Statistics
| Branch: | Revision:

root / linux-user / qemu.h @ d656469f

History | View | Annotate | Download (12.5 kB)

1
#ifndef QEMU_H
2
#define QEMU_H
3

    
4
#include <signal.h>
5
#include <string.h>
6

    
7
#include "cpu.h"
8

    
9
#undef DEBUG_REMAP
10
#ifdef DEBUG_REMAP
11
#include <stdlib.h>
12
#endif /* DEBUG_REMAP */
13

    
14
#ifdef TARGET_ABI32
15
typedef uint32_t abi_ulong;
16
typedef int32_t abi_long;
17
#define TARGET_ABI_FMT_lx "%08x"
18
#define TARGET_ABI_FMT_ld "%d"
19
#define TARGET_ABI_FMT_lu "%u"
20
#define TARGET_ABI_BITS 32
21
#else
22
typedef target_ulong abi_ulong;
23
typedef target_long abi_long;
24
#define TARGET_ABI_FMT_lx TARGET_FMT_lx
25
#define TARGET_ABI_FMT_ld TARGET_FMT_ld
26
#define TARGET_ABI_FMT_lu TARGET_FMT_lu
27
#define TARGET_ABI_BITS TARGET_LONG_BITS
28
/* for consistency, define ABI32 too */
29
#if TARGET_ABI_BITS == 32
30
#define TARGET_ABI32 1
31
#endif
32
#endif
33

    
34
#include "thunk.h"
35
#include "syscall_defs.h"
36
#include "syscall.h"
37
#include "target_signal.h"
38
#include "gdbstub.h"
39

    
40
/* This struct is used to hold certain information about the image.
41
 * Basically, it replicates in user space what would be certain
42
 * task_struct fields in the kernel
43
 */
44
struct image_info {
45
        abi_ulong       load_addr;
46
        abi_ulong       start_code;
47
        abi_ulong       end_code;
48
        abi_ulong       start_data;
49
        abi_ulong       end_data;
50
        abi_ulong       start_brk;
51
        abi_ulong       brk;
52
        abi_ulong       start_mmap;
53
        abi_ulong       mmap;
54
        abi_ulong       rss;
55
        abi_ulong       start_stack;
56
        abi_ulong       entry;
57
        abi_ulong       code_offset;
58
        abi_ulong       data_offset;
59
        char            **host_argv;
60
        int                personality;
61
};
62

    
63
#ifdef TARGET_I386
64
/* Information about the current linux thread */
65
struct vm86_saved_state {
66
    uint32_t eax; /* return code */
67
    uint32_t ebx;
68
    uint32_t ecx;
69
    uint32_t edx;
70
    uint32_t esi;
71
    uint32_t edi;
72
    uint32_t ebp;
73
    uint32_t esp;
74
    uint32_t eflags;
75
    uint32_t eip;
76
    uint16_t cs, ss, ds, es, fs, gs;
77
};
78
#endif
79

    
80
#ifdef TARGET_ARM
81
/* FPU emulator */
82
#include "nwfpe/fpa11.h"
83
#endif
84

    
85
/* NOTE: we force a big alignment so that the stack stored after is
86
   aligned too */
87
typedef struct TaskState {
88
    struct TaskState *next;
89
#ifdef TARGET_ARM
90
    /* FPA state */
91
    FPA11 fpa;
92
    int swi_errno;
93
#endif
94
#if defined(TARGET_I386) && !defined(TARGET_X86_64)
95
    abi_ulong target_v86;
96
    struct vm86_saved_state vm86_saved_regs;
97
    struct target_vm86plus_struct vm86plus;
98
    uint32_t v86flags;
99
    uint32_t v86mask;
100
#endif
101
#ifdef TARGET_M68K
102
    int sim_syscalls;
103
#endif
104
#if defined(TARGET_ARM) || defined(TARGET_M68K)
105
    /* Extra fields for semihosted binaries.  */
106
    uint32_t stack_base;
107
    uint32_t heap_base;
108
    uint32_t heap_limit;
109
#endif
110
    int used; /* non zero if used */
111
    struct image_info *info;
112
    uint8_t stack[0];
113
} __attribute__((aligned(16))) TaskState;
114

    
115
extern TaskState *first_task_state;
116
extern const char *qemu_uname_release;
117

    
118
/* ??? See if we can avoid exposing so much of the loader internals.  */
119
/*
120
 * MAX_ARG_PAGES defines the number of pages allocated for arguments
121
 * and envelope for the new program. 32 should suffice, this gives
122
 * a maximum env+arg of 128kB w/4KB pages!
123
 */
124
#define MAX_ARG_PAGES 32
125

