
#include <sys/mman.h>
42
#include <sys/ioctl.h>
43
#include <sys/socket.h>
44
#include <linux/if.h>
45
#include <linux/if_tun.h>
46
#endif
47

    
48
#if defined(CONFIG_SLIRP)
49
#include "libslirp.h"
50
#endif
51

    
52
#ifdef _WIN32
53
#include <sys/timeb.h>
54
#include <windows.h>
55
#define getopt_long_only getopt_long
56
#define memalign(align, size) malloc(size)
57
#endif
58

    
59
#ifdef CONFIG_SDL
60
/* SDL use the pthreads and they modify sigaction. We don't
61
   want that. */
62
#if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 2)
63
extern void __libc_sigaction();
64
#define sigaction(sig, act, oact) __libc_sigaction(sig, act, oact)
65
#else
66
extern void __sigaction();
67
#define sigaction(sig, act, oact) __sigaction(sig, act, oact)
68
#endif
69
#endif /* CONFIG_SDL */
70

    
71
#include "disas.h"
72

    
73
#include "exec-all.h"
74

    
75
//#define DO_TB_FLUSH
76

    
77
#define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup"
78

    
79
//#define DEBUG_UNUSED_IOPORT
80

    
81
#if !defined(CONFIG_SOFTMMU)
82
#define PHYS_RAM_MAX_SIZE (256 * 1024 * 1024)
83
#else
84
#define PHYS_RAM_MAX_SIZE (2047 * 1024 * 1024)
85
#endif
86

    
87
/* in ms */
88
#define GUI_REFRESH_INTERVAL 30
89

    
90
/* XXX: use a two level table to limit memory usage */
91
#define MAX_IOPORTS 65536
92

    
93
const char *bios_dir = CONFIG_QEMU_SHAREDIR;
94
char phys_ram_file[1024];
95
CPUState *global_env;
96
CPUState *cpu_single_env;
97
void *ioport_opaque[MAX_IOPORTS];
98
IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
99
IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
100
BlockDriverState *bs_table[MAX_DISKS], *fd_table[MAX_FD];
101
int vga_ram_size;
102
static DisplayState display_state;
103
int nographic;
104
int64_t ticks_per_sec;
105
int boot_device = 'c';
106
static int ram_size;
107
static char network_script[1024];
108
int pit_min_timer_count = 0;
109
int nb_nics;
110
NetDriverState nd_table[MAX_NICS];
111
SerialState *serial_console;
112
QEMUTimer *gui_timer;
113
int vm_running;
114

    
115
/***********************************************************/
116
/* x86 io ports */
117

    
118
uint32_t default_ioport_readb(void *opaque, uint32_t address)
119
{
120
#ifdef DEBUG_UNUSED_IOPORT
121
    fprintf(stderr, "inb: port=0x%04x\n", address);
122
#endif
123
    return 0xff;
124
}
125

    
126
void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
127
{
128
#ifdef DEBUG_UNUSED_IOPORT
129
    fprintf(stderr, "outb: port=0x%04x data=0x%02x\n", address, data);
130
#endif
131
}
132

    
133
/* default is to make two byte accesses */
134
uint32_t default_ioport_readw(void *opaque, uint32_t address)
135
{
136
    uint32_t data;
137
    data = ioport_read_table[0][address & (MAX_IOPORTS - 1)](opaque, address);
138
    data |= ioport_read_table[0][(address + 1) & (MAX_IOPORTS - 1)](opaque, address + 1) << 8;
139
    return data;
140
}
141

    
142
void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
143
{
144
    ioport_write_table[0][address & (MAX_IOPORTS - 1)](opaque, address, data & 0xff);
145
    ioport_write_table[0][(address + 1) & (MAX_IOPORTS - 1)](opaque, address + 1, (data >> 8) & 0xff);
146
}
147

    
148
uint32_t default_ioport_readl(void *opaque, uint32_t address)
149
{
150
#ifdef DEBUG_UNUSED_IOPORT
151
    fprintf(stderr, "inl: port=0x%04x\n", address);
152
#endif
153
    return 0xffffffff;
154
}
155

    
156
void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
157
{
158
#ifdef DEBUG_UNUSED_IOPORT
159
    fprintf(stderr, "outl: port=0x%04x data=0x%02x\n", address, data);
160
#endif
161
}
162

    
163
void init_ioports(void)
164
{
165
    int i;
166

    
167
    for(i = 0; i < MAX_IOPORTS; i++) {
168
        ioport_read_table[0][i] = default_ioport_readb;
169
        ioport_write_table[0][i] = default_ioport_writeb;
170
        ioport_read_table[1][i] = default_ioport_readw;
171
        ioport_write_table[1][i] = default_ioport_writew;
172
        ioport_read_table[2][i] = default_ioport_readl;
173
        ioport_write_table[2][i] = default_ioport_writel;
174
    }
175
}
176

    
177
/* size is the word size in byte */
178
int register_ioport_read(int start, int length, int size, 
179
                         IOPortReadFunc *func, void *opaque)
180
{
181
    int i, bsize;
182

    
183
    if (size == 1) {
184
        bsize = 0;
185
    } else if (size == 2) {
186
        bsize = 1;
187
    } else if (size == 4) {
188
        bsize = 2;
189
    } else {
190
        hw_error("register_ioport_read: invalid size");
191
        return -1;
192
    }
193
    for(i = start; i < start + length; i += size) {
194
        ioport_read_table[bsize][i] = func;
195
        if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
196
            hw_error("register_ioport_read: invalid opaque");
197
        ioport_opaque[i] = opaque;
198
    }
199
    return 0;
200
}
201

    
202
/* size is the word size in byte */
203
int register_ioport_write(int start, int length, int size, 
204
                          IOPortWriteFunc *func, void *opaque)
205
{
206
    int i, bsize;
207

    
208
    if (size == 1) {
209
        bsize = 0;
210
    } else if (size == 2) {
211
        bsize = 1;
212
    } else if (size == 4) {
213
        bsize = 2;
214
    } else {
215
        hw_error("register_ioport_write: invalid size");
216
        return -1;
217
    }
218
    for(i = start; i < start + length; i += size) {
219
        ioport_write_table[bsize][i] = func;
220
        if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
221
            hw_error("register_ioport_read: invalid opaque");
222
        ioport_opaque[i] = opaque;
223
    }
224
    return 0;
225
}
226

    
227
void pstrcpy(char *buf, int buf_size, const char *str)
228
{
229
    int c;
230
    char *q = buf;
231

    
232
    if (buf_size <= 0)
233
        return;
234

    
235
    for(;;) {
236
        c = *str++;
237
        if (c == 0 || q >= buf + buf_size - 1)
238
            break;
239
        *q++ = c;
240
    }
241
    *q = '\0';
242
}
243

    
244
/* strcat and truncate. */
245
char *pstrcat(char *buf, int buf_size, const char *s)
246
{
247
    int len;
248
    len = strlen(buf);
249
    if (len < buf_size) 
250
        pstrcpy(buf + len, buf_size - len, s);
251
    return buf;
252
}
253

    
254
/* return the size or -1 if error */
255
int load_image(const char *filename, uint8_t *addr)
256
{
257
    int fd, size;
258
    fd = open(filename, O_RDONLY | O_BINARY);
259
    if (fd < 0)
260
        return -1;
261
    size = lseek(fd, 0, SEEK_END);
262
    lseek(fd, 0, SEEK_SET);
263
    if (read(fd, addr, size) != size) {
264
        close(fd);
265
        return -1;
266
    }
267
    close(fd);
268
    return size;
269
}
270

    
271
void cpu_outb(CPUState *env, int addr, int val)
272
{
273
    addr &= (MAX_IOPORTS - 1);
274
    ioport_write_table[0][addr](ioport_opaque[addr], addr, val);
275
}
276

    
277
void cpu_outw(CPUState *env, int addr, int val)
278
{
279
    addr &= (MAX_IOPORTS - 1);
280
    ioport_write_table[1][addr](ioport_opaque[addr], addr, val);
281
}
282

    
283
void cpu_outl(CPUState *env, int addr, int val)
284
{
285
    addr &= (MAX_IOPORTS - 1);
286
    ioport_write_table[2][addr](ioport_opaque[addr], addr, val);
287
}
288

    
289
int cpu_inb(CPUState *env, int addr)
290
{
291
    addr &= (MAX_IOPORTS - 1);
292
    return ioport_read_table[0][addr](ioport_opaque[addr], addr);
293
}
294

    
295
int cpu_inw(CPUState *env, int addr)
296
{
297
    addr &= (MAX_IOPORTS - 1);
298
    return ioport_read_table[1][addr](ioport_opaque[addr], addr);
299
}
300

    
301
int cpu_inl(CPUState *env, int addr)
302
{
303
    addr &= (MAX_IOPORTS - 1);
304
    return ioport_read_table[2][addr](ioport_opaque[addr], addr);
305
}
306

    
307
/***********************************************************/
308
void hw_error(const char *fmt, ...)
309
{
310
    va_list ap;
311

    
312
    va_start(ap, fmt);
313
    fprintf(stderr, "qemu: hardware error: ");
314
    vfprintf(stderr, fmt, ap);
315
    fprintf(stderr, "\n");
316
#ifdef TARGET_I386
317
    cpu_x86_dump_state(global_env, stderr, X86_DUMP_FPU | X86_DUMP_CCOP);
318
#else
319
    cpu_dump_state(global_env, stderr, 0);
320
#endif
321
    va_end(ap);
322
    abort();
323
}
324

    
325
/***********************************************************/
326
/* timers */
327

    
328
#if defined(__powerpc__)
329

    
330
static inline uint32_t get_tbl(void) 
331
{
332
    uint32_t tbl;
333
    asm volatile("mftb %0" : "=r" (tbl));
334
    return tbl;
335
}
336