    
126
/*
127
 * This structure is used to hold the arguments that are
128
 * used when loading binaries.
129
 */
130
struct linux_binprm {
131
        char buf[128];
132
        void *page[MAX_ARG_PAGES];
133
        abi_ulong p;
134
        int fd;
135
        int e_uid, e_gid;
136
        int argc, envc;
137
        char **argv;
138
        char **envp;
139
        char * filename;        /* Name of binary */
140
};
141

    
142
void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
143
abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
144
                              abi_ulong stringp, int push_ptr);
145
int loader_exec(const char * filename, char ** argv, char ** envp,
146
             struct target_pt_regs * regs, struct image_info *infop);
147

    
148
int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
149
                    struct image_info * info);
150
int load_flt_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
151
                    struct image_info * info);
152
#ifdef TARGET_HAS_ELFLOAD32
153
int load_elf_binary_multi(struct linux_binprm *bprm,
154
                          struct target_pt_regs *regs,
155
                          struct image_info *info);
156
#endif
157

    
158
abi_long memcpy_to_target(abi_ulong dest, const void *src,
159
                          unsigned long len);
160
void target_set_brk(abi_ulong new_brk);
161
abi_long do_brk(abi_ulong new_brk);
162
void syscall_init(void);
163
abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
164
                    abi_long arg2, abi_long arg3, abi_long arg4,
165
                    abi_long arg5, abi_long arg6);
166
void gemu_log(const char *fmt, ...) __attribute__((format(printf,1,2)));
167
extern CPUState *global_env;
168
void cpu_loop(CPUState *env);
169
void init_paths(const char *prefix);
170
const char *path(const char *pathname);
171
char *target_strerror(int err);
172

    
173
extern int loglevel;
174
extern FILE *logfile;
175

    
176
/* strace.c */
177
void print_syscall(int num,
178
                   abi_long arg1, abi_long arg2, abi_long arg3,
179
                   abi_long arg4, abi_long arg5, abi_long arg6);
180
void print_syscall_ret(int num, abi_long arg1);
181
extern int do_strace;
182

    
183
/* signal.c */
184
void process_pending_signals(void *cpu_env);
185
void signal_init(void);
186
int queue_signal(int sig, target_siginfo_t *info);
187
void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
188
void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
189
long do_sigreturn(CPUState *env);
190
long do_rt_sigreturn(CPUState *env);
191
abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
192

    
193
#ifdef TARGET_I386
194
/* vm86.c */
195
void save_v86_state(CPUX86State *env);
196
void handle_vm86_trap(CPUX86State *env, int trapno);
197
void handle_vm86_fault(CPUX86State *env);
198
int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);
199
#elif defined(TARGET_SPARC64)
200
void sparc64_set_context(CPUSPARCState *env);
201
void sparc64_get_context(CPUSPARCState *env);
202
#endif
203

    
204
/* mmap.c */
205
int target_mprotect(abi_ulong start, abi_ulong len, int prot);
206
abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
207
                     int flags, int fd, abi_ulong offset);
208
int target_munmap(abi_ulong start, abi_ulong len);
209
abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
210
                       abi_ulong new_size, unsigned long flags,
211
                       abi_ulong new_addr);
212
int target_msync(abi_ulong start, abi_ulong len, int flags);
213

    
214
/* user access */
215

    
216
#define VERIFY_READ 0
217
#define VERIFY_WRITE 1 /* implies read access */
218

    
219
static inline int access_ok(int type, abi_ulong addr, abi_ulong size)
220
{
221
    return page_check_range((target_ulong)addr, size,
222
                            (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0;
223
}
224

    
225
/* NOTE __get_user and __put_user use host pointers and don't check access. */
226
/* These are usually used to access struct data members once the
227
 * struct has been locked - usually with lock_user_struct().
228
 */
229
#define __put_user(x, hptr)\
230
({\
231
    int size = sizeof(*hptr);\
232
    switch(size) {\
233
    case 1:\
234
        *(uint8_t *)(hptr) = (uint8_t)(typeof(*hptr))(x);\
235
        break;\
236
    case 2:\
237
        *(uint16_t *)(hptr) = tswap16((typeof(*hptr))(x));\
238
        break;\
239
    case 4:\
240
        *(uint32_t *)(hptr) = tswap32((typeof(*hptr))(x));\
241
        break;\
242
    case 8:\
243
        *(uint64_t *)(hptr) = tswap64((typeof(*hptr))(x));\
244
        break;\
245
    default:\
246
        abort();\
247
    }\
248
    0;\
249
})
250

    
251
#define __get_user(x, hptr) \
252
({\
253
    int size = sizeof(*hptr);\
254
    switch(size) {\
255
    case 1:\
256
        x = (typeof(*hptr))*(uint8_t *)(hptr);\
257
        break;\
258
    case 2:\
259
        x = (typeof(*hptr))tswap16(*(uint16_t *)(hptr));\
260
        break;\
261
    case 4:\
262
        x = (typeof(*hptr))tswap32(*(uint32_t *)(hptr));\
263
        break;\
264
    case 8:\
265
        x = (typeof(*hptr))tswap64(*(uint64_t *)(hptr));\
266
        break;\
267
    default:\
268
        /* avoid warning */\
269
        x = 0;\
270
        abort();\
271
    }\
272
    0;\
273
})
274