    
337
static inline uint32_t get_tbu(void) 
338
{
339
        uint32_t tbl;
340
        asm volatile("mftbu %0" : "=r" (tbl));
341
        return tbl;
342
}
343

    
344
int64_t cpu_get_real_ticks(void)
345
{
346
    uint32_t l, h, h1;
347
    /* NOTE: we test if wrapping has occurred */
348
    do {
349
        h = get_tbu();
350
        l = get_tbl();
351
        h1 = get_tbu();
352
    } while (h != h1);
353
    return ((int64_t)h << 32) | l;
354
}
355

    
356
#elif defined(__i386__)
357

    
358
int64_t cpu_get_real_ticks(void)
359
{
360
    int64_t val;
361
    asm volatile ("rdtsc" : "=A" (val));
362
    return val;
363
}
364

    
365
#else
366
#error unsupported CPU
367
#endif
368

    
369
static int64_t cpu_ticks_offset;
370
static int cpu_ticks_enabled;
371

    
372
static inline int64_t cpu_get_ticks(void)
373
{
374
    if (!cpu_ticks_enabled) {
375
        return cpu_ticks_offset;
376
    } else {
377
        return cpu_get_real_ticks() + cpu_ticks_offset;
378
    }
379
}
380

    
381
/* enable cpu_get_ticks() */
382
void cpu_enable_ticks(void)
383
{
384
    if (!cpu_ticks_enabled) {
385
        cpu_ticks_offset -= cpu_get_real_ticks();
386
        cpu_ticks_enabled = 1;
387
    }
388
}
389

    
390
/* disable cpu_get_ticks() : the clock is stopped. You must not call
391
   cpu_get_ticks() after that.  */
392
void cpu_disable_ticks(void)
393
{
394
    if (cpu_ticks_enabled) {
395
        cpu_ticks_offset = cpu_get_ticks();
396
        cpu_ticks_enabled = 0;
397
    }
398
}
399

    
400
static int64_t get_clock(void)
401
{
402
#ifdef _WIN32
403
    struct _timeb tb;
404
    _ftime(&tb);
405
    return ((int64_t)tb.time * 1000 + (int64_t)tb.millitm) * 1000;
406
#else
407
    struct timeval tv;
408
    gettimeofday(&tv, NULL);
409
    return tv.tv_sec * 1000000LL + tv.tv_usec;
410
#endif
411
}
412

    
413
void cpu_calibrate_ticks(void)
414
{
415
    int64_t usec, ticks;
416

    
417
    usec = get_clock();
418
    ticks = cpu_get_real_ticks();
419
#ifdef _WIN32
420
    Sleep(50);
421
#else
422
    usleep(50 * 1000);
423
#endif
424
    usec = get_clock() - usec;
425
    ticks = cpu_get_real_ticks() - ticks;
426
    ticks_per_sec = (ticks * 1000000LL + (usec >> 1)) / usec;
427
}
428

    
429
/* compute with 96 bit intermediate result: (a*b)/c */
430
uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
431
{
432
    union {
433
        uint64_t ll;
434
        struct {
435
#ifdef WORDS_BIGENDIAN
436
            uint32_t high, low;
437
#else
438
            uint32_t low, high;
439
#endif            
440
        } l;
441
    } u, res;
442
    uint64_t rl, rh;
443

    
444
    u.ll = a;
445
    rl = (uint64_t)u.l.low * (uint64_t)b;
446
    rh = (uint64_t)u.l.high * (uint64_t)b;
447
    rh += (rl >> 32);
448
    res.l.high = rh / c;
449
    res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
450
    return res.ll;
451
}
452

    
453
#define QEMU_TIMER_REALTIME 0
454
#define QEMU_TIMER_VIRTUAL  1
455

    
456
struct QEMUClock {
457
    int type;
458
    /* XXX: add frequency */
459
};
460

    
461
struct QEMUTimer {
462
    QEMUClock *clock;
463
    int64_t expire_time;
464
    QEMUTimerCB *cb;
465
    void *opaque;
466
    struct QEMUTimer *next;
467
};
468

    
469
QEMUClock *rt_clock;
470
QEMUClock *vm_clock;
471

    
472
static QEMUTimer *active_timers[2];
473
#ifdef _WIN32
474
static MMRESULT timerID;
475
#else
476
/* frequency of the times() clock tick */
477
static int timer_freq;
478
#endif
479

    
480
QEMUClock *qemu_new_clock(int type)
481
{
482
    QEMUClock *clock;
483
    clock = qemu_mallocz(sizeof(QEMUClock));
484
    if (!clock)
485
        return NULL;
486
    clock->type = type;
487
    return clock;
488
}
489

    
490
QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
491
{
492
    QEMUTimer *ts;
493

    
494
    ts = qemu_mallocz(sizeof(QEMUTimer));
495
    ts->clock = clock;
496
    ts->cb = cb;
497
    ts->opaque = opaque;
498
    return ts;
499
}
500

    
501
void qemu_free_timer(QEMUTimer *ts)
502
{
503
    qemu_free(ts);
504
}
505

    
506
/* stop a timer, but do not dealloc it */
507
void qemu_del_timer(QEMUTimer *ts)
508
{
509
    QEMUTimer **pt, *t;
510

    
511
    /* NOTE: this code must be signal safe because
512
       qemu_timer_expired() can be called from a signal. */
513
    pt = &active_timers[ts->clock->type];
514
    for(;;) {
515
        t = *pt;
516
        if (!t)
517
            break;
518
        if (t == ts) {
519
            *pt = t->next;
520
            break;
521
        }
522
        pt = &t->next;
523
    }
524
}
525

    
526
/* modify the current timer so that it will be fired when current_time
527
   >= expire_time. The corresponding callback will be called. */
528
void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
529
{
530
    QEMUTimer **pt, *t;
531

    
532
    qemu_del_timer(ts);
533

    
534
    /* add the timer in the sorted list */
535
    /* NOTE: this code must be signal safe because
536
       qemu_timer_expired() can be called from a signal. */
537
    pt = &active_timers[ts->clock->type];
538
    for(;;) {
539
        t = *pt;
540
        if (!t)
541
            break;
542
        if (t->expire_time > expire_time) 
543
            break;
544
        pt = &t->next;
545
    }
546
    ts->expire_time = expire_time;
547
    ts->next = *pt;
548
    *pt = ts;
549
}
550

    
551
int qemu_timer_pending(QEMUTimer *ts)
552
{
553
    QEMUTimer *t;
554
    for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
555
        if (t == ts)
556
            return 1;
557
    }
558
    return 0;
559
}
560

    
561
static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
562
{
563
    if (!timer_head)
564
        return 0;
565
    return (timer_head->expire_time <= current_time);
566
}
567

    
568
static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
569
{
570
    QEMUTimer *ts;
571
    
572
    for(;;) {
573
        ts = *ptimer_head;
574
        if (ts->expire_time > current_time)
575
            break;
576
        /* remove timer from the list before calling the callback */
577
        *ptimer_head = ts->next;
578
        ts->next = NULL;
579
        
580
        /* run the callback (the timer list can be modified) */
581
        ts->cb(ts->opaque);
582
    }
583
}
584

    
585
int64_t qemu_get_clock(QEMUClock *clock)
586
{
587
    switch(clock->type) {
588
    case QEMU_TIMER_REALTIME:
589
#ifdef _WIN32
590
        return GetTickCount();
591
#else
592
        /* XXX: portability among Linux hosts */
593
        if (timer_freq == 100) {
594
            return times(NULL) * 10;
595
        } else {
596
            return ((int64_t)times(NULL) * 1000) / timer_freq;
597
        }
598
#endif
599
    default:
600
    case QEMU_TIMER_VIRTUAL:
601
        return cpu_get_ticks();
602
    }
603
}
604

    
605
/* save a timer */
606
void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
607
{
608
    uint64_t expire_time;
609

    
610
    if (qemu_timer_pending(ts)) {
611
        expire_time = ts->expire_time;
612
    } else {
613
        expire_time = -1;
614
    }
615
    qemu_put_be64(f, expire_time);
616
}
617

    
618
void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
619
{
620
    uint64_t expire_time;
621

    
622
    expire_time = qemu_get_be64(f);
623
    if (expire_time != -1) {
624
        qemu_mod_timer(ts, expire_time);
625
    } else {
626
        qemu_del_timer(ts);
627
    }
628
}
629

    
630
static void timer_save(QEMUFile *f, void *opaque)
631
{
632
    if (cpu_ticks_enabled) {
633
        hw_error("cannot save state if virtual timers are running");
634
    }
635
    qemu_put_be64s(f, &cpu_ticks_offset);
636
    qemu_put_be64s(f, &ticks_per_sec);
637
}
638

    
639
static int timer_load(QEMUFile *f, void *opaque, int version_id)
640
{
641
    if (version_id != 1)
642
        return -EINVAL;
643
    if (cpu_ticks_enabled) {
644
        return -EINVAL;
645
    }
646
    qemu_get_be64s(f, &cpu_ticks_offset);
647
    qemu_get_be64s(f, &ticks_per_sec);
648
    return 0;
649
}
650

    
651
#ifdef _WIN32
652
void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg, 
653
                                 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
654
#else
655
static void host_alarm_handler(int host_signum)
656
#endif
657
{
658
    if (qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
659
                           qemu_get_clock(vm_clock)) ||
660
        qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
661
                           qemu_get_clock(rt_clock))) {
662
        /* stop the cpu because a timer occured */
663
        cpu_interrupt(global_env, CPU_INTERRUPT_EXIT);
664
    }
665
}
666

    
667
static void init_timers(void)
668
{
669
    rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
670
    vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
671

    
672
#ifdef _WIN32
673
    {
674
        int count=0;
675
        timerID = timeSetEvent(10,    // interval (ms)
676
                               0,     // resolution
677
                               host_alarm_handler, // function
678
                               (DWORD)&count,  // user parameter
679
                               TIME_PERIODIC | TIME_CALLBACK_FUNCTION);
680
         if( !timerID ) {
681
            perror("failed timer alarm");
682
            exit(1);
683
         }
684
    }
685
    pit_min_timer_count = ((uint64_t)10000 * PIT_FREQ) / 1000000;
686
#else
687
    {
688
        struct sigaction act;
689
        struct itimerval itv;
690
        
691
        /* get times() syscall frequency */
692
        timer_freq = sysconf(_SC_CLK_TCK);
693
        
694
        /* timer signal */
695
        sigfillset(&act.sa_mask);
696
        act.sa_flags = 0;
697
#if defined (TARGET_I386) && defined(USE_CODE_COPY)
698
        act.sa_flags |= SA_ONSTACK;
699
#endif
700
        act.sa_handler = host_alarm_handler;
701
        sigaction(SIGALRM, &act, NULL);
702
        
703
        itv.it_interval.tv_sec = 0;
704
        itv.it_interval.tv_usec = 1000;
705
        itv.it_value.tv_sec = 0;
706
        itv.it_value.tv_usec = 10 * 1000;
707
        setitimer(ITIMER_REAL, &itv, NULL);
708
        /* we probe the tick duration of the kernel to inform the user if
709
           the emulated kernel requested a too high timer frequency */
710
        getitimer(ITIMER_REAL, &itv);
711
        pit_min_timer_count = ((uint64_t)itv.it_interval.tv_usec * PIT_FREQ) / 
712
            1000000;
713
    }
714
#endif
715
}
716

    
717
void quit_timers(void)
718
{
719
#ifdef _WIN32
720
    timeKillEvent(timerID);
721
#endif
722
}
723

    
724
/***********************************************************/
725
/* serial device */
726

    
727
#ifdef _WIN32
728

    
729
int serial_open_device(void)
730
{
731
    return -1;
732
}
733

    
734
#else
735

    
736
int serial_open_device(void)
737
{
738
    char slave_name[1024];
739
    int master_fd, slave_fd;
740

    
741
    if (serial_console == NULL && nographic) {
742
        /* use console for serial port */
743
        return 0;
744
    } else {
745
        if (openpty(&master_fd, &slave_fd, slave_name, NULL, NULL) < 0) {
746
            fprintf(stderr, "warning: could not create pseudo terminal for serial port\n");
747
            return -1;
748
        }
749
        fprintf(stderr, "Serial port redirected to %s\n", slave_name);
750
        return master_fd;
751
    }
752
}
753

    
754
#endif
755

    
756
/***********************************************************/
757
/* Linux network device redirectors */
758

    
759
void hex_dump(FILE *f, const uint8_t *buf, int size)
760
{
761
    int len, i, j, c;
762

    
763
    for(i=0;i<size;i+=16) {
764
        len = size - i;
765
        if (len > 16)
766
            len = 16;
767
        fprintf(f, "%08x ", i);
768
        for(j=0;j<16;j++) {
769
            if (j < len)
770
                fprintf(f, " %02x", buf[i+j]);
771
            else
772
                fprintf(f, "   ");
773
        }
774
        fprintf(f, " ");
775
        for(j=0;j<len;j++) {
776
            c = buf[i+j];
777
            if (c < ' ' || c > '~')
778
                c = '.';
779
            fprintf(f, "%c", c);
780
        }
781
        fprintf(f, "\n");
782
    }
783
}
784

    
785
void qemu_send_packet(NetDriverState *nd, const uint8_t *buf, int size)
786
{
787
    nd->send_packet(nd, buf, size);
788
}
789

    
790
void qemu_add_read_packet(NetDriverState *nd, IOCanRWHandler *fd_can_read, 
791
                          IOReadHandler *fd_read, void *opaque)
792
{
793
    nd->add_read_packet(nd, fd_can_read, fd_read, opaque);
794
}
795

    
796
/* dummy network adapter */
797

    
798
static void dummy_send_packet(NetDriverState *nd, const uint8_t *buf, int size)
799
{
800
}
801

    
802
static void dummy_add_read_packet(NetDriverState *nd, 
803
                                  IOCanRWHandler *fd_can_read, 
804
                                  IOReadHandler *fd_read, void *opaque)
805
{
806
}
807

    
808
static int net_dummy_init(NetDriverState *nd)
809
{
810
    nd->send_packet = dummy_send_packet;
811
    nd->add_read_packet = dummy_add_read_packet;
812
    pstrcpy(nd->ifname, sizeof(nd->ifname), "dummy");
813
    return 0;
814
}
815

    
816
#if defined(CONFIG_SLIRP)
817

    
818
/* slirp network adapter */
819

    
820
static void *slirp_fd_opaque;
821
static IOCanRWHandler *slirp_fd_can_read;
822
static IOReadHandler *slirp_fd_read;
823
static int slirp_inited;
824

    
825
int slirp_can_output(void)
826
{
827
    return slirp_fd_can_read(slirp_fd_opaque);
828
}
829

    
830
void slirp_output(const uint8_t *pkt, int pkt_len)
831
{
832
#if 0
833
    printf("output:\n");
834
    hex_dump(stdout, pkt, pkt_len);
835
#endif
836
    slirp_fd_read(slirp_fd_opaque, pkt, pkt_len);
837
}
838

    
839
static void slirp_send_packet(NetDriverState *nd, const uint8_t *buf, int size)
840
{
841
#if 0
842
    printf("input:\n");
843
    hex_dump(stdout, buf, size);
844
#endif
845
    slirp_input(buf, size);
846
}
847

    
848
static void slirp_add_read_packet(NetDriverState *nd, 
849
                                  IOCanRWHandler *fd_can_read, 
850
                                  IOReadHandler *fd_read, void *opaque)
851
{
852
    slirp_fd_opaque = opaque;
853
    slirp_fd_can_read = fd_can_read;
854
    slirp_fd_read = fd_read;
855
}
856

    
857
static int net_slirp_init(NetDriverState *nd)
858
{
859
    if (!slirp_inited) {
860
        slirp_inited = 1;
861
        slirp_init();
862
    }
863
    nd->send_packet = slirp_send_packet;
864
    nd->add_read_packet = slirp_add_read_packet;
865
    pstrcpy(nd->ifname, sizeof(nd->ifname), "slirp");
866
    return 0;
867
}
868

    
869
#endif /* CONFIG_SLIRP */
870

    
871
#if !defined(_WIN32)
872

    
873
static int tun_open(char *ifname, int ifname_size)
874
{
875
    struct ifreq ifr;
876
    int fd, ret;
877
    
878
    fd = open("/dev/net/tun", O_RDWR);
879
    if (fd < 0) {
880
        fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
881
        return -1;
882
    }
883
    memset(&ifr, 0, sizeof(ifr));
884
    ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
885
    pstrcpy(ifr.ifr_name, IFNAMSIZ, "tun%d");
886
    ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
887
    if (ret != 0) {
888
        fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
889
        close(fd);
890
        return -1;
891
    }
892
    printf("Connected to host network interface: %s\n", ifr.ifr_name);
893
    pstrcpy(ifname, ifname_size, ifr.ifr_name);
894
    fcntl(fd, F_SETFL, O_NONBLOCK);
895
    return fd;
896
}
897

    
898
static void tun_send_packet(NetDriverState *nd, const uint8_t *buf, int size)
899
{
900
    write(nd->fd, buf, size);
901
}
902

    
903
static void tun_add_read_packet(NetDriverState *nd, 
904
                                IOCanRWHandler *fd_can_read, 
905
                                IOReadHandler *fd_read, void *opaque)
906
{
907
    qemu_add_fd_read_handler(nd->fd, fd_can_read, fd_read, opaque);
908
}
909

    
910
static int net_tun_init(NetDriverState *nd)
911
{
912
    int pid, status;
913
    char *args[3];
914
    char **parg;
915

    
916
    nd->fd = tun_open(nd->ifname, sizeof(nd->ifname));
917
    if (nd->fd < 0)
918
        return -1;
919

    
920
    /* try to launch network init script */
921
    pid = fork();
922
    if (pid >= 0) {
923
        if (pid == 0) {
924
            parg = args;
925
            *parg++ = network_script;
926
            *parg++ = nd->ifname;
927
            *parg++ = NULL;
928
            execv(network_script, args);
929
            exit(1);
930
        }
931
        while (waitpid(pid, &status, 0) != pid);
932
        if (!WIFEXITED(status) ||
933
            WEXITSTATUS(status) != 0) {
934
            fprintf(stderr, "%s: could not launch network script\n",
935
                    network_script);
936
        }
937
    }
938
    nd->send_packet = tun_send_packet;
939
    nd->add_read_packet = tun_add_read_packet;
940
    return 0;
941
}
942

    
943
static int net_fd_init(NetDriverState *nd, int fd)
944
{
945
    nd->fd = fd;
946
    nd->send_packet = tun_send_packet;
947
    nd->add_read_packet = tun_add_read_packet;
948
    pstrcpy(nd->ifname, sizeof(nd->ifname), "tunfd");
949
    return 0;
950
}
951

    
952
#endif /* !_WIN32 */
953

    
954
/***********************************************************/
955
/* dumb display */
956

    
957
#ifdef _WIN32
958

    
959
static void term_exit(void)
960
{
961
}
962

    
963
static void term_init(void)
964
{
965
}
966

    
967
#else
968

    
969
/* init terminal so that we can grab keys */
970
static struct termios oldtty;
971

    
972
static void term_exit(void)
973
{
974
    tcsetattr (0, TCSANOW, &oldtty);
975
}
976

    
977
static void term_init(void)
978
{
979
    struct termios tty;
980

    
981
    tcgetattr (0, &tty);
982
    oldtty = tty;
983

    
984
    tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
985
                          |INLCR|IGNCR|ICRNL|IXON);
986
    tty.c_oflag |= OPOST;
987
    tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN);
988
    /* if graphical mode, we allow Ctrl-C handling */
989
    if (nographic)
990
        tty.c_lflag &= ~ISIG;
991
    tty.c_cflag &= ~(CSIZE|PARENB);
992
    tty.c_cflag |= CS8;
993
    tty.c_cc[VMIN] = 1;
994
    tty.c_cc[VTIME] = 0;
995
    