    
275
/* put_user()/get_user() take a guest address and check access */
276
/* These are usually used to access an atomic data type, such as an int,
277
 * that has been passed by address.  These internally perform locking
278
 * and unlocking on the data type.
279
 */
280
#define put_user(x, gaddr, target_type)                                        \
281
({                                                                        \
282
    abi_ulong __gaddr = (gaddr);                                        \
283
    target_type *__hptr;                                                \
284
    abi_long __ret;                                                        \
285
    if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
286
        __ret = __put_user((x), __hptr);                                \
287
        unlock_user(__hptr, __gaddr, sizeof(target_type));                \
288
    } else                                                                \
289
        __ret = -TARGET_EFAULT;                                                \
290
    __ret;                                                                \
291
})
292

    
293
#define get_user(x, gaddr, target_type)                                        \
294
({                                                                        \
295
    abi_ulong __gaddr = (gaddr);                                        \
296
    target_type *__hptr;                                                \
297
    abi_long __ret;                                                        \
298
    if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
299
        __ret = __get_user((x), __hptr);                                \
300
        unlock_user(__hptr, __gaddr, 0);                                \
301
    } else {                                                                \
302
        /* avoid warning */                                                \
303
        (x) = 0;                                                        \
304
        __ret = -TARGET_EFAULT;                                                \
305
    }                                                                        \
306
    __ret;                                                                \
307
})
308

    
309
#define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
310
#define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
311
#define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
312
#define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
313
#define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
314
#define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
315
#define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
316
#define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
317
#define put_user_u8(x, gaddr)  put_user((x), (gaddr), uint8_t)
318
#define put_user_s8(x, gaddr)  put_user((x), (gaddr), int8_t)
319

    
320
#define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
321
#define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
322
#define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
323
#define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
324
#define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
325
#define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
326
#define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
327
#define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
328
#define get_user_u8(x, gaddr)  get_user((x), (gaddr), uint8_t)
329
#define get_user_s8(x, gaddr)  get_user((x), (gaddr), int8_t)
330

    
331
/* copy_from_user() and copy_to_user() are usually used to copy data
332
 * buffers between the target and host.  These internally perform
333
 * locking/unlocking of the memory.
334
 */
335
abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
336
abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
337

    
338
/* Functions for accessing guest memory.  The tget and tput functions
339
   read/write single values, byteswapping as neccessary.  The lock_user
340
   gets a pointer to a contiguous area of guest memory, but does not perform
341
   and byteswapping.  lock_user may return either a pointer to the guest
342
   memory, or a temporary buffer.  */
343

    
344
/* Lock an area of guest memory into the host.  If copy is true then the
345
   host area will have the same contents as the guest.  */
346
static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy)
347
{
348
    if (!access_ok(type, guest_addr, len))
349
        return NULL;
350
#ifdef DEBUG_REMAP
351
    {
352
        void *addr;
353
        addr = malloc(len);
354
        if (copy)
355
            memcpy(addr, g2h(guest_addr), len);
356
        else
357
            memset(addr, 0, len);
358
        return addr;
359
    }
360
#else
361
    return g2h(guest_addr);
362
#endif
363
}
364

    
365
/* Unlock an area of guest memory.  The first LEN bytes must be
366
   flushed back to guest memory. host_ptr = NULL is explicitely
367
   allowed and does nothing. */
368
static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
369
                               long len)
370
{
371

    
372
#ifdef DEBUG_REMAP
373
    if (!host_ptr)
374
        return;
375
    if (host_ptr == g2h(guest_addr))
376
        return;
377
    if (len > 0)
378
        memcpy(g2h(guest_addr), host_ptr, len);
379
    free(host_ptr);
380
#endif
381
}
382

    
383
/* Return the length of a string in target memory or -TARGET_EFAULT if
384
   access error. */
385
abi_long target_strlen(abi_ulong gaddr);
386

    
387
/* Like lock_user but for null terminated strings.  */
388
static inline void *lock_user_string(abi_ulong guest_addr)
389
{
390
    abi_long len;
391
    len = target_strlen(guest_addr);
392
    if (len < 0)
393
        return NULL;
394
    return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
395
}
396

    
397
/* Helper macros for locking/ulocking a target struct.  */
398
#define lock_user_struct(type, host_ptr, guest_addr, copy)        \
399
    (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
400
#define unlock_user_struct(host_ptr, guest_addr, copy)                \
401
    unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
402

    
403
#endif /* QEMU_H */