996
    tcsetattr (0, TCSANOW, &tty);
997

    
998
    atexit(term_exit);
999

    
1000
    fcntl(0, F_SETFL, O_NONBLOCK);
1001
}
1002

    
1003
#endif
1004

    
1005
static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
1006
{
1007
}
1008

    
1009
static void dumb_resize(DisplayState *ds, int w, int h)
1010
{
1011
}
1012

    
1013
static void dumb_refresh(DisplayState *ds)
1014
{
1015
    vga_update_display();
1016
}
1017

    
1018
void dumb_display_init(DisplayState *ds)
1019
{
1020
    ds->data = NULL;
1021
    ds->linesize = 0;
1022
    ds->depth = 0;
1023
    ds->dpy_update = dumb_update;
1024
    ds->dpy_resize = dumb_resize;
1025
    ds->dpy_refresh = dumb_refresh;
1026
}
1027

    
1028
#if !defined(CONFIG_SOFTMMU)
1029
/***********************************************************/
1030
/* cpu signal handler */
1031
static void host_segv_handler(int host_signum, siginfo_t *info, 
1032
                              void *puc)
1033
{
1034
    if (cpu_signal_handler(host_signum, info, puc))
1035
        return;
1036
    term_exit();
1037
    abort();
1038
}
1039
#endif
1040

    
1041
/***********************************************************/
1042
/* I/O handling */
1043

    
1044
#define MAX_IO_HANDLERS 64
1045

    
1046
typedef struct IOHandlerRecord {
1047
    int fd;
1048
    IOCanRWHandler *fd_can_read;
1049
    IOReadHandler *fd_read;
1050
    void *opaque;
1051
    /* temporary data */
1052
    struct pollfd *ufd;
1053
    int max_size;
1054
    struct IOHandlerRecord *next;
1055
} IOHandlerRecord;
1056

    
1057
static IOHandlerRecord *first_io_handler;
1058

    
1059
int qemu_add_fd_read_handler(int fd, IOCanRWHandler *fd_can_read, 
1060
                             IOReadHandler *fd_read, void *opaque)
1061
{
1062
    IOHandlerRecord *ioh;
1063

    
1064
    ioh = qemu_mallocz(sizeof(IOHandlerRecord));
1065
    if (!ioh)
1066
        return -1;
1067
    ioh->fd = fd;
1068
    ioh->fd_can_read = fd_can_read;
1069
    ioh->fd_read = fd_read;
1070
    ioh->opaque = opaque;
1071
    ioh->next = first_io_handler;
1072
    first_io_handler = ioh;
1073
    return 0;
1074
}
1075

    
1076
void qemu_del_fd_read_handler(int fd)
1077
{
1078
    IOHandlerRecord **pioh, *ioh;
1079

    
1080
    pioh = &first_io_handler;
1081
    for(;;) {
1082
        ioh = *pioh;
1083
        if (ioh == NULL)
1084
            break;
1085
        if (ioh->fd == fd) {
1086
            *pioh = ioh->next;
1087
            break;
1088
        }
1089
        pioh = &ioh->next;
1090
    }
1091
}
1092

    
1093
/***********************************************************/
1094
/* savevm/loadvm support */
1095

    
1096
void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
1097
{
1098
    fwrite(buf, 1, size, f);
1099
}
1100

    
1101
void qemu_put_byte(QEMUFile *f, int v)
1102
{
1103
    fputc(v, f);
1104
}
1105

    
1106
void qemu_put_be16(QEMUFile *f, unsigned int v)
1107
{
1108
    qemu_put_byte(f, v >> 8);
1109
    qemu_put_byte(f, v);
1110
}
1111

    
1112
void qemu_put_be32(QEMUFile *f, unsigned int v)
1113
{
1114
    qemu_put_byte(f, v >> 24);
1115
    qemu_put_byte(f, v >> 16);
1116
    qemu_put_byte(f, v >> 8);
1117
    qemu_put_byte(f, v);
1118
}
1119

    
1120
void qemu_put_be64(QEMUFile *f, uint64_t v)
1121
{
1122
    qemu_put_be32(f, v >> 32);
1123
    qemu_put_be32(f, v);
1124
}
1125

    
1126
int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size)
1127
{
1128
    return fread(buf, 1, size, f);
1129
}
1130

    
1131
int qemu_get_byte(QEMUFile *f)
1132
{
1133
    int v;
1134
    v = fgetc(f);
1135
    if (v == EOF)
1136
        return 0;
1137
    else
1138
        return v;
1139
}
1140

    
1141
unsigned int qemu_get_be16(QEMUFile *f)
1142
{
1143
    unsigned int v;
1144
    v = qemu_get_byte(f) << 8;
1145
    v |= qemu_get_byte(f);
1146
    return v;
1147
}
1148

    
1149
unsigned int qemu_get_be32(QEMUFile *f)
1150
{
1151
    unsigned int v;
1152
    v = qemu_get_byte(f) << 24;
1153
    v |= qemu_get_byte(f) << 16;
1154
    v |= qemu_get_byte(f) << 8;
1155
    v |= qemu_get_byte(f);
1156
    return v;
1157
}
1158

    
1159
uint64_t qemu_get_be64(QEMUFile *f)
1160
{
1161
    uint64_t v;
1162
    v = (uint64_t)qemu_get_be32(f) << 32;
1163
    v |= qemu_get_be32(f);
1164
    return v;
1165
}
1166

    
1167
int64_t qemu_ftell(QEMUFile *f)
1168
{
1169
    return ftell(f);
1170
}
1171

    
1172
int64_t qemu_fseek(QEMUFile *f, int64_t pos, int whence)
1173
{
1174
    if (fseek(f, pos, whence) < 0)
1175
        return -1;
1176
    return ftell(f);
1177
}
1178

    
1179
typedef struct SaveStateEntry {
1180
    char idstr[256];
1181
    int instance_id;
1182
    int version_id;
1183
    SaveStateHandler *save_state;
1184
    LoadStateHandler *load_state;
1185
    void *opaque;
1186
    struct SaveStateEntry *next;
1187
} SaveStateEntry;
1188

    
1189
static SaveStateEntry *first_se;
1190

    
1191
int register_savevm(const char *idstr, 
1192
                    int instance_id, 
1193
                    int version_id,
1194
                    SaveStateHandler *save_state,
1195
                    LoadStateHandler *load_state,
1196
                    void *opaque)
1197
{
1198
    SaveStateEntry *se, **pse;
1199

    
1200
    se = qemu_malloc(sizeof(SaveStateEntry));
1201
    if (!se)
1202
        return -1;
1203
    pstrcpy(se->idstr, sizeof(se->idstr), idstr);
1204
    se->instance_id = instance_id;
1205
    se->version_id = version_id;
1206
    se->save_state = save_state;
1207
    se->load_state = load_state;
1208
    se->opaque = opaque;
1209
    se->next = NULL;
1210

    
1211
    /* add at the end of list */
1212
    pse = &first_se;
1213
    while (*pse != NULL)
1214
        pse = &(*pse)->next;
1215
    *pse = se;
1216
    return 0;
1217
}
1218

    
1219
#define QEMU_VM_FILE_MAGIC   0x5145564d
1220
#define QEMU_VM_FILE_VERSION 0x00000001
1221

    
1222
int qemu_savevm(const char *filename)
1223
{
1224
    SaveStateEntry *se;
1225
    QEMUFile *f;
1226
    int len, len_pos, cur_pos, saved_vm_running, ret;
1227

    
1228
    saved_vm_running = vm_running;
1229
    vm_stop(0);
1230

    
1231
    f = fopen(filename, "wb");
1232
    if (!f) {
1233
        ret = -1;
1234
        goto the_end;
1235
    }
1236

    
1237
    qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
1238
    qemu_put_be32(f, QEMU_VM_FILE_VERSION);
1239

    
1240
    for(se = first_se; se != NULL; se = se->next) {
1241
        /* ID string */
1242
        len = strlen(se->idstr);
1243
        qemu_put_byte(f, len);
1244
        qemu_put_buffer(f, se->idstr, len);
1245

    
1246
        qemu_put_be32(f, se->instance_id);
1247
        qemu_put_be32(f, se->version_id);
1248

    
1249
        /* record size: filled later */
1250
        len_pos = ftell(f);
1251
        qemu_put_be32(f, 0);
1252
        
1253
        se->save_state(f, se->opaque);
1254

    
1255
        /* fill record size */
1256
        cur_pos = ftell(f);
1257
        len = ftell(f) - len_pos - 4;
1258
        fseek(f, len_pos, SEEK_SET);
1259
        qemu_put_be32(f, len);
1260
        fseek(f, cur_pos, SEEK_SET);
1261
    }
1262

    
1263
    fclose(f);
1264
    ret = 0;
1265
 the_end:
1266
    if (saved_vm_running)
1267
        vm_start();
1268
    return ret;
1269
}
1270

    
1271
static SaveStateEntry *find_se(const char *idstr, int instance_id)
1272
{
1273
    SaveStateEntry *se;
1274

    
1275
    for(se = first_se; se != NULL; se = se->next) {
1276
        if (!strcmp(se->idstr, idstr) && 
1277
            instance_id == se->instance_id)
1278
            return se;
1279
    }
1280
    return NULL;
1281
}
1282

    
1283
int qemu_loadvm(const char *filename)
1284
{
1285
    SaveStateEntry *se;
1286
    QEMUFile *f;
1287
    int len, cur_pos, ret, instance_id, record_len, version_id;
1288
    int saved_vm_running;
1289
    unsigned int v;
1290
    char idstr[256];
1291
    
1292
    saved_vm_running = vm_running;
1293
    vm_stop(0);
1294

    
1295
    f = fopen(filename, "rb");
1296
    if (!f) {
1297
        ret = -1;
1298
        goto the_end;
1299
    }
1300

    
1301
    v = qemu_get_be32(f);
1302
    if (v != QEMU_VM_FILE_MAGIC)
1303
        goto fail;
1304
    v = qemu_get_be32(f);
1305
    if (v != QEMU_VM_FILE_VERSION) {
1306
    fail:
1307
        fclose(f);
1308
        ret = -1;
1309
        goto the_end;
1310
    }
1311
    for(;;) {
1312
#if defined (DO_TB_FLUSH)
1313
        tb_flush();
1314
#endif
1315
        len = qemu_get_byte(f);
1316
        if (feof(f))
1317
            break;
1318
        qemu_get_buffer(f, idstr, len);
1319
        idstr[len] = '\0';
1320
        instance_id = qemu_get_be32(f);
1321
        version_id = qemu_get_be32(f);
1322
        record_len = qemu_get_be32(f);
1323
#if 0
1324
        printf("idstr=%s instance=0x%x version=%d len=%d\n", 
1325
               idstr, instance_id, version_id, record_len);
1326
#endif
1327
        cur_pos = ftell(f);
1328
        se = find_se(idstr, instance_id);
1329
        if (!se) {
1330
            fprintf(stderr, "qemu: warning: instance 0x%x of device '%s' not present in current VM\n", 
1331
                    instance_id, idstr);
1332
        } else {
1333
            ret = se->load_state(f, se->opaque, version_id);
1334
            if (ret < 0) {
1335
                fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n", 
1336
                        instance_id, idstr);
1337
            }
1338
        }
1339
        /* always seek to exact end of record */
1340
        qemu_fseek(f, cur_pos + record_len, SEEK_SET);
1341
    }
1342
    fclose(f);
1343
    ret = 0;
1344
 the_end:
1345
    if (saved_vm_running)
1346
        vm_start();
1347
    return ret;
1348
}
1349

    
1350
/***********************************************************/
1351
/* cpu save/restore */
1352

    
1353
#if defined(TARGET_I386)
1354

    
1355
static void cpu_put_seg(QEMUFile *f, SegmentCache *dt)
1356
{
1357
    qemu_put_be32(f, (uint32_t)dt->base);
1358
    qemu_put_be32(f, dt->limit);
1359
    qemu_put_be32(f, dt->flags);
1360
}
1361

    
1362
static void cpu_get_seg(QEMUFile *f, SegmentCache *dt)
1363
{
1364
    dt->base = (uint8_t *)qemu_get_be32(f);
1365
    dt->limit = qemu_get_be32(f);
1366
    dt->flags = qemu_get_be32(f);
1367
}
1368

    
1369
void cpu_save(QEMUFile *f, void *opaque)
1370
{
1371
    CPUState *env = opaque;
1372
    uint16_t fptag, fpus, fpuc;
1373
    uint32_t hflags;
1374
    int i;
1375

    
1376
    for(i = 0; i < 8; i++)
1377
        qemu_put_be32s(f, &env->regs[i]);
1378
    qemu_put_be32s(f, &env->eip);
1379
    qemu_put_be32s(f, &env->eflags);
1380
    qemu_put_be32s(f, &env->eflags);
1381
    hflags = env->hflags; /* XXX: suppress most of the redundant hflags */
1382
    qemu_put_be32s(f, &hflags);
1383
    
1384
    /* FPU */
1385
    fpuc = env->fpuc;
1386
    fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
1387
    fptag = 0;
1388
    for (i=7; i>=0; i--) {
1389
        fptag <<= 2;
1390
        if (env->fptags[i]) {
1391
            fptag |= 3;
1392
        }
1393
    }
1394
    
1395
    qemu_put_be16s(f, &fpuc);
1396
    qemu_put_be16s(f, &fpus);
1397
    qemu_put_be16s(f, &fptag);
1398

    
1399
    for(i = 0; i < 8; i++) {
1400
        uint64_t mant;
1401
        uint16_t exp;
1402
        cpu_get_fp80(&mant, &exp, env->fpregs[i]);
1403
        qemu_put_be64(f, mant);
1404
        qemu_put_be16(f, exp);
1405
    }
1406

    
1407
    for(i = 0; i < 6; i++)
1408
        cpu_put_seg(f, &env->segs[i]);
1409
    cpu_put_seg(f, &env->ldt);
1410
    cpu_put_seg(f, &env->tr);
1411
    cpu_put_seg(f, &env->gdt);
1412
    cpu_put_seg(f, &env->idt);
1413
    
1414
    qemu_put_be32s(f, &env->sysenter_cs);
1415
    qemu_put_be32s(f, &env->sysenter_esp);
1416
    qemu_put_be32s(f, &env->sysenter_eip);
1417
    
1418
    qemu_put_be32s(f, &env->cr[0]);
1419
    qemu_put_be32s(f, &env->cr[2]);
1420
    qemu_put_be32s(f, &env->cr[3]);
1421
    qemu_put_be32s(f, &env->cr[4]);
1422
    
1423
    for(i = 0; i < 8; i++)
1424
        qemu_put_be32s(f, &env->dr[i]);
1425

    
1426
    /* MMU */
1427
    qemu_put_be32s(f, &env->a20_mask);
1428
}
1429

    
1430
int cpu_load(QEMUFile *f, void *opaque, int version_id)
1431
{
1432
    CPUState *env = opaque;
1433
    int i;
1434
    uint32_t hflags;
1435
    uint16_t fpus, fpuc, fptag;
1436

    
1437
    if (version_id != 1)
1438
        return -EINVAL;
1439
    for(i = 0; i < 8; i++)
1440
        qemu_get_be32s(f, &env->regs[i]);
1441
    qemu_get_be32s(f, &env->eip);
1442
    qemu_get_be32s(f, &env->eflags);
1443
    qemu_get_be32s(f, &env->eflags);
1444
    qemu_get_be32s(f, &hflags);
1445

    
1446
    qemu_get_be16s(f, &fpuc);
1447
    qemu_get_be16s(f, &fpus);
1448
    qemu_get_be16s(f, &fptag);
1449

    
1450
    for(i = 0; i < 8; i++) {
1451
        uint64_t mant;
1452
        uint16_t exp;
1453
        mant = qemu_get_be64(f);
1454
        exp = qemu_get_be16(f);
1455
        env->fpregs[i] = cpu_set_fp80(mant, exp);
1456
    }
1457

    
1458
    env->fpuc = fpuc;
1459
    env->fpstt = (fpus >> 11) & 7;
1460
    env->fpus = fpus & ~0x3800;
1461
    for(i = 0; i < 8; i++) {
1462
        env->fptags[i] = ((fptag & 3) == 3);
1463
        fptag >>= 2;
1464
    }
1465
    
1466
    for(i = 0; i < 6; i++)
1467
        cpu_get_seg(f, &env->segs[i]);
1468
    cpu_get_seg(f, &env->ldt);
1469
    cpu_get_seg(f, &env->tr);
1470
    cpu_get_seg(f, &env->gdt);
1471
    cpu_get_seg(f, &env->idt);
1472
    
1473
    qemu_get_be32s(f, &env->sysenter_cs);
1474
    qemu_get_be32s(f, &env->sysenter_esp);
1475
    qemu_get_be32s(f, &env->sysenter_eip);
1476
    
1477
    qemu_get_be32s(f, &env->cr[0]);
1478
    qemu_get_be32s(f, &env->cr[2]);
1479
    qemu_get_be32s(f, &env->cr[3]);
1480
    qemu_get_be32s(f, &env->cr[4]);
1481
    
1482
    for(i = 0; i < 8; i++)
1483
        qemu_get_be32s(f, &env->dr[i]);
1484

    
1485
    /* MMU */
1486
    qemu_get_be32s(f, &env->a20_mask);
1487

    
1488
    /* XXX: compute hflags from scratch, except for CPL and IIF */
1489
    env->hflags = hflags;
1490
    tlb_flush(env, 1);
1491
    return 0;
1492
}
1493

    
1494
#elif defined(TARGET_PPC)
1495
void cpu_save(QEMUFile *f, void *opaque)
1496
{
1497
}
1498

    
1499
int cpu_load(QEMUFile *f, void *opaque, int version_id)
1500
{
1501
    return 0;
1502
}
1503
#else
1504

    
1505
#warning No CPU save/restore functions
1506

    
1507
#endif
1508

    
1509
/***********************************************************/
1510
/* ram save/restore */
1511

    
1512
/* we just avoid storing empty pages */
1513
static void ram_put_page(QEMUFile *f, const uint8_t *buf, int len)
1514
{
1515
    int i, v;
1516

    
1517
    v = buf[0];
1518
    for(i = 1; i < len; i++) {
1519
        if (buf[i] != v)
1520
            goto normal_save;
1521
    }
1522
    qemu_put_byte(f, 1);
1523
    qemu_put_byte(f, v);
1524
    return;
1525
 normal_save:
1526
    qemu_put_byte(f, 0); 
1527
    qemu_put_buffer(f, buf, len);
1528
}
1529

    
1530
static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
1531
{
1532
    int v;
1533

    
1534
    v = qemu_get_byte(f);
1535
    switch(v) {
1536
    case 0:
1537
        if (qemu_get_buffer(f, buf, len) != len)
1538
            return -EIO;
1539
        break;
1540
    case 1:
1541
        v = qemu_get_byte(f);
1542
        memset(buf, v, len);
1543
        break;
1544
    default:
1545
        return -EINVAL;
1546
    }
1547
    return 0;
1548
}
1549

    
1550
static void ram_save(QEMUFile *f, void *opaque)
1551
{
1552
    int i;
1553
    qemu_put_be32(f, phys_ram_size);
1554
    for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
1555
        ram_put_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
1556
    }
1557
}
1558

    
1559
static int ram_load(QEMUFile *f, void *opaque, int version_id)
1560
{
1561
    int i, ret;
1562

    
1563
    if (version_id != 1)
1564
        return -EINVAL;
1565
    if (qemu_get_be32(f) != phys_ram_size)
1566
        return -EINVAL;
1567
    for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
1568
        ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
1569
        if (ret)
1570
            return ret;
1571
    }
1572
    return 0;
1573
}
1574

    
1575
/***********************************************************/
1576
/* main execution loop */
1577

    
1578
void gui_update(void *opaque)
1579
{
1580
    display_state.dpy_refresh(&display_state);
1581
    qemu_mod_timer(gui_timer, GUI_REFRESH_INTERVAL + qemu_get_clock(rt_clock));
1582
}
1583

    
1584
/* XXX: support several handlers */
1585
VMStopHandler *vm_stop_cb;
1586
VMStopHandler *vm_stop_opaque;
1587

    
1588
int qemu_add_vm_stop_handler(VMStopHandler *cb, void *opaque)
1589
{
1590
    vm_stop_cb = cb;
1591
    vm_stop_opaque = opaque;
1592
    return 0;
1593
}
1594

    
1595
void qemu_del_vm_stop_handler(VMStopHandler *cb, void *opaque)
1596
{
1597
    vm_stop_cb = NULL;
1598
}
1599

    
1600
void vm_start(void)
1601
{
1602
    if (!vm_running) {
1603
        cpu_enable_ticks();
1604
        vm_running = 1;
1605
    }
1606
}
1607

    
1608
void vm_stop(int reason) 
1609
{
1610
    if (vm_running) {
1611
        cpu_disable_ticks();
1612
        vm_running = 0;
1613
        if (reason != 0) {
1614
            if (vm_stop_cb) {
1615
                vm_stop_cb(vm_stop_opaque, reason);
1616
            }
1617
        }
1618
    }
1619
}
1620

    
1621
int main_loop(void)
1622
{
1623
#ifndef _WIN32
1624
    struct pollfd ufds[MAX_IO_HANDLERS + 1], *pf;
1625
    IOHandlerRecord *ioh, *ioh_next;
1626
    uint8_t buf[4096];
1627
    int n, max_size;
1628
#endif
1629
    int ret, timeout;
1630
    CPUState *env = global_env;
1631

    
1632
    for(;;) {
1633
        if (vm_running) {
1634
            ret = cpu_exec(env);
1635
            if (reset_requested) {
1636
                ret = EXCP_INTERRUPT; 
1637
                break;
1638
            }
1639
            if (ret == EXCP_DEBUG) {
1640
                vm_stop(EXCP_DEBUG);
1641
            }
1642
            /* if hlt instruction, we wait until the next IRQ */
1643
            /* XXX: use timeout computed from timers */
1644
            if (ret == EXCP_HLT) 
1645
                timeout = 10;
1646
            else
1647
                timeout = 0;
1648
        } else {
1649
            timeout = 10;
1650
        }
1651

    
1652
#ifdef _WIN32
1653
        if (timeout > 0)
1654
            Sleep(timeout);
1655
#else
1656

    
1657
        /* poll any events */
1658
        /* XXX: separate device handlers from system ones */
1659
        pf = ufds;
1660
        for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
1661
            if (!ioh->fd_can_read) {
1662
                max_size = 0;
1663
                pf->fd = ioh->fd;
1664
                pf->events = POLLIN;
1665
                ioh->ufd = pf;
1666
                pf++;
1667
            } else {
1668
                max_size = ioh->fd_can_read(ioh->opaque);
1669
                if (max_size > 0) {
1670
                    if (max_size > sizeof(buf))
1671
                        max_size = sizeof(buf);
1672
                    pf->fd = ioh->fd;
1673
                    pf->events = POLLIN;
1674
                    ioh->ufd = pf;
1675
                    pf++;
1676
                } else {
1677
                    ioh->ufd = NULL;
1678
                }
1679
            }
1680
            ioh->max_size = max_size;
1681
        }
1682
        
1683
        ret = poll(ufds, pf - ufds, timeout);
1684
        if (ret > 0) {
1685
            /* XXX: better handling of removal */
1686
            for(ioh = first_io_handler; ioh != NULL; ioh = ioh_next) {
1687
                ioh_next = ioh->next;
1688
                pf = ioh->ufd;
1689
                if (pf) {
1690
                    if (pf->revents & POLLIN) {
1691
                        if (ioh->max_size == 0) {
1692
                            /* just a read event */
1693
                            ioh->fd_read(ioh->opaque, NULL, 0);
1694
                        } else {
1695
                            n = read(ioh->fd, buf, ioh->max_size);
1696
                            if (n >= 0) {
1697
                                ioh->fd_read(ioh->opaque, buf, n);
1698
                            } else if (errno != -EAGAIN) {
1699
                                ioh->fd_read(ioh->opaque, NULL, -errno);
1700
                            }
1701
                        }
1702
                    }
1703
                }
1704
            }
1705
        }
1706

    
1707
#if defined(CONFIG_SLIRP)
1708
        /* XXX: merge with poll() */
1709
        if (slirp_inited) {
1710
            fd_set rfds, wfds, xfds;
1711
            int nfds;
1712
            struct timeval tv;
1713

    
1714
            nfds = -1;
1715
            FD_ZERO(&rfds);
1716
            FD_ZERO(&wfds);
1717
            FD_ZERO(&xfds);
1718
            slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
1719
            tv.tv_sec = 0;
1720
            tv.tv_usec = 0;
1721
            ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
1722
            if (ret >= 0) {
1723
                slirp_select_poll(&rfds, &wfds, &xfds);
1724
            }
1725
        }
1726
#endif
1727

    
1728
#endif
1729

    
1730
        if (vm_running) {
1731
            qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL], 
1732
                            qemu_get_clock(vm_clock));
1733
            
1734
            /* XXX: add explicit timer */
1735
            SB16_run();
1736
            
1737
            /* run dma transfers, if any */
1738
            DMA_run();
1739
        }
1740

    
1741
        /* real time timers */
1742
        qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME], 
1743
                        qemu_get_clock(rt_clock));
1744
    }
1745
    cpu_disable_ticks();
1746
    return ret;
1747
}
1748

    
1749
void help(void)
1750
{
1751
    printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003 Fabrice Bellard\n"
1752
           "usage: %s [options] [disk_image]\n"
1753
           "\n"
1754
           "'disk_image' is a raw hard image image for IDE hard disk 0\n"
1755
           "\n"
1756
           "Standard options:\n"
1757
           "-fda/-fdb file  use 'file' as floppy disk 0/1 image\n"
1758
           "-hda/-hdb file  use 'file' as IDE hard disk 0/1 image\n"
1759
           "-hdc/-hdd file  use 'file' as IDE hard disk 2/3 image\n"
1760
           "-cdrom file     use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
1761
           "-boot [a|b|c|d] boot on floppy (a, b), hard disk (c) or CD-ROM (d)\n"
1762
           "-snapshot       write to temporary files instead of disk image files\n"
1763
           "-m megs         set virtual RAM size to megs MB\n"
1764
           "-nographic      disable graphical output and redirect serial I/Os to console\n"
1765
           "\n"
1766
           "Network options:\n"
1767
           "-nics n         simulate 'n' network cards [default=1]\n"
1768
           "-macaddr addr   set the mac address of the first interface\n"
1769
           "-n script       set tap/tun network init script [default=%s]\n"
1770
           "-tun-fd fd      use this fd as already opened tap/tun interface\n"
1771
#ifdef CONFIG_SLIRP
1772
           "-user-net       use user mode network stack [default if no tap/tun script]\n"
1773
#endif
1774
           "-dummy-net      use dummy network stack\n"
1775
           "\n"
1776
           "Linux boot specific:\n"
1777
           "-kernel bzImage use 'bzImage' as kernel image\n"
1778
           "-append cmdline use 'cmdline' as kernel command line\n"
1779
           "-initrd file    use 'file' as initial ram disk\n"
1780
           "\n"
1781
           "Debug/Expert options:\n"
1782
           "-s              wait gdb connection to port %d\n"
1783
           "-p port         change gdb connection port\n"
1784
           "-d item1,...    output log to %s (use -d ? for a list of log items)\n"
1785
           "-hdachs c,h,s   force hard disk 0 geometry (usually qemu can guess it)\n"
1786
           "-L path         set the directory for the BIOS and VGA BIOS\n"
1787
#ifdef USE_CODE_COPY
1788
           "-no-code-copy   disable code copy acceleration\n"
1789
#endif
1790

    
1791
           "\n"
1792
           "During emulation, use C-a h to get terminal commands:\n",
1793
#ifdef CONFIG_SOFTMMU
1794
           "qemu",
1795
#else
1796
           "qemu-fast",
1797
#endif
1798
           DEFAULT_NETWORK_SCRIPT, 
1799
           DEFAULT_GDBSTUB_PORT,
1800
           "/tmp/qemu.log");
1801
    term_print_help();
1802
#ifndef CONFIG_SOFTMMU
1803
    printf("\n"
1804
           "NOTE: this version of QEMU is faster but it needs slightly patched OSes to\n"
1805
           "work. Please use the 'qemu' executable to have a more accurate (but slower)\n"
1806
           "PC emulation.\n");
1807
#endif
1808
    exit(1);
1809
}
1810

    
1811
struct option long_options[] = {
1812
    { "initrd", 1, NULL, 0, },
1813
    { "hda", 1, NULL, 0, },
1814
    { "hdb", 1, NULL, 0, },
1815
    { "snapshot", 0, NULL, 0, },
1816
    { "hdachs", 1, NULL, 0, },
1817
    { "nographic", 0, NULL, 0, },
1818
    { "kernel", 1, NULL, 0, },
1819
    { "append", 1, NULL, 0, },
1820
    { "tun-fd", 1, NULL, 0, },
1821
    { "hdc", 1, NULL, 0, },
1822
    { "hdd", 1, NULL, 0, },
1823
    { "cdrom", 1, NULL, 0, },
1824
    { "boot", 1, NULL, 0, },
1825
    { "fda", 1, NULL, 0, },
1826
    { "fdb", 1, NULL, 0, },
1827
    { "no-code-copy", 0, NULL, 0 },
1828
    { "nics", 1, NULL, 0 },
1829
    { "macaddr", 1, NULL, 0 },
1830
    { "user-net", 0, NULL, 0 },
1831
    { "dummy-net", 0, NULL, 0 },
1832
    { NULL, 0, NULL, 0 },
1833
};
1834

    
1835
#if defined (TARGET_I386) && defined(USE_CODE_COPY)
1836

    
1837
/* this stack is only used during signal handling */
1838
#define SIGNAL_STACK_SIZE 32768
1839

    
1840
static uint8_t *signal_stack;
1841

    
1842
#endif
1843

    
1844
#define NET_IF_TUN   0
1845
#define NET_IF_USER  1
1846
#define NET_IF_DUMMY 2
1847

    
1848
int main(int argc, char **argv)
1849
{
1850
#ifdef CONFIG_GDBSTUB
1851
    int use_gdbstub, gdbstub_port;
1852
#endif
1853
    int c, i, long_index, has_cdrom;
1854
    int snapshot, linux_boot;
1855
    CPUState *env;
1856
    const char *initrd_filename;
1857
    const char *hd_filename[MAX_DISKS], *fd_filename[MAX_FD];
1858
    const char *kernel_filename, *kernel_cmdline;
1859
    DisplayState *ds = &display_state;
1860
    int cyls, heads, secs;
1861
    int start_emulation = 1;
1862
    uint8_t macaddr[6];
1863
    int net_if_type, nb_tun_fds, tun_fds[MAX_NICS];
1864
    
1865
#if !defined(CONFIG_SOFTMMU)
1866
    /* we never want that malloc() uses mmap() */
1867
    mallopt(M_MMAP_THRESHOLD, 4096 * 1024);
1868
#endif
1869
    initrd_filename = NULL;
1870
    for(i = 0; i < MAX_FD; i++)
1871
        fd_filename[i] = NULL;
1872
    for(i = 0; i < MAX_DISKS; i++)
1873
        hd_filename[i] = NULL;
1874
    ram_size = 32 * 1024 * 1024;
1875
    vga_ram_size = VGA_RAM_SIZE;
1876
    pstrcpy(network_script, sizeof(network_script), DEFAULT_NETWORK_SCRIPT);
1877
#ifdef CONFIG_GDBSTUB
1878
    use_gdbstub = 0;
1879
    gdbstub_port = DEFAULT_GDBSTUB_PORT;
1880
#endif
1881
    snapshot = 0;
1882
    nographic = 0;
1883
    kernel_filename = NULL;
1884
    kernel_cmdline = "";
1885
    has_cdrom = 1;
1886
    cyls = heads = secs = 0;
1887

    
1888
    nb_tun_fds = 0;
1889
    net_if_type = -1;
1890
    nb_nics = 1;
1891
    /* default mac address of the first network interface */
1892
    macaddr[0] = 0x52;
1893
    macaddr[1] = 0x54;
1894
    macaddr[2] = 0x00;
1895
    macaddr[3] = 0x12;
1896
    macaddr[4] = 0x34;
1897
    macaddr[5] = 0x56;
1898

    
1899

    
1900
    for(;;) {
1901
        c = getopt_long_only(argc, argv, "hm:d:n:sp:L:S", long_options, &long_index);
1902
        if (c == -1)
1903
            break;
1904
        switch(c) {
1905
        case 0:
1906
            switch(long_index) {
1907
            case 0:
1908
                initrd_filename = optarg;
1909
                break;
1910
            case 1:
1911
                hd_filename[0] = optarg;
1912
                break;
1913
            case 2:
1914
                hd_filename[1] = optarg;
1915
                break;
1916
            case 3:
1917
                snapshot = 1;
1918
                break;
1919
            case 4:
1920
                {
1921
                    const char *p;
1922
                    p = optarg;
1923
                    cyls = strtol(p, (char **)&p, 0);
1924
                    if (*p != ',')
1925
                        goto chs_fail;
1926
                    p++;
1927
                    heads = strtol(p, (char **)&p, 0);
1928
                    if (*p != ',')
1929
                        goto chs_fail;
1930
                    p++;
1931
                    secs = strtol(p, (char **)&p, 0);
1932
                    if (*p != '\0') {
1933
                    chs_fail:
1934
                        cyls = 0;
1935
                    }
1936
                }
1937
                break;
1938
            case 5:
1939
                nographic = 1;
1940
                break;
1941
            case 6:
1942
                kernel_filename = optarg;
1943
                break;
1944
            case 7:
1945
                kernel_cmdline = optarg;
1946
                break;
1947
            case 8:
1948
                {
1949
                    const char *p;
1950
                    int fd;
1951
                    if (nb_tun_fds < MAX_NICS) {
1952
                        fd = strtol(optarg, (char **)&p, 0);
1953
                        if (*p != '\0') {
1954
                            fprintf(stderr, "qemu: invalid fd for network interface %d\n", nb_tun_fds);
1955
                            exit(1);
1956
                        }
1957
                        tun_fds[nb_tun_fds++] = fd;
1958
                    }
1959
                }
1960
                break;
1961
            case 9:
1962
                hd_filename[2] = optarg;
1963
                has_cdrom = 0;
1964
                break;
1965
            case 10:
1966
                hd_filename[3] = optarg;
1967
                break;
1968
            case 11:
1969
                hd_filename[2] = optarg;
1970
                has_cdrom = 1;
1971
                break;
1972
            case 12:
1973
                boot_device = optarg[0];
1974
                if (boot_device != 'a' && boot_device != 'b' &&
1975
                    boot_device != 'c' && boot_device != 'd') {
1976
                    fprintf(stderr, "qemu: invalid boot device '%c'\n", boot_device);
1977
                    exit(1);
1978
                }
1979
                break;
1980
            case 13:
1981
                fd_filename[0] = optarg;
1982
                break;
1983
            case 14:
1984
                fd_filename[1] = optarg;
1985
                break;
1986
            case 15:
1987
                code_copy_enabled = 0;
1988
                break;
1989
            case 16:
1990
                nb_nics = atoi(optarg);
1991
                if (nb_nics < 1 || nb_nics > MAX_NICS) {
1992
                    fprintf(stderr, "qemu: invalid number of network interfaces\n");
1993
                    exit(1);
1994
                }
1995
                break;
1996
            case 17:
1997
                {
1998
                    const char *p;
1999
                    int i;
2000
                    p = optarg;
2001
                    for(i = 0; i < 6; i++) {
2002
                        macaddr[i] = strtol(p, (char **)&p, 16);
2003
                        if (i == 5) {
2004
                            if (*p != '\0') 
2005
                                goto macaddr_error;
2006
                        } else {
2007
                            if (*p != ':') {
2008
                            macaddr_error:
2009
                                fprintf(stderr, "qemu: invalid syntax for ethernet address\n");
2010
                                exit(1);
2011
                            }
2012
                            p++;
2013
                        }
2014
                    }
2015
                }
2016
                break;
2017
            case 18:
2018
                net_if_type = NET_IF_USER;
2019
                break;
2020
            case 19:
2021
                net_if_type = NET_IF_DUMMY;
2022
                break;
2023
            }
2024
            break;
2025
        case 'h':
2026
            help();
2027
            break;
2028
        case 'm':
2029
            ram_size = atoi(optarg) * 1024 * 1024;
2030
            if (ram_size <= 0)
2031
                help();
2032
            if (ram_size > PHYS_RAM_MAX_SIZE) {
2033
                fprintf(stderr, "qemu: at most %d MB RAM can be simulated\n",
2034
                        PHYS_RAM_MAX_SIZE / (1024 * 1024));
2035
                exit(1);
2036
            }
2037
            break;
2038
        case 'd':
2039
            {
2040
                int mask;
2041
                CPULogItem *item;
2042

    
2043
                mask = cpu_str_to_log_mask(optarg);
2044
                if (!mask) {
2045
                    printf("Log items (comma separated):\n");
2046
                    for(item = cpu_log_items; item->mask != 0; item++) {
2047
                        printf("%-10s %s\n", item->name, item->help);
2048
                    }
2049
                    exit(1);
2050
                }
2051
                cpu_set_log(mask);
2052
            }
2053
            break;
2054
        case 'n':
2055
            pstrcpy(network_script, sizeof(network_script), optarg);
2056
            break;
2057
#ifdef CONFIG_GDBSTUB
2058
        case 's':
2059
            use_gdbstub = 1;
2060
            break;
2061
        case 'p':
2062
            gdbstub_port = atoi(optarg);
2063
            break;
2064
#endif
2065
        case 'L':
2066
            bios_dir = optarg;
2067
            break;
2068
        case 'S':
2069
            start_emulation = 0;
2070
            break;
2071
        }
2072
    }
2073

    
2074
    if (optind < argc) {
2075
        hd_filename[0] = argv[optind++];
2076
    }
2077

    
2078
    linux_boot = (kernel_filename != NULL);
2079
        
2080
    if (!linux_boot && hd_filename[0] == '\0' && hd_filename[2] == '\0' &&
2081
        fd_filename[0] == '\0')
2082
        help();
2083
    
2084
    /* boot to cd by default if no hard disk */
2085
    if (hd_filename[0] == '\0' && boot_device == 'c') {
2086
        if (fd_filename[0] != '\0')
2087
            boot_device = 'a';
2088
        else
2089
            boot_device = 'd';
2090
    }
2091

    
2092
#if !defined(CONFIG_SOFTMMU)
2093
    /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
2094
    {
2095
        static uint8_t stdout_buf[4096];
2096
        setvbuf(stdout, stdout_buf, _IOLBF, sizeof(stdout_buf));
2097
    }
2098
#else
2099
    setvbuf(stdout, NULL, _IOLBF, 0);
2100
#endif
2101

    
2102
    /* init host network redirectors */
2103
    if (net_if_type == -1) {
2104
        net_if_type = NET_IF_TUN;
2105
#if defined(CONFIG_SLIRP)
2106
        if (access(network_script, R_OK) < 0) {
2107
            net_if_type = NET_IF_USER;
2108
        }
2109
#endif
2110
    }
2111

    
2112
    for(i = 0; i < nb_nics; i++) {
2113
        NetDriverState *nd = &nd_table[i];
2114
        nd->index = i;
2115
        /* init virtual mac address */
2116
        nd->macaddr[0] = macaddr[0];
2117
        nd->macaddr[1] = macaddr[1];
2118
        nd->macaddr[2] = macaddr[2];
2119
        nd->macaddr[3] = macaddr[3];
2120
        nd->macaddr[4] = macaddr[4];
2121
        nd->macaddr[5] = macaddr[5] + i;
2122
        switch(net_if_type) {
2123
#if defined(CONFIG_SLIRP)
2124
        case NET_IF_USER:
2125
            net_slirp_init(nd);
2126
            break;
2127
#endif
2128
#if !defined(_WIN32)
2129
        case NET_IF_TUN:
2130
            if (i < nb_tun_fds) {
2131
                net_fd_init(nd, tun_fds[i]);
2132
            } else {
2133
                net_tun_init(nd);
2134
            }
2135
            break;
2136
#endif
2137
        case NET_IF_DUMMY:
2138
        default:
2139
            net_dummy_init(nd);
2140
            break;
2141
        }
2142
    }
2143

    
2144
    /* init the memory */
2145
    phys_ram_size = ram_size + vga_ram_size;
2146

    
2147
#ifdef CONFIG_SOFTMMU
2148
    phys_ram_base = memalign(TARGET_PAGE_SIZE, phys_ram_size);
2149
    if (!phys_ram_base) {
2150
        fprintf(stderr, "Could not allocate physical memory\n");
2151
        exit(1);
2152
    }
2153
#else
2154
    /* as we must map the same page at several addresses, we must use
2155
       a fd */
2156
    {
2157
        const char *tmpdir;
2158

    
2159
        tmpdir = getenv("QEMU_TMPDIR");
2160
        if (!tmpdir)
2161
            tmpdir = "/tmp";
2162
        snprintf(phys_ram_file, sizeof(phys_ram_file), "%s/vlXXXXXX", tmpdir);
2163
        if (mkstemp(phys_ram_file) < 0) {
2164
            fprintf(stderr, "Could not create temporary memory file '%s'\n", 
2165
                    phys_ram_file);
2166
            exit(1);
2167
        }
2168
        phys_ram_fd = open(phys_ram_file, O_CREAT | O_TRUNC | O_RDWR, 0600);
2169
        if (phys_ram_fd < 0) {
2170
            fprintf(stderr, "Could not open temporary memory file '%s'\n", 
2171
                    phys_ram_file);
2172
            exit(1);
2173
        }
2174
        ftruncate(phys_ram_fd, phys_ram_size);
2175
        unlink(phys_ram_file);
2176
        phys_ram_base = mmap(get_mmap_addr(phys_ram_size), 
2177
                             phys_ram_size, 
2178
                             PROT_WRITE | PROT_READ, MAP_SHARED | MAP_FIXED, 
2179
                             phys_ram_fd, 0);
2180
        if (phys_ram_base == MAP_FAILED) {
2181
            fprintf(stderr, "Could not map physical memory\n");
2182
            exit(1);
2183
        }
2184
    }
2185
#endif
2186

    
2187
    /* we always create the cdrom drive, even if no disk is there */
2188
    if (has_cdrom) {
2189
        bs_table[2] = bdrv_new("cdrom");
2190
        bdrv_set_type_hint(bs_table[2], BDRV_TYPE_CDROM);
2191
    }
2192

    
2193
    /* open the virtual block devices */
2194
    for(i = 0; i < MAX_DISKS; i++) {
2195
        if (hd_filename[i]) {
2196
            if (!bs_table[i]) {
2197
                char buf[64];
2198
                snprintf(buf, sizeof(buf), "hd%c", i + 'a');
2199
                bs_table[i] = bdrv_new(buf);
2200
            }
2201
            if (bdrv_open(bs_table[i], hd_filename[i], snapshot) < 0) {
2202
                fprintf(stderr, "qemu: could not open hard disk image '%s\n",
2203
                        hd_filename[i]);
2204
                exit(1);
2205
            }
2206
            if (i == 0 && cyls != 0) 
2207
                bdrv_set_geometry_hint(bs_table[i], cyls, heads, secs);
2208
        }
2209
    }
2210

    
2211
    /* we always create at least one floppy disk */
2212
    fd_table[0] = bdrv_new("fda");
2213
    bdrv_set_type_hint(fd_table[0], BDRV_TYPE_FLOPPY);
2214

    
2215
    for(i = 0; i < MAX_FD; i++) {
2216
        if (fd_filename[i]) {
2217
            if (!fd_table[i]) {
2218
                char buf[64];
2219
                snprintf(buf, sizeof(buf), "fd%c", i + 'a');
2220
                fd_table[i] = bdrv_new(buf);
2221
                bdrv_set_type_hint(fd_table[i], BDRV_TYPE_FLOPPY);
2222
            }
2223
            if (fd_filename[i] != '\0') {
2224
                if (bdrv_open(fd_table[i], fd_filename[i], snapshot) < 0) {
2225
                    fprintf(stderr, "qemu: could not open floppy disk image '%s'\n",
2226
                            fd_filename[i]);
2227
                    exit(1);
2228
                }
2229
            }
2230
        }
2231
    }
2232

    
2233
    /* init CPU state */
2234
    env = cpu_init();
2235
    global_env = env;
2236
    cpu_single_env = env;
2237

    
2238
    register_savevm("timer", 0, 1, timer_save, timer_load, env);
2239
    register_savevm("cpu", 0, 1, cpu_save, cpu_load, env);
2240
    register_savevm("ram", 0, 1, ram_save, ram_load, NULL);
2241

    
2242
    init_ioports();
2243
    cpu_calibrate_ticks();
2244

    
2245
    /* terminal init */
2246
    if (nographic) {
2247
        dumb_display_init(ds);
2248
    } else {
2249
#ifdef CONFIG_SDL
2250
        sdl_display_init(ds);
2251
#else
2252
        dumb_display_init(ds);
2253
#endif
2254
    }
2255

    
2256
    /* setup cpu signal handlers for MMU / self modifying code handling */
2257
#if !defined(CONFIG_SOFTMMU)
2258
    
2259
#if defined (TARGET_I386) && defined(USE_CODE_COPY)
2260
    {
2261
        stack_t stk;
2262
        signal_stack = memalign(16, SIGNAL_STACK_SIZE);
2263
        stk.ss_sp = signal_stack;
2264
        stk.ss_size = SIGNAL_STACK_SIZE;
2265
        stk.ss_flags = 0;
2266

    
2267
        if (sigaltstack(&stk, NULL) < 0) {
2268
            perror("sigaltstack");
2269
            exit(1);
2270
        }
2271
    }
2272
#endif
2273
    {
2274
        struct sigaction act;
2275
        
2276
        sigfillset(&act.sa_mask);
2277
        act.sa_flags = SA_SIGINFO;
2278
#if defined (TARGET_I386) && defined(USE_CODE_COPY)
2279
        act.sa_flags |= SA_ONSTACK;
2280
#endif
2281
        act.sa_sigaction = host_segv_handler;
2282
        sigaction(SIGSEGV, &act, NULL);
2283
        sigaction(SIGBUS, &act, NULL);
2284
#if defined (TARGET_I386) && defined(USE_CODE_COPY)
2285
        sigaction(SIGFPE, &act, NULL);
2286
#endif
2287
    }
2288
#endif
2289

    
2290
#ifndef _WIN32
2291
    {
2292
        struct sigaction act;
2293
        sigfillset(&act.sa_mask);
2294
        act.sa_flags = 0;
2295
        act.sa_handler = SIG_IGN;
2296
        sigaction(SIGPIPE, &act, NULL);
2297
    }
2298
#endif
2299
    init_timers();
2300

    
2301
#if defined(TARGET_I386)
2302
    pc_init(ram_size, vga_ram_size, boot_device,
2303
            ds, fd_filename, snapshot,
2304
            kernel_filename, kernel_cmdline, initrd_filename);
2305
#elif defined(TARGET_PPC)
2306
    ppc_init(ram_size, vga_ram_size, boot_device,
2307
             ds, fd_filename, snapshot,
2308
             kernel_filename, kernel_cmdline, initrd_filename);
2309
#endif
2310

    
2311
    /* launched after the device init so that it can display or not a
2312
       banner */
2313
    monitor_init();
2314

    
2315
    gui_timer = qemu_new_timer(rt_clock, gui_update, NULL);
2316
    qemu_mod_timer(gui_timer, qemu_get_clock(rt_clock));
2317

    
2318
#ifdef CONFIG_GDBSTUB
2319
    if (use_gdbstub) {
2320
        if (gdbserver_start(gdbstub_port) < 0) {
2321
            fprintf(stderr, "Could not open gdbserver socket on port %d\n", 
2322
                    gdbstub_port);
2323
            exit(1);
2324
        } else {
2325
            printf("Waiting gdb connection on port %d\n", gdbstub_port);
2326
        }
2327
    } else 
2328
#endif
2329
    if (start_emulation)
2330
    {
2331
        vm_start();
2332
    }
2333
    term_init();
2334
    main_loop();
2335
    quit_timers();
2336
    return 0;
2337
